Research article

Proof of a Dwork-type supercongruence by induction

  • Received: 08 June 2021 Accepted: 05 August 2021 Published: 10 August 2021
  • MSC : 11A07, 11B68, 11E25, 05A10, 11B65, 11B75

  • In this paper we prove a Dwork-type supercongruence: for any prime $ p\geq3 $ and integer $ r\geq 1 $,

    $ \begin{align*} \sum\limits_{k = 0}^{p^r-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\equiv p\sum\limits_{k = 0}^{p^{r-1}-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\pmod{p^{3r+1-\delta_{p, 3}}}, \end{align*} $

    which extends a result of Guo and Zudilin.

    Citation: Yong Zhang, Peisen Yuan. Proof of a Dwork-type supercongruence by induction[J]. AIMS Mathematics, 2021, 6(10): 11568-11583. doi: 10.3934/math.2021671

    Related Papers:

  • In this paper we prove a Dwork-type supercongruence: for any prime $ p\geq3 $ and integer $ r\geq 1 $,

    $ \begin{align*} \sum\limits_{k = 0}^{p^r-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\equiv p\sum\limits_{k = 0}^{p^{r-1}-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\pmod{p^{3r+1-\delta_{p, 3}}}, \end{align*} $

    which extends a result of Guo and Zudilin.



    加载中


    [1] H. Alzer, D. Karayannakis, H. M. Srivastava, Series representations for some mathematical constants, J. Math. Anal. Appl., 320 (2006), 145–162. doi: 10.1016/j.jmaa.2005.06.059
    [2] A. O. L. Atkin, H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics, Amer. Math. Soc., Providence, R.I., 19 (1971), 1–25.
    [3] F. Beukers, Some congruences for the Apéry numbers, J. Number Theory, 25 (1985), 141–155.
    [4] T. X. Cai, A congruence involving the quotients of Euler and its applications (I), Acta Arith., 103 (2002), 313–320. doi: 10.4064/aa103-4-1
    [5] B. Dwork, $p$-adic cycles, Inst. Hautes Études Sci. Publ. Math., 37 (1969), 27–115.
    [6] I. Gessel, Some congruences for generalized Euler numbers, Canad. J. Math., 35 (1983), 687–709. doi: 10.4153/CJM-1983-039-5
    [7] A. Granville, Arithmetic properties of binomial coefficients I: Binomial coefficients modulo prime powers, CMS Conf. Proc., 20 (1997), 253–275.
    [8] J. Guillera, W. Zudilin, "Divergent" Ramanujan-type supercongruences, Proc. Amer. Math. Soc., 14 (2012), 765–777.
    [9] V. J. W. Guo, $q$-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl., 487 (2020), 124022. doi: 10.1016/j.jmaa.2020.124022
    [10] V. J. W. Guo, $q$-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., 52 (2020), 605–624. doi: 10.1007/s11139-019-00161-0
    [11] V. J. W. Guo, W. Zudilin, Dwork-type supercongruences through a creative $q$-microscope, J. Combin. Theory Ser. A, 178 (2020), 105362.
    [12] R. Gy, Extended congruences for harmonic numbers, 2019, arXiv: 1902.05258.
    [13] X. Z. Lin, $p$-adic $L$-functions and classical congruences, Acta Arith., 194 (2020), 29–49. doi: 10.4064/aa181207-2-5
    [14] J. C. Liu, Congruences for truncated hypergeometric series ${}_2F_1$, Bull. Austral. Math. Soc., 96 (2017), 14–23. doi: 10.1017/S0004972717000181
    [15] G. S. Mao, T. Zhang, Proof of Sun's conjectures on supercongruences and the divisibility of certain binomial sums, Ramanujan J., 50 (2019), 1–11. doi: 10.1007/s11139-019-00138-z
    [16] H. X. Ni, A $q$-Dwork-type generalization of Rodriguez-Villegas' supercongruences, 2020, arXiv: 2008.02541.
    [17] R. Osburn, B. Sahu, A. Straub, Supercongruences for sporadic sequences, Proc. Edinburgh Math. Soc. (2), 59 (2016), 503–518. doi: 10.1017/S0013091515000255
    [18] A. Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory, 8 (2014), 1985–2008. doi: 10.2140/ant.2014.8.1985
    [19] Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140 (2012), 415–428.
    [20] Z. W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly, 36 (2019), 1–99.
    [21] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x
    [22] X. Wang, M. Yue, A $q$-analogue of a Dwork-type supercongruence, Bull. Austral. Math. Soc., 103 (2020), 1–8.
    [23] Y. Zhang, H. Pan, On the Atkin and Swinnerton-Dyer type congruences for some truncated hypergeometric ${}_1F_0$ series, Acta Arith., 198 (2021), 169–186. doi: 10.4064/aa200405-8-8
    [24] Y. Zhang, Three supercongruences for Apéry numbers or Franel numbers, Publ. Math. Debrecen, 9023 (2021), 1–20.
    [25] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory, 129 (2009), 1848–1857. doi: 10.1016/j.jnt.2009.01.013
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1834) PDF downloads(86) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog