Research article

Optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type

  • Received: 27 March 2021 Accepted: 07 September 2021 Published: 14 September 2021
  • MSC : 26D15

  • In this paper, optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type are established using the monotone form of L'Hospital's rule and the criterion for the monotonicity of the quotient of power series.

    Citation: Ling Zhu, Branko Malešević. Optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type[J]. AIMS Mathematics, 2021, 6(12): 13024-13040. doi: 10.3934/math.2021753

    Related Papers:

  • In this paper, optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type are established using the monotone form of L'Hospital's rule and the criterion for the monotonicity of the quotient of power series.



    加载中


    [1] P. Kahlig, J. Matkowski, Decomposition of homogeneous means and construction of some metric spaces, Math. Inequal. Appl., 1 (1998), 463–480.
    [2] A. Witkowski, On Seiffert-like means, J. Math. Inequal., 9 (2015), 1071–1092.
    [3] Y. Q. Song, W. M. Qian, Y. M. Chu, Optimal bounds for Neuman mean using arithmetic and centroidal means, J. Funct. Spaces, 2016 (2016), 5131907.
    [4] B. Wang, C. L. Luo, S. H. Li, Y. M. Chu, Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7. doi: 10.1007/s13398-019-00734-0
    [5] W. F. Xia, Y. M. Chu, Optimal inequalities between Neuman-Sándor, centroidal and harmonic means, J. Math. Inequal., 7 (2013), 593–600.
    [6] X. H. He, W. M. Qian, H. Z. Xu, Y. M. Chu, Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627–2638. doi: 10.1007/s13398-019-00643-2
    [7] Z. Y. He, M. K. Wang, Y. P. Jiang, Y. M. Chu, Bounds for the perimeter of an ellipse in terms of power means, J. Math. Inequal., 14 (2020), 887–899.
    [8] W. M. Qian, Z. Y. He, H. W. Zhang, Y. M. Chu, Sharp bounds for Neuman means in terms of two parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 168. doi: 10.1186/s13660-019-2124-5
    [9] M. Nowicka, A. Witkowski, Optimal bounds for the tangent and hyperbolic sine means IV, J. Math. Inequal., 14 (2020), 23–33.
    [10] L. Zhu, Optimal bounds for two Seiffert-like means in exponential type, J. Math. Anal. Appl., 505 (2022), 125475. doi: 10.1016/j.jmaa.2021.125475
    [11] G. D. Anderson, M. K. Vamanamurthy, M.Vuorinen, Inequalities for quasiconformal mappings in space, Pac. J. Math., 160 (1993), 1–18. doi: 10.2140/pjm.1993.160.1
    [12] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, New York: John Wiley & Sons, 1997.
    [13] M. Biernacki, J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska, 9 (1955), 134–145.
    [14] A. Jeffrey, Handbook of mathematical formulas and integrals, 3 Eds, San Diego: Elsevier B.V., 2004.
    [15] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Washington: U.S. Government Printing Office, 1972.
    [16] C. D'aniello, On some inequalities for the Bernoulli numbers, Rend. Circ. Mat. Palermo, 43 (1994), 329–332. doi: 10.1007/BF02844246
    [17] H. Alzer, Sharp bounds for the Bernoulli Numbers, Arch. Math., 74 (2000), 207–211. doi: 10.1007/s000130050432
    [18] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math., 351 (2019), 1–5.
    [19] Z. H. Yang, J. F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 112359. doi: 10.1016/j.cam.2019.112359
    [20] L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, RACSAM, 114 (2020), 83. doi: 10.1007/s13398-020-00814-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1704) PDF downloads(131) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog