Research article

Linear maps on von Neumann algebras acting as Lie type derivation via local actions

  • Received: 05 March 2021 Accepted: 19 May 2021 Published: 02 June 2021
  • MSC : 47B47, 47L10

  • Let $ \aleph $ be a factor von Neumann algebra with $ dim > 1 $ that operates on a Hilbert space. Within the manuscript, we let out the characterization of Lie type derivation on factor von Neumann algebra of zero product as well as at projection product and notice that it has standard form.

    Citation: Mohd Arif Raza, Aisha Jabeen, Abdul Nadim Khan, Husain Alhazmi. Linear maps on von Neumann algebras acting as Lie type derivation via local actions[J]. AIMS Mathematics, 2021, 6(8): 8453-8465. doi: 10.3934/math.2021490

    Related Papers:

  • Let $ \aleph $ be a factor von Neumann algebra with $ dim > 1 $ that operates on a Hilbert space. Within the manuscript, we let out the characterization of Lie type derivation on factor von Neumann algebra of zero product as well as at projection product and notice that it has standard form.



    加载中


    [1] I. Z. Abdullaev, $n$-Lie derivations on von Neumann algebra, Uzbek. Mat. Zh., 5 (1992), 3–9.
    [2] F. Y. Lu, W. Jing, Characterizations of Lie derivations of ${B(X)}$, Linear Algebra Appl., 432 (2010), 89–99. doi: 10.1016/j.laa.2009.07.026
    [3] P. Ji, W. Qi, X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear A., 61 (2013), 417–428. doi: 10.1080/03081087.2012.689982
    [4] P. Ji, W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra Appl., 435 (2011), 1137–1146. doi: 10.1016/j.laa.2011.02.048
    [5] X. Qi, Characterization of (generalized) Lie derivations on $\mathcal{J}$-subspace lattice algebras by local action, Aequat. Math., 87 (2014), 53–69. doi: 10.1007/s00010-012-0177-3
    [6] L. Liu, Lie triple derivations on factor von Neumann algebras, Bull. Korean Math. Soc., 52 (2015), 581–591. doi: 10.4134/BKMS.2015.52.2.581
    [7] Y. Wang, Lie $n$-derivations of unital algebras with idempotents, Linear Algebra Appl., 458 (2014), 512–525. doi: 10.1016/j.laa.2014.06.029
    [8] X. Qi, Characterizing Lie $n$-derivations for reflexive algebras, Linear Multilinear A., 63 (2015), 1693–1706. doi: 10.1080/03081087.2014.968519
    [9] Z. Xiao, Y. Yang, Lie $n$-derivations of incidence algebras, Comm. Algebra, 48 (2020), 105–118. doi: 10.1080/00927872.2019.1632334
    [10] M. Khrypchenko, F. Wei, Lie-type derivations of finitary incidence algebras, Rocky Mountain J. Math., 50 (2020), 163–175.
    [11] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, vol. Ⅰ, Ⅱ New York: Academic Press, 1986.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2483) PDF downloads(108) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog