In this work, a new strategy to derive inequalities by employing newly proposed fractional operators, known as a Hilfer generalized proportional fractional integral operator (^GPFIO). The presented work establishes a relationship between weighted extended Čebyšev version and Pólya-Szegö type inequalities, which can be directly used in fractional differential equations and statistical theory. In addition, the proposed technique is also compared with the existing results. This work is important and timely for evaluating fractional operators and predicting the production of numerous real-world problems in varying nature.
Citation: Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch. New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators[J]. AIMS Mathematics, 2021, 6(5): 4507-4525. doi: 10.3934/math.2021267
[1] | Moh. Alakhrass . A note on positive partial transpose blocks. AIMS Mathematics, 2023, 8(10): 23747-23755. doi: 10.3934/math.20231208 |
[2] | Mohammad Al-Khlyleh, Mohammad Abdel Aal, Mohammad F. M. Naser . Interpolation unitarily invariant norms inequalities for matrices with applications. AIMS Mathematics, 2024, 9(7): 19812-19821. doi: 10.3934/math.2024967 |
[3] | Sourav Shil, Hemant Kumar Nashine . Positive definite solution of non-linear matrix equations through fixed point technique. AIMS Mathematics, 2022, 7(4): 6259-6281. doi: 10.3934/math.2022348 |
[4] | Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299 |
[5] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
[6] | Arnon Ploymukda, Kanjanaporn Tansri, Pattrawut Chansangiam . Weighted spectral geometric means and matrix equations of positive definite matrices involving semi-tensor products. AIMS Mathematics, 2024, 9(5): 11452-11467. doi: 10.3934/math.2024562 |
[7] | Pattrawut Chansangiam, Arnon Ploymukda . Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(10): 23519-23533. doi: 10.3934/math.20231195 |
[8] | Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492 |
[9] | Arnon Ploymukda, Pattrawut Chansangiam . Metric geometric means with arbitrary weights of positive definite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(11): 26153-26167. doi: 10.3934/math.20231333 |
[10] | Ahmad Y. Al-Dweik, Ryad Ghanam, Gerard Thompson, M. T. Mustafa . Algorithms for simultaneous block triangularization and block diagonalization of sets of matrices. AIMS Mathematics, 2023, 8(8): 19757-19772. doi: 10.3934/math.20231007 |
In this work, a new strategy to derive inequalities by employing newly proposed fractional operators, known as a Hilfer generalized proportional fractional integral operator (^GPFIO). The presented work establishes a relationship between weighted extended Čebyšev version and Pólya-Szegö type inequalities, which can be directly used in fractional differential equations and statistical theory. In addition, the proposed technique is also compared with the existing results. This work is important and timely for evaluating fractional operators and predicting the production of numerous real-world problems in varying nature.
Let Mn be the set of n×n complex matrices. Mn(Mk) is the set of n×n block matrices with each block in Mk. For A∈Mn, the conjugate transpose of A is denoted by A∗. When A is Hermitian, we denote the eigenvalues of A in nonincreasing order λ1(A)≥λ2(A)≥...≥λn(A); see [2,7,8,9]. The singular values of A, denoted by s1(A),s2(A),...,sn(A), are the eigenvalues of the positive semi-definite matrix |A|=(A∗A)1/2, arranged in nonincreasing order and repeated according to multiplicity as s1(A)≥s2(A)≥...≥sn(A). If A∈Mn is positive semi-definite (definite), then we write A≥0(A>0). Every A∈Mn admits what is called the cartesian decomposition A=ReA+iImA, where ReA=A+A∗2, ImA=A−A∗2. A matrix A∈Mn is called accretive if ReA is positive definite. Recall that a norm ||⋅|| on Mn is unitarily invariant if ||UAV||=||A|| for any A∈Mn and unitary matrices U,V∈Mn. The Hilbert-Schmidt norm is defined as ||A||22=tr(A∗A).
For A,B>0 and t∈[0,1], the weighted geometric mean of A and B is defined as follows
A♯tB =A1/2(A−1/2BA−1/2)tA1/2. |
When t=12, A♯12B is called the geometric mean of A and B, which is often denoted by A♯B. It is known that the notion of the (weighted) geometric mean could be extended to cover all positive semi-definite matrices; see [3, Chapter 4].
Let A,B,X∈Mn. For 2×2 block matrix M in the form
M=(AXX∗B)∈M2n |
with each block in Mn, its partial transpose of M is defined by
Mτ=(AX∗XB). |
If M and Mτ≥0, then we say it is positive partial transpose (PPT). We extend the notion to accretive matrices. If
M=(AXY∗B)∈M2n, |
and
Mτ=(AY∗XC)∈M2n |
are both accretive, then we say that M is APT (i.e., accretive partial transpose). It is easy to see that the class of APT matrices includes the class of PPT matrices; see [6,10,13].
Recently, many results involving the off-diagonal block of a PPT matrix and its diagonal blocks were presented; see [5,11,12]. In 2023, Alakhrass [1] presented the following two results on 2×2 block PPT matrices.
Theorem 1.1 ([1], Theorem 3.1). Let (AXX∗B) be PPT and let X=U|X| be the polar decomposition of X, then
|X|≤(A♯tB)♯(U∗(A♯1−tB)U),t∈[0,1]. |
Theorem 1.2 ([1], Theorem 3.2). Let (AXX∗B) be PPT, then for t∈[0,1],
ReX≤(A♯tB)♯(A♯1−tB)≤(A♯tB)+(A♯1−tB)2, |
and
ImX≤(A♯tB)♯(A♯1−tB)≤(A♯tB)+(A♯1−tB)2. |
By Theorem 1.1 and the fact si+j−1(XY)≤si(X)sj(Y)(i+j≤n+1), the author obtained the following corollary.
Corollary 1.3 ([1], Corollary 3.5). Let (AXX∗B) be PPT, then for t∈[0,1],
si+j−1(X)≤si(A♯tB)sj(A♯1−tB). |
Consequently,
s2j−1(X)≤sj(A♯tB)sj(A♯1−tB). |
A careful examination of Alakhrass' proof in Corollary 1.3 actually revealed an error. The right results are si+j−1(X)≤si(A♯tB)12sj((A♯1−tB)12) and s2j−1(X)≤sj((A♯tB)12)sj((A♯1−tB)12). Thus, in this note, we will give a correct proof of Corollary 1.3 and extend the above inequalities to the class of 2×2 block APT matrices. At the same time, some relevant results will be obtained.
Before presenting and proving our results, we need the following several lemmas of the weighted geometric mean of two positive matrices.
Lemma 2.1. [3, Chapter 4] Let X,Y∈Mn be positive definite, then
1) X♯Y=max{Z:Z=Z∗,(XZZY)≥0}.
2) X♯Y=X12UY12 for some unitary matrix U.
Lemma 2.2. [4, Theorem 3] Let X,Y∈Mn be positive definite, then for every unitarily invariant norm,
||X♯tY||≤||X1−tYt||≤||(1−t)X+tY||. |
Now, we give a lemma that will play an important role in the later proofs.
Lemma 2.3. Let M=(AXY∗B)∈M2n be APT, then for t∈[0,1],
(ReA♯tReBX+Y2X∗+Y∗2ReA♯1−tReB) |
is PPT.
Proof: Since M is APT, we have that
ReM=(ReAX+Y2X∗+Y∗2ReB) |
is PPT.
Therefore, ReM≥0 and ReMτ≥0.
By the Schur complement theorem, we have
ReB−X∗+Y∗2(ReA)−1X+Y2≥0, |
and
ReA−X∗+Y∗2(ReB)−1X+Y2≥0. |
Compute
X∗+Y∗2(ReA♯tReB)−1X+Y2=X∗+Y∗2((ReA)−1♯t(ReB)−1)X+Y2=(X∗+Y∗2(ReA)−1X+Y2)♯t(X∗+Y∗2(ReB)−1X+Y2)≤ReB♯tReA. |
Thus,
(ReB♯tReA)−X∗+Y∗2(ReA♯tReB)−1X+Y2≥0. |
By utilizing (ReB♯tReA)=ReA♯1−tReB, we have
(ReA♯tReBX+Y2X∗+Y∗2ReA♯1−tReB)≥0. |
Similarly, we have
(ReA♯tReBX∗+Y∗2X+Y2ReA♯1−tReB)≥0. |
This completes the proof.
First, we give the correct proof of Corollary 1.3.
Proof: By Theorem 1.1, there exists a unitary matrix U∈Mn such that |X|≤(A♯tB)♯(U∗(A♯1−tB)U). Moreover, by Lemma 2.1, we have (A♯tB)♯(U∗(A♯1−tB)U)=(A♯tB)12V(U∗(A♯1−tB)12U). Now, by si+j−1(AB)≤si(A)sj(B), we have
si+j−1(X)≤si+j−1((A♯tB)♯(U∗(A♯1−tB)U))=si+j−1((A♯tB)12VU∗(A♯1−tB)12U)≤si((A♯tB)12)sj((A♯1−tB)12), |
which completes the proof.
Next, we generalize Theorem 1.1 to the class of APT matrices.
Theorem 2.4. Let M=(AXY∗B) be APT, then
|X+Y2|≤(ReA♯tReB)♯(U∗(ReA♯1−tReB)U), |
where U∈Mn is any unitary matrix such that X+Y2=U|X+Y2|.
Proof: Since M is an APT matrix, we know that
(ReA♯tReBX+Y2X∗+Y∗2ReB♯1−tReA) |
is PPT.
Let W be a unitary matrix defined as W=(I00U). Thus,
W∗(ReA♯tReBX∗+Y∗2X+Y2ReA♯1−tReB)W=(ReA♯tReB|X+Y2||X+Y2|U∗(ReA♯1−tReB)U)≥0. |
By Lemma 2.1, we have
|X+Y2|≤(ReA♯tReB)♯(U∗(ReA♯1−tReB)U). |
Remark 1. When M=(AXY∗B) is PPT in Theorem 2.4, our result is Theorem 1.1. Thus, our result is a generalization of Theorem 1.1.
Using Theorem 2.4 and Lemma 2.2, we have the following.
Corollary 2.5. Let M=(AXY∗B) be APT and let t∈[0,1], then for every unitarily invariant norm ||⋅|| and some unitary matrix U∈Mn,
||X+Y2||≤||(ReA♯tReB)♯(U∗(ReA♯1−tReB)U)||≤||(ReA♯tReB)+U∗(ReA♯1−tReB)U2||≤||ReA♯tReB||+||ReA♯1−tReB||2≤||(ReA)1−t(ReB)t||+||(ReA)t(ReB)1−t||2≤||(1−t)ReA+tReB||+||tReA+(1−t)ReB||2. |
Proof: The first inequality follows from Theorem 2.4. The third one is by the triangle inequality. The other conclusions hold by Lemma 2.2.
In particular, when t=12, we have the following result.
Corollary 2.6. Let M=(AXY∗B) be APT, then for every unitarily invariant norm ||⋅|| and some unitary matrix U∈Mn,
||X+Y2||≤||(ReA♯ReB)♯(U∗(ReA♯ReB)U)||≤||(ReA♯ReB)+U∗(ReA♯ReB)U2||≤||ReA♯ReB||≤||(ReA)12(ReB)12||≤||ReA+ReB2||. |
Squaring the inequalities in Corollary 2.6, we get a quick consequence.
Corollary 2.7. If M=(AXY∗B) is APT, then
tr((X∗+Y∗2)(X+Y2))≤tr((ReA♯ReB)2)≤tr(ReAReB)≤tr((ReA+ReB2)2). |
Proof: Compute
tr((X∗+Y∗2)(X+Y2))≤tr((ReA♯ReB)∗(ReA♯ReB))=tr((ReA♯ReB)2)≤tr((ReA)(ReB))≤tr((ReA+ReB2)2). |
It is known that for any X,Y∈Mn and any indices i,j such that i+j≤n+1, we have si+j−1(XY)≤si(X)sj(Y) (see [2, Page 75]). By utilizing this fact and Theorem 2.4, we can obtain the following result.
Corollary 2.8. Let M=(AXY∗B) be APT, then for any t∈[0,1], we have
si+j−1(X+Y2)≤si((ReA♯tReB)12)sj((ReA♯1−tReB)12). |
Consequently,
s2j−1(X+Y2)≤sj((ReA♯tReB)12)sj((ReA♯1−tReB)12). |
Proof: By Lemma 2.1 and Theorem 2.4, observe that
si+j−1(X+Y2)=si+j−1(|X+Y2|)≤si+j−1((ReA♯tReB)♯(U∗(ReA♯1−tReB)U))=si+j−1((ReA♯tReB)12V(U∗(ReA♯1−tReB)U)12)≤si((ReA♯tReB)12V)sj((U∗(ReA♯1−tReB)U)12)=si((ReA♯tReB)12)sj((ReA♯1−tReB)12). |
Finally, we study the relationship between the diagonal blocks and the real part of the off-diagonal blocks of the APT matrix M.
Theorem 2.9. Let M=(AXY∗B) be APT, then for all t∈[0,1],
Re(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB)≤(ReA♯tReB)+(ReA♯1−tReB)2, |
and
Im(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB)≤(ReA♯tReB)+(ReA♯1−tReB)2. |
Proof: Since M is APT, we have that
ReM=(ReAX+Y2X∗+Y∗2ReB) |
is PPT.
Therefore,
(ReA♯tReBRe(X+Y2)Re(X∗+Y∗2)ReA♯1−tReB)=12(ReA♯tReBX+Y2X∗+Y∗2ReA♯1−tReB)+12(ReA♯tReBX∗+Y∗2X+Y2ReA♯1−tReB)≥0. |
So, by Lemma 2.1, we have
Re(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB). |
This implies the first inequality.
Since ReM is PPT, we have
(ReA−iX+Y2iX∗+Y∗2ReB)=(I00iI)(ReM)(I00−iI)≥0,(ReAiX∗+Y∗2−iX+Y2ReB)=(I00−iI)((ReM)τ)(I00iI)≥0. |
Thus,
(ReA−iX+Y2iX∗+Y∗2ReB) |
is PPT.
By Lemma 2.3,
(ReA♯tReB−iX+Y2iX∗+Y∗2ReA♯1−tReB) |
is also PPT.
So,
12(ReA♯tReB−iX+Y2iX∗+Y∗2ReA♯1−tReB)+12(ReA♯tReBiX∗+Y∗2−iX+Y2ReA♯1−tReB)≥0, |
which means that
(ReA♯tReBIm(X+Y2)Im(X+Y2)ReA♯1−tReB)≥0. |
By Lemma 2.1, we have
Im(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB). |
This completes the proof.
Corollary 2.10. Let (ReAX+Y2X+Y2ReB)≥0. If X+Y2 is Hermitian and t∈[0,1], then,
X+Y2≤(ReA♯tReB)♯(ReA♯1−tReB)≤(ReA♯tReB)+(ReA♯1−tReB)2. |
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work is supported by National Natural Science Foundation (grant No. 12261030), Hainan Provincial Natural Science Foundation for High-level Talents (grant No. 123RC474), Hainan Provincial Natural Science Foundation of China (grant No. 124RC503), the Hainan Provincial Graduate Innovation Research Program (grant No. Qhys2023-383 and Qhys2023-385), and the Key Laboratory of Computational Science and Application of Hainan Province.
The authors declare that they have no conflict of interest.
[1] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016
![]() |
[2] | T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ., 2017 (2017), Article ID: 78. |
[3] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9
![]() |
[4] |
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
![]() |
[5] | R. Gorenflo, F. Mainardi, Fractional calculus, integral and differential equations of fractional order, In: Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, (1997), 223–276. |
[6] | R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore, 2011. |
[7] |
F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
![]() |
[8] |
F. Jarad, E. Ugrlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z
![]() |
[9] | U. N. Katugampola, New fractional integral unifying six existing fractional integrals, (2016), arXiv: 1612.08596. |
[10] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 207 (2006). |
[11] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, (1993). |
[12] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, San Diego, 128 (1999). |
[13] |
S. K. Panda, T. Abdeljawad, R. Chokkalingam, A complex valued approach to the solutions of Riemann Liouville integral, Atangana Baleanu integral operator and non linear Telegraph equation via fixed point method, Chaos, Solitons Fractals, 130 (2020), 109439. doi: 10.1016/j.chaos.2019.109439
![]() |
[14] | C. Ravichandran, K. Logeswari, S. K. Panda, K. S. Nisar, On new approach of fractional derivative by Mittag Leffler kernel to neutral integro differential systems with impulsive conditions, Chaos, Solitons Fractals, 139 (2020): 110012. |
[15] |
T. Abdeljawad, R. P. Agarwal, E. Karapinar, S. K. Panda, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686
![]() |
[16] | S. K. Panda, Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019 nCoV/SARS CoV 2, Results Physics (2020), 103433. Available from: https://doi.org/10.1016/j.rinp.2020.103433. |
[17] | S. K. Panda, T. Abdeljawad, C.Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and Lp Fredholm integral equations, Alexandria Eng. J. 59 (2020), 1959–1970. |
[18] | I. Dassios, F. Font, Solution method for the time fractional hyperbolic heat equation, Math. Meth. Appl. Sci., (2020). Available from: https://doi.org/10.1002/mma.6506. |
[19] | N. A. Shah, I. Dassios, J. D. Chung, A Decomposition Method for a Fractional Order Multi Dimensional Telegraph Equation via the Elzaki Transform, Symmetry, 13 (2021), 8. |
[20] | I. Dassios, D. Baleanu, Caputo and related fractional derivatives in singular systems, Appl. Math. Comput, 37 (2018), 591–606. |
[21] | S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 1225 (2020), doi: 10.3390/math7121225. |
[22] |
D. Zhang, Y. Zhang, Z. Zhang, N. Ahmed, Y. Zhang, F. Li, et al. Unveiling the link between fractional Schrodinger equation and light propagation in honeycomb lattice, Ann. Phys., 529 (2017), 1700149. doi: 10.1002/andp.201700149
![]() |
[23] |
Y. Zhang, R. Wang, H. Zhong, J. Zhang, M. R. Belic, Y. Zhang, Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation, Opt. Express, 25 (2017), 32401. doi: 10.1364/OE.25.032401
![]() |
[24] | A. O. Akdemir, A. Ekinci, E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal., 18 (2017), 661–674. |
[25] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), Article 86. |
[26] |
P. Cerone, S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math., 38 (2007), 37–49. doi: 10.5556/j.tkjm.38.2007.92
![]() |
[27] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497. |
[28] | Z. Dahmani, New inequalities for a class of differentiable functions, Int. J. Nonlinear Anal. Appl., 2 (2011), 19–23. |
[29] | Z. Dahmani, The Riemann-Liouville operator to generate some new inequalities, Int. J. Nonlinear Sci., 12 (2011), 452–455. |
[30] | Z. Dahmani, About some integral inequalities using Riemann? Liouville integrals, Gen. Math., 20 (2012), 63–69. |
[31] | Z. Dahmani, A. Khameli, K. Fareha, Some Riemann-Liouville-integral inequalities for the weighted and the extended Chebyshev functionals, Konuralp J. Math., 5 (2017), 43–48. |
[32] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving Riemann–Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38–44. |
[33] | Z. Dahmani, L. Tabharit, On weighted Grüss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31–38. |
[34] | Z. Dahmani, L. Tabharit, S. Taf, New inequalities via Riemann-Liouville fractional integration, J. Adv. Res. Sci. Comput., 2 (2010), 40–45. |
[35] | S. Rashid, A. O. Akdemir, F. Jarad, M. A. Noor, K. I. Noor, Simpson's type integral inequalities for k-fractional integrals and their applications, AIMS. Math., 4 (2019), 1087–1100. doi: 10.3934/math.2019.4.1087. |
[36] | S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalize dRiemann-Liouville fractional integrals of exponentially and their applications, Mathematics, 807 (2019), doi: 10.3390/math7090807. |
[37] | S. Rashid, F. Jarad, M. A. Noor, K. I. Noor, D. Baleanu, J. B. Liu, On Grüss inequalities within generalized K-fractional integrals, Adv. Differ. Eqs., 2020 (2020). |
[38] | S. Rashid, Z. Hammouch, R. Ashraf, Y. M. Chu, New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel, Comput. Model. Eng. Sci., 126 (2021), 359–378. |
[39] | Z. Khan, S. Rashid, R. Ashraf, D. Baleanu, Y. M. Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, Adv. Differ. Equs., 2020 (2020). |
[40] | S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equs., 2020 (2020), Article number: 647. |
[41] | S. Rashid, R. Ashraf, K. S. Nisar, T. Abdeljawad, Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense, J. Math., 2020 (2020), Article ID: 1626091. |
[42] | S. Rashid, H. Ahmad, A. Khalid, Y. M. Chu, On discrete fractional integral inequalities for a class of functions, Complexity, 2020 (2020). |
[43] | T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equs., 2020 (2020). |
[44] | T. Abdeljawad, S. Rashid, A. A. AL.Deeb, Z. hammouch, Y. M. Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, Adv. Differ. Equs., 2020 (2020). |
[45] |
S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Math., 5 (2020), 7041–7054. doi: 10.3934/math.2020451
![]() |
[46] |
H. G. Jile, S. Rashid, M. A. Noor, A. Suhail, Y. M. Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108–6123. doi: 10.3934/math.2020392
![]() |
[47] | T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications, Adv. Differ. Equs., 2020 (2020). |
[48] | S. Zaheer Ullah, M. Adil Khan. Y. M. Chu, A note on generalized convex function, J. Inequal. Appl., 2019 (2019), 291. Available from: https://doi.org/10.1186/s13660-019-2242-0. |
[49] | H. H. Chu, H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, D. Baleanu, et al. Quantum analogs of Ostrowski-type inequalities for Raina's function correlated with coordinated generalized Λ-convex functions, Symmetry, 308 (2020), doi: 10.3390/sym12020308. |
[50] | E. Set, A. O. Akdemir, İ. Mumcu, Čebyšev type inequalities for fractional integrals. Submitted. |
[51] |
E. Set, M. Özdemir, S. Dragomir, On the Hermite-Hadamard inequality and othral inequalities involving two functions, J. Inequal. Appl., 2010 (2010), 148102. doi: 10.1155/2010/148102
![]() |
[52] | P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98. |
[53] | S. K. Ntouyas, P. Agarwal, J. Tariboon, On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal., 10 (2016), 491–504. |
[54] | G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Eqs, 2019 (2019), Article ID: 454. |
[55] | G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis: Band I, Die Grundlehren der mathmatischen Wissenschaften, Springer-Verlag, New York, 1964. |
[56] | G. Samko, A. A. Kilbas, I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993. |
[57] | A. Tassaddiq, G. Rahman, K. S. Nisar, M. Samraiz, Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals, Adv. Diff. Eqs., 2020 (2002), 96. doi.org/10.1186/s13662-020-2543-0. |
[58] | N. Elezovic, L. Marangunic, G. Pecaric, Some improvement of Grüss type inequality, J. Math. Inequal., 1 (2007), 425–436. |
[59] | Y. Zhang, H. Zhong, M. R. Belic, Y. Zhu, W. P. Zhong, Y. Zhang, et al. PT symmetry in a fractional Schrodinger equation, Laser Photonics Rev., 10 (2017), 526–531. |
[60] |
Y. Zhang, X. Liu, M. R. Belic, W. Zhong, Y. P. Zhang, M. Xiao, Propagation dynamics of a Light Beam in a Fractional Schrodinger Equation, Phys. Rev. Lett., 115 (2015), 180403. doi: 10.1103/PhysRevLett.115.180403
![]() |