We study and investigate a convex minimization problem of the sum of two convex functions in the setting of a Hilbert space. By assuming the Lipschitz continuity of the gradient of the function, many optimization methods have been invented, where the stepsizes of those algorithms depend on the Lipschitz constant. However, finding such a Lipschitz constant is not an easy task in general practice. In this work, by using a new modification of the linesearches of Cruz and Nghia [
Citation: Adisak Hanjing, Pachara Jailoka, Suthep Suantai. An accelerated forward-backward algorithm with a new linesearch for convex minimization problems and its applications[J]. AIMS Mathematics, 2021, 6(6): 6180-6200. doi: 10.3934/math.2021363
We study and investigate a convex minimization problem of the sum of two convex functions in the setting of a Hilbert space. By assuming the Lipschitz continuity of the gradient of the function, many optimization methods have been invented, where the stepsizes of those algorithms depend on the Lipschitz constant. However, finding such a Lipschitz constant is not an easy task in general practice. In this work, by using a new modification of the linesearches of Cruz and Nghia [
[1] | C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441-453. doi: 10.1088/0266-5611/18/2/310 |
[2] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011. |
[3] | L. Bussaban, S. Suantai, A. Kaewkhao, A parallel inertial S-iteration forward-backward algorithm for regression and classification problems, Carpathian J. Math., 36 (2020), 35-44. doi: 10.37193/CJM.2020.01.04 |
[4] | D. P. Bertsekas, J. N. Tsitsiklis, Parallel and distributed computation numerical methods, Belmont: Athena Scientific, 1997. |
[5] | A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202. doi: 10.1137/080716542 |
[6] | P. L. Combettes, J. C. Pesquet, A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE J. STSP, 1 (2007), 564-574. |
[7] | J. Y. B. Cruz, T. T. A. Nghia, On the convergence of the forward-backward splitting method with linesearchs, Optim. Method. Softw., 31 (2016), 1209-1238. doi: 10.1080/10556788.2016.1214959 |
[8] | P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200. doi: 10.1137/050626090 |
[9] | J. C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl., 53 (1976), 145-158. doi: 10.1016/0022-247X(76)90152-9 |
[10] | I. Daubechies, M. Defrise, C. D. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004), 1413-1457. doi: 10.1002/cpa.20042 |
[11] | M. Figueiredo, R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE T. Image Process, 12 (2003), 906-916. doi: 10.1109/TIP.2003.814255 |
[12] | A. Hanjing, S. Suantai, A fast image restoration algorithm based on a fixed point and optimization, Mathematics, 8, (2020), 378. |
[13] | E. Hale, W. Yin, Y. Zhang, A fixed-point continuation method for $l_{1}$-regularized minimization with applications to compressed sensing, Rice University: Department of Computational and Applied Mathematics, 2007. |
[14] | K. Kankam, N. Pholasa, P. Cholamjiak, On convergence and complexity of the modified forward-backward method involving new linesearches for convex minimization, Math. Meth. Appl. Sci., 42 (2019), 1352-1362. doi: 10.1002/mma.5420 |
[15] | P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964-979. doi: 10.1137/0716071 |
[16] | L. J. Lin, W. Takahashi, A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications, Positivity, 16 (2012), 429-453. doi: 10.1007/s11117-012-0161-0 |
[17] | B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Rech. Opér., 4 (1970), 154-158. |
[18] | J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math., 255 (1962), 2897-2899. |
[19] | A. Moudafi, E. Al-Shemas, Simultaneous iterative methods for split equality problem, Trans. Math. Program. Appl., 1 (2013), 1-11. |
[20] | Y. Nesterov, A method for solving the convex programming problem with convergence rate $O(1/k^{2})$, Dokl. Akad. Nauk SSSR., 269 (1983), 543-547. |
[21] | Y. Nesterov, Gradient Methods for Minimizing Composite Objective Function, CORE Report, 2007. Available from: http://www.ecore.be/DPs/dp 1191313936.pdf. |
[22] | B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1-17. |
[23] | R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pac. J. Math., 33 (1970), 209-216. doi: 10.2140/pjm.1970.33.209 |
[24] | R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 17 (1976), 877-898. |
[25] | K. Scheinberg, D. Goldfarb, X. Bai. Fast first order methods for composite convex optimization with backtracking, Found. Comput. Math., 14 (2014), 389-417. doi: 10.1007/s10208-014-9189-9 |
[26] | S. Suantai, K. Kankam, P. Cholamjiak, A novel forward-backward algorithm for solving convex minimization problem in Hilbert spaces, Mathematics, 8 (2020), 42. doi: 10.3390/math8010042 |
[27] | S. Suantai, P. Jailoka, A. Hanjing, An accelerated viscosity forward-backward splitting algorithm with the linesearch process for convex minimization problems, J. Inequal. Appl., 2021 (2021), 42. doi: 10.1186/s13660-021-02571-5 |
[28] | R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B Methodol., 58 (1996), 267-288. |
[29] | P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446. doi: 10.1137/S0363012998338806 |
[30] | K. Thung, P. Raveendran, A survey of image quality measures, In: Proceedings of the International Conference for Technical Postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 14-15 December 2009, 1-4. |
[31] | K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308. doi: 10.1006/jmaa.1993.1309 |
[32] | K. Toh, S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems, Pac. J. Optim., 6 (2010), 615-640. |
[33] | Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE T. Image Process., 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861 |