This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a consequence of some inequalities, we prove
$ \lim\limits_{n\rightarrow \infty}\left\{\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} \right)^{-1} -(f_{mn-\ell}-f_{m(n-1)-\ell})\right\} = 0. $
And we also compute the explicit value of $ \left\lfloor\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}}\right)^{-1}\right\rfloor $. The interesting observation is that the value depends on $ m(n+1)+\ell $.
Citation: Ho-Hyeong Lee, Jong-Do Park. The limit of reciprocal sum of some subsequential Fibonacci numbers[J]. AIMS Mathematics, 2021, 6(11): 12379-12394. doi: 10.3934/math.2021716
This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a consequence of some inequalities, we prove
$ \lim\limits_{n\rightarrow \infty}\left\{\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} \right)^{-1} -(f_{mn-\ell}-f_{m(n-1)-\ell})\right\} = 0. $
And we also compute the explicit value of $ \left\lfloor\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}}\right)^{-1}\right\rfloor $. The interesting observation is that the value depends on $ m(n+1)+\ell $.
[1] | R. Andrée-Jeannin, Irrationalité de la somme des inverses de certaines suites réecurrentes, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 539–541. |
[2] | U. K. Dutta, P. K. Ray, On the finite reciprocal sums of Fibonacci and Lucas polynomials, AIMS Math., 4 (2019), 1569–1581. doi: 10.3934/math.2019.6.1569 |
[3] | S. H. Holliday, T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers, 11 (2011), 441–455. |
[4] | T. Koshy, Fibonacci and Lucas numbers with applications, 2 Eds., Wiley, 2001. |
[5] | H. H. Lee, J. D. Park, Asymptotic behavior of the inverse of tails of Hurwitz zeta function, J. Korean Math. Soc., 57 (2020), 1535–1549. |
[6] | H. H. Lee, J. D. Park, Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers, J. Inequal. Appl., 2020 (2020), 91. doi: 10.1186/s13660-020-02359-z |
[7] | H. Ohtsuka, S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Q., 46/47 (2008/2009), 153–159. |
[8] | P. Trojovský, On the sum of reciprocal of polynomial applied to higher order recurrences, Mathematics, 7 (2019), 638. doi: 10.3390/math7070638 |
[9] | N. N. Vorobiev, Fibonacci numbers, Basel: Springer, 2002. |
[10] | A. Y. Z. Wang, F. Zhang, The reciprocal sums of even and odd terms in the Fibonacci sequence, J. Inequal. Appl., 2015 (2015), 376. doi: 10.1186/s13660-015-0902-2 |
[11] | Z. Wu, W. Zhang, Several identities involving the Fibonacci polynomials and Lucas polynomials, J. Inequal. Appl., 2013 (2013), 205. doi: 10.1186/1029-242X-2013-205 |
[12] | G. J. Zhang, The infinite sum of reciprocal of the Fibonacci numbers, J. Math. Res. Expo., 31 (2011), 1030–1034. |
[13] | W. P. Zhang, T. T. Wang, The infinite sum of reciprocal Pell numbers, Appl. Math. Comput., 218 (2012), 6164–6167. |