Citation: Omar Bazighifan. Nonlinear differential equations of fourth-order: Qualitative properties of the solutions[J]. AIMS Mathematics, 2020, 5(6): 6436-6447. doi: 10.3934/math.2020414
[1] | R. Agarwal, S. R. Grace, D. O'Regan, Oscillation criteria for certain nth order differential equations with deviating arguments, J. Math. Anal. Appl., 262 (2001), 601-622. doi: 10.1006/jmaa.2001.7571 |
[2] | C. Vetro, Pairs of nontrivial smooth solutions for nonlinear Neumann problems, Appl. Math. Lett., 103 (2020), 1-6. |
[3] | T. Li, B. Baculíková, J. Džurina, et al. Oscillation of fourth order neutral differential equations with p-Laplacian like operators, Bound. Value Probl., 2014 (2014), 1-9. doi: 10.1186/1687-2770-2014-1 |
[4] | S. Liu, Q. Zhang, Y. Yu, Oscillation of even-order half-linear functional differential equations with damping, Comput. Math. Appl., 61 (2011), 2191-2196. doi: 10.1016/j.camwa.2010.09.011 |
[5] | Q. Zhang, T. Li, Asymptotic stability of compact and linear θ-methods for space fractional delay generalized diffusion equation, J. Sci. Comput., 81 (2019), 2413-2446. doi: 10.1007/s10915-019-01091-1 |
[6] | Q. Zhang, C. Zhang, A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations, Appl. Math. Lett., 26 (2013), 306-312. doi: 10.1016/j.aml.2012.09.015 |
[7] | Q. Zhang, M. Chen, Y. Xu, et al. Compact θ-method for the generalized delay diffusion equation, Appl. Math. Comput., 316 (2018), 357-369. |
[8] | C. Park, O. Moaaz, O. Bazighifan, Oscillation results for higher order differential equations, Axioms, 9 (2020), 1-11. |
[9] | O. Bazighifan, P. Kumam, Oscillation theorems for advanced differential equations with pLaplacian like operators, Mathematics, 8 (2020), 1-10. |
[10] | O. Bazighifan, T. Abdeljawad, Improved approach for studying oscillatory properties of fourthorder advanced differential equations with p-Laplacian like operator, Mathematics, 8 (2020), 1- 11. |
[11] | C. Zhang, R. Agarwal, T. Li, Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators, J. Math. Anal. Appl., 409 (2014), 1093-1106. doi: 10.1016/j.jmaa.2013.07.066 |
[12] | I. T. Kiguradze, T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Springer Netherlands, 1993. |
[13] | C. G. Philos, A new criterion for the oscillatory and asymptotic behavior of delay differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math., 39 (1981), 61-64. |
[14] | R. Agarwal, S. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Springer Science & Business Media, 2000. |
[15] | G. E. Chatzarakis, E. M. Elabbasy and O. Bazighifan, An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay, Adv. Difference Equ., 2019 (2019), 1-9. doi: 10.1186/s13662-018-1939-6 |
[16] | R. P. Agarwal, S. R. Grace, Oscillation theorems for certain functional differential equations of higher order, Math. Comput. Model., 39 (2004), 1185-1194. doi: 10.1016/S0895-7177(04)90539-0 |
[17] | O. Moaaz, E. M. Elabbasy, A. Muhib, Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Differ. Equ., 2019 (2019), 1-10. doi: 10.1186/s13662-018-1939-6 |
[18] | C. Zhang, T. Li, B. Sun, et al. On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618-1621. doi: 10.1016/j.aml.2011.04.015 |
[19] | O. Bazighifan, E. M. Elabbasy, O. Moaaz, Oscillation of higher-order differential equations with distributed delay, J. Inequal. Appl., 55 (2019), 1-9. |
[20] | O. Bazighifan, H. Ramos, On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term, Appl. Math. Lett., 107 (2020), 1-9. |
[21] | O. Bazighifan, Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations, Adv. Differ. Equ., 201 (2020), 1-12. |
[22] | E. M. Elabbasy, C. Cesarano, O. Bazighifan, et al. Asymptotic and oscillatory behavior of solutions of a class of higher-order differential equations, Symmetry, 11 (2019), 1-9. |
[23] | J. Džurina, I. Jadlovská, Oscillation theorems for fourth order delay differential equations with a negative middle term, Math. Method. Appl. Sci., 40 (2017), 7830-7842. doi: 10.1002/mma.4563 |
[24] | S. Grace, R. Agarwal, J. Graef, Oscillation theorems for fourth order functional differential equations, J. Appl. Math. Comput., 30 (2009), 75-88. doi: 10.1007/s12190-008-0158-9 |
[25] | I. Gyèori, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford University Press, USA, 1991. |
[26] | O. Moaaz, E. M. Elabbasy, O. Bazighifan, On the asymptotic behavior of fourth-order functional differential equations, Adv. Differ. Equ., 261 (2017), 1-13. |
[27] | O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equ., 2019 (2019), 1-11. doi: 10.1186/s13662-018-1939-6 |