Research article

The limit of reciprocal sum of some subsequential Fibonacci numbers

  • The current address: Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
  • Received: 25 May 2021 Accepted: 24 August 2021 Published: 27 August 2021
  • MSC : Primary 11B39, 11Y55, 40A05

  • This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a consequence of some inequalities, we prove

    $ \lim\limits_{n\rightarrow \infty}\left\{\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} \right)^{-1} -(f_{mn-\ell}-f_{m(n-1)-\ell})\right\} = 0. $

    And we also compute the explicit value of $ \left\lfloor\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}}\right)^{-1}\right\rfloor $. The interesting observation is that the value depends on $ m(n+1)+\ell $.

    Citation: Ho-Hyeong Lee, Jong-Do Park. The limit of reciprocal sum of some subsequential Fibonacci numbers[J]. AIMS Mathematics, 2021, 6(11): 12379-12394. doi: 10.3934/math.2021716

    Related Papers:

  • This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a consequence of some inequalities, we prove

    $ \lim\limits_{n\rightarrow \infty}\left\{\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} \right)^{-1} -(f_{mn-\ell}-f_{m(n-1)-\ell})\right\} = 0. $

    And we also compute the explicit value of $ \left\lfloor\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}}\right)^{-1}\right\rfloor $. The interesting observation is that the value depends on $ m(n+1)+\ell $.



    加载中


    [1] R. Andrée-Jeannin, Irrationalité de la somme des inverses de certaines suites réecurrentes, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 539–541.
    [2] U. K. Dutta, P. K. Ray, On the finite reciprocal sums of Fibonacci and Lucas polynomials, AIMS Math., 4 (2019), 1569–1581. doi: 10.3934/math.2019.6.1569
    [3] S. H. Holliday, T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers, 11 (2011), 441–455.
    [4] T. Koshy, Fibonacci and Lucas numbers with applications, 2 Eds., Wiley, 2001.
    [5] H. H. Lee, J. D. Park, Asymptotic behavior of the inverse of tails of Hurwitz zeta function, J. Korean Math. Soc., 57 (2020), 1535–1549.
    [6] H. H. Lee, J. D. Park, Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers, J. Inequal. Appl., 2020 (2020), 91. doi: 10.1186/s13660-020-02359-z
    [7] H. Ohtsuka, S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Q., 46/47 (2008/2009), 153–159.
    [8] P. Trojovský, On the sum of reciprocal of polynomial applied to higher order recurrences, Mathematics, 7 (2019), 638. doi: 10.3390/math7070638
    [9] N. N. Vorobiev, Fibonacci numbers, Basel: Springer, 2002.
    [10] A. Y. Z. Wang, F. Zhang, The reciprocal sums of even and odd terms in the Fibonacci sequence, J. Inequal. Appl., 2015 (2015), 376. doi: 10.1186/s13660-015-0902-2
    [11] Z. Wu, W. Zhang, Several identities involving the Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl., 2013 (2013), 205. doi: 10.1186/1029-242X-2013-205
    [12] G. J. Zhang, The infinite sum of reciprocal of the Fibonacci numbers, J. Math. Res. Expo., 31 (2011), 1030–1034.
    [13] W. P. Zhang, T. T. Wang, The infinite sum of reciprocal Pell numbers, Appl. Math. Comput., 218 (2012), 6164–6167.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2329) PDF downloads(109) Cited by(1)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog