Review Special Issues

Stability, thermophsical properties of nanofluids, and applications in solar collectors: A review

  • Received: 20 April 2021 Accepted: 12 July 2021 Published: 03 September 2021
  • Recently, renewable energies have attracted the significant attention of scientists. Nanofluids are fluids carrying nano-sized particles dispersed in base fluids. The improved heat transfer by nanofluids has been used in several heat-transfer applications. Nanofluids' stability is very essential to keep their thermophysical properties over a long period of time after their production. Therefore, a global approach including stability and thermophysical properties is necessary to achieve the synthesis of nanofluids with exceptional thermal properties. In this context, the objective of this paper is to summarize current advances in the study of nanofluids, such as manufacturing procedures, the mechanism of stability assessment, stability enhancement procedures, thermophysical properties, and characterization of nanofluids. Also, the factors influencing thermophysical properties were studied. In conclusion, we discuss the application of nanofluids in solar collectors.

    Citation: Omar Ouabouch, Mounir Kriraa, Mohamed Lamsaadi. Stability, thermophsical properties of nanofluids, and applications in solar collectors: A review[J]. AIMS Materials Science, 2021, 8(4): 659-684. doi: 10.3934/matersci.2021040

    Related Papers:

  • Recently, renewable energies have attracted the significant attention of scientists. Nanofluids are fluids carrying nano-sized particles dispersed in base fluids. The improved heat transfer by nanofluids has been used in several heat-transfer applications. Nanofluids' stability is very essential to keep their thermophysical properties over a long period of time after their production. Therefore, a global approach including stability and thermophysical properties is necessary to achieve the synthesis of nanofluids with exceptional thermal properties. In this context, the objective of this paper is to summarize current advances in the study of nanofluids, such as manufacturing procedures, the mechanism of stability assessment, stability enhancement procedures, thermophysical properties, and characterization of nanofluids. Also, the factors influencing thermophysical properties were studied. In conclusion, we discuss the application of nanofluids in solar collectors.



    加载中


    [1] Sabiha MA, Saidur R, Mekhilef S, et al. (2015) Progress and latest developments of evacuated tube solar collectors. Renew Sust Energ Rev 51: 1038-1054. doi: 10.1016/j.rser.2015.07.016
    [2] Faizal M, Saidur R, Mekhilef S (2014) Potential of size reduction of flat-plate solar collectors when applying Al2O3 nanofluid. Adv Mater Res 832: 149-153. doi: 10.4028/www.scientific.net/AMR.832.149
    [3] Shahsavani E, Afrand M, Kalbasi R (2018) Experimental study on rheological behavior of water-ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes: A novel correlation for the non-Newtonian nanofluid. J Therm Anal Calorim 131: 1177-1185. doi: 10.1007/s10973-017-6711-8
    [4] Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. 1995 International mechanical engineering congress and exhibition.
    [5] Paul G, Chopkar M, Manna I, et al. (2010) Techniques for measuring the thermal conductivity of nanofluids: A review. Renew Sust Energ Rev 14: 1913-1924. doi: 10.1016/j.rser.2010.03.017
    [6] Fotukian SM, Esfahany MN (2010) Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube. Int J Heat Fluid Fl 31: 606-612. doi: 10.1016/j.ijheatfluidflow.2010.02.020
    [7] Visconti P, Primiceri P, Costantini P, et al. (2016) Measurement and control system for thermosolar plant and performance comparison between traditional and nanofluid solar thermal collectors. IJSSIS 9: 1220-1242.
    [8] Milanese M, Colangelo G, Cretì A, et al. (2016) Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems-Part II: ZnO, CeO2, Fe2O3 nanoparticles behavior. Sol Energ Mater Sol C 147: 321-326. doi: 10.1016/j.solmat.2015.12.030
    [9] Milanese M, Colangelo G, Cretì A, et al. (2016) Optical absorption measurements of oxide nanoparticles for application as nanofluid in direct absorption solar power systems-Part I: Water-based nanofluids behavior. Sol Energ Mater Sol C 147: 315-320. doi: 10.1016/j.solmat.2015.12.027
    [10] Gupta M, Singh V, Kumar R, et al. (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sust Energ Rev 74: 638-670. doi: 10.1016/j.rser.2017.02.073
    [11] Chakraborty S, Panigrahi PK (2020) Stability of nanofluid: A review. Appl Therm Eng 174: 115259. doi: 10.1016/j.applthermaleng.2020.115259
    [12] Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Tran 54: 4051-4068. doi: 10.1016/j.ijheatmasstransfer.2011.04.014
    [13] Verma SK, Tiwari AK (2015) Progress of nanofluid application in solar collectors: A review. Energ Convers Manag 100: 324-346. doi: 10.1016/j.enconman.2015.04.071
    [14] Mahian O, Kianifar A, Kalogirou SA, et al. (2013) A review of the applications of nanofluids in solar energy. Int J Heat Mass Tran 57: 582-594. doi: 10.1016/j.ijheatmasstransfer.2012.10.037
    [15] Kasaeian A, Eshghi AT, Sameti M (2015) A review on the applications of nanofluids in solar energy systems. Renew Sust Energ Rev 43: 584-598. doi: 10.1016/j.rser.2014.11.020
    [16] Wang XQ, Mujumdar AS (2008) A review on nanofluids-Part I: Theoretical and numerical investigations. Brazilian J Chem Eng 25: 613-630. doi: 10.1590/S0104-66322008000400001
    [17] Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44: 367-373. doi: 10.1016/j.ijthermalsci.2004.12.005
    [18] Nikkam N, Ghanbarpour M, Saleemi M, et al. (2014) Experimental investigation on thermo-physical properties of copper/diethylene glycol nanofluids fabricated via microwave-assisted route. Appl Therm Eng 65: 158-165. doi: 10.1016/j.applthermaleng.2014.01.003
    [19] Torres-Mendieta R, Mondragón R, Juliá E, et al. (2015) Fabrication of high stable gold nanofluid by pulsed laser ablation in liquids. Adv Mater Lett 6: 1037-1042. doi: 10.5185/amlett.2015.6038
    [20] Nair V, Tailor PR, Parekh AD (2016) Nanorefrigerants: A comprehensive review on its past, present and future. Int J Refrig 67: 290-307. doi: 10.1016/j.ijrefrig.2016.01.011
    [21] Nemade K, Waghuley S (2016) A novel approach for enhancement of thermal conductivity of CuO/H2O based nanofluids. Appl Therm Eng 95: 271-274. doi: 10.1016/j.applthermaleng.2015.11.053
    [22] Ezzat AW, Hasan IM (2014) Investigation of alumina nano fluid thermal conductivity. Int J Comput Appl 102: 15-23.
    [23] Leena M, Srinivasan S (2015) Synthesis and ultrasonic investigations of titanium oxide nanofluids. J Mol Liq 206: 103-109. doi: 10.1016/j.molliq.2015.02.001
    [24] Li S, Silvers SJ, El-Shall MS (1996) Preparation, characterization and optical properties of zinc oxide nanoparticles. MRS Online Proceedings Library 452: 1-6.
    [25] Choi SUS, Zhang ZG, Yu W, et al. (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79: 2252-2254. doi: 10.1063/1.1408272
    [26] Lamas B, Abreu B, Fonseca A, et al. (2012) Assessing colloidal stability of long term MWCNT based nanofluids. J Colloid Interf Sci 381: 17-23. doi: 10.1016/j.jcis.2012.05.014
    [27] Manasrah AD, Al-Mubaiyedh UA, Laui T, et al. (2016) Heat transfer enhancement of nanofluids using iron nanoparticles decorated carbon nanotubes. Appl Therm Eng 107: 1008-1018. doi: 10.1016/j.applthermaleng.2016.07.026
    [28] Nine MJ, Batmunkh M, Kim JH, et al. (2012) Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J Nanosci Nanotechno 12: 4553-4559. doi: 10.1166/jnn.2012.6193
    [29] Sidik NAC, Jamil MM, Japar WMAA, et al. (2017) A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sust Energ Rev 80: 1112-1122. doi: 10.1016/j.rser.2017.05.221
    [30] Zhu HT, Lin YS, Yin YS (2004) A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interf Sci 277: 100-103. doi: 10.1016/j.jcis.2004.04.026
    [31] Akhavan-Behabadi MA, Shahidi M, Aligoodarz MR (2015) An experimental study on heat transfer and pressure drop of MWCNT-water nano-fluid inside horizontal coiled wire inserted tube. Int Commun Heat Mass 63: 62-72. doi: 10.1016/j.icheatmasstransfer.2015.02.013
    [32] Yu W, Xie H (2012) A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater 2012: 1-17.
    [33] Gupta HK, Agrawal GD, Mathur J (2015) Investigations for effect of Al2O3-H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud Therm Eng 5: 70-78. doi: 10.1016/j.csite.2015.01.002
    [34] Khairul MA, Shah K, Doroodchi E, et al. (2016) Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. Int J Heat Mass Tran 98: 778-787. doi: 10.1016/j.ijheatmasstransfer.2016.03.079
    [35] Hwang Y, Lee JK, Lee JK, et al. (2008) Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 186: 145-153. doi: 10.1016/j.powtec.2007.11.020
    [36] Sharma B, Sharma SK, Gupta SM, et al. (2018) Modified two-step method to prepare long-term stable CNT nanofluids for heat transfer applications. Arab J Sci Eng 43: 6155-6163. doi: 10.1007/s13369-018-3345-5
    [37] Hwang YJ, Lee JK, Lee CH, et al. (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455: 1-2. doi: 10.1016/j.tca.2006.11.029
    [38] Sezer N, Koç M (2018) Dispersion stability of CNT and CNT/metal-based nanofluids. ICTEA 2018 2018: 1-4
    [39] Prasad PVD, Gupta AVSSKS, Deepak K (2014) Investigation of trapezoidal-cut twisted tape insert in a double pipe U-tube heat exchanger using Al2O3/water nanofluid. Procedia Mater Sci 10: 50-63. doi: 10.1016/j.mspro.2015.06.025
    [40] Colangelo G, Favale E, Miglietta P, et al. (2016) Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy 95: 124-136. doi: 10.1016/j.energy.2015.11.032
    [41] Saber MM (2019) Strategies for surface modification of gelatin-based nanoparticles. Colloid Surface B 183: 110407. doi: 10.1016/j.colsurfb.2019.110407
    [42] Yu Q, Kim YJ, Ma H (2008) Nanofluids with plasma treated diamond nanoparticles. Appl Phys Lett 92: 103111. doi: 10.1063/1.2894520
    [43] Fuskele V, Sarviya RM (2017) Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Mater Today Proc 4: 4049-4060. doi: 10.1016/j.matpr.2017.02.307
    [44] Goharshadi EK, Ahmadzadeh H, Samiee S, et al. (2013) Nanofluids for heat transfer enhancement—A review. Phys Chem Res 1: 1-331.
    [45] Sharma SK, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: A review. Exp Therm Fluid Sci 79: 202-212. doi: 10.1016/j.expthermflusci.2016.06.029
    [46] Ruan B, Jacobi AM (2012) Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett 7: 1-14. doi: 10.1186/1556-276X-7-1
    [47] Mahbubul IM (2019) Stability and dispersion characterization of nanofluid, Preparation, Characterization, Properties and Application of Nanofluid, William Andrew.
    [48] Sezer N, Atieh MA, Koç M (2019) A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol 344: 404-431. doi: 10.1016/j.powtec.2018.12.016
    [49] Farbod M (2015) Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures. Colloid Surface A 474: 71-75. doi: 10.1016/j.colsurfa.2015.02.049
    [50] Munkhbayar B, Tanshen MR, Jeoun J, et al. (2013) Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int 39: 6415-6425. doi: 10.1016/j.ceramint.2013.01.069
    [51] Zhu H, Zhang C, Tang Y, et al. (2007) Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon 45: 226-228. doi: 10.1016/j.carbon.2006.07.005
    [52] Li X, Zou C, Lei X, et al. (2015) Stability and enhanced thermal conductivity of ethylene glycol-based SiC nanofluids. Int J Heat Mass Tran 89: 613-619. doi: 10.1016/j.ijheatmasstransfer.2015.05.096
    [53] Kim HJ, Bang IC, Onoe J (2009) Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt Lasers Eng 47: 532-538. doi: 10.1016/j.optlaseng.2008.10.011
    [54] Khaleduzzaman SS, Sohel MR, Saidur R, et al. (2015) Stability of Al2O3-water nanofluid for electronics cooling system. Procedia Eng 105: 406-411. doi: 10.1016/j.proeng.2015.05.026
    [55] Kumar RS, Sharma T (2010) Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications. Colloid Surface A 539: 171-183. doi: 10.1016/j.colsurfa.2017.12.028
    [56] Farbod M, Ahangarpour A, Etemad SG (2015) Stability and thermal conductivity of water-based carbon nanotube nanofluids. Particuology 22: 59-65. doi: 10.1016/j.partic.2014.07.005
    [57] Ouabouch O, Kriraa M, Lamsaadi M (2020) A Survey on thermo physical properties of nanofluids. Glob J Adv Eng Technol Sci 7: 25-31.
    [58] Otanicar TP, Phelan PE, Prasher RS, et al. (2010) Nanofluid-based direct absorption solar collector. J Renew Sustain Energy 2.
    [59] Sarviya RM, Fuskele V (2017) Review on thermal conductivity of nanofluids. Mater Today Proc 4: 4022-4031. doi: 10.1016/j.matpr.2017.02.304
    [60] Yoo DH, Hong KS, Yang HS (2007) Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 455: 66-69. doi: 10.1016/j.tca.2006.12.006
    [61] Challoner AR, Powell RW (1956) Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values. P Roy Soc A-Math Phy 238: 90-106.
    [62] Kurt H, Kayfeci M (2009) Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks. Appl Energ 86: 2244-2248. doi: 10.1016/j.apenergy.2008.12.020
    [63] Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16: 413-422. doi: 10.1007/BF01441907
    [64] Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: The 3ω method. Review Sci Instrum 61: 802-808. doi: 10.1063/1.1141498
    [65] Esfe MH, Karimipour A, Yan WM, et al. (2015) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Tran 88: 728-734. doi: 10.1016/j.ijheatmasstransfer.2015.05.010
    [66] Maxwell JC (1891)A Treatise on Electricity and Magnetism, New York: Dover Publications.
    [67] Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Tran 55: 874-885. doi: 10.1016/j.ijheatmasstransfer.2011.10.021
    [68] Azmi WH, Sharma KV, Mamat R, et al. (2016) The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—A review. Renew Sust Energ Rev 53: 1046-1058. doi: 10.1016/j.rser.2015.09.081
    [69] Meyer JP, Adio SA, Sharifpur M, et al. (2016) The viscosity of nanofluids: A review of the theoretical, empirical, and numerical models. Heat Transfer Eng 37: 387-421. doi: 10.1080/01457632.2015.1057447
    [70] Duan F (2012) Thermal property measurement of Al2O3-water nanofluids, In Hashim A, Smart Nanoparticles Technol, Croatia: InTech.
    [71] Moghaddam MB, Goharshadi EK, Entezari MH, et al. (2013) Preparation, characterization, and rheological properties of graphene-glycerol nanofluids. Chem Eng J 231: 365-372. doi: 10.1016/j.cej.2013.07.006
    [72] Einstein A (1956) Investigations on the Theory of the Brownian Movement, New York: Dover Publications.
    [73] Gupta M, Singh V, Kumar R, et al. (2015) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sust Energ Rev 74: 638-670. doi: 10.1016/j.rser.2017.02.073
    [74] Sang L, Liu T (2017) The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles. Sol Energ Mater Sol C 169: 297-303. doi: 10.1016/j.solmat.2017.05.032
    [75] Saeedinia M, Akhavan-Behabadi MA, Razi P (2012) Thermal and rheological characteristics of CuO-Base oil nanofluid flow inside a circular tube. Int Commun Heat Mass 39:152-159. doi: 10.1016/j.icheatmasstransfer.2011.08.001
    [76] Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 11: 151-170. doi: 10.1080/08916159808946559
    [77] Lee JH, Hwang KS, Jang SP, et al. (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Tran 51: 2651-2656. doi: 10.1016/j.ijheatmasstransfer.2007.10.026
    [78] Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97: 064311. doi: 10.1063/1.1861145
    [79] Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34: 210-216. doi: 10.1016/j.expthermflusci.2009.10.022
    [80] Colangelo G, Milanese M (2017) Numerical simulation of thermal efficiency of an innovative Al2O3 nanofluid solar thermal collector influence of nanoparticles concentration. Therm Sci 21: 2769-2779. doi: 10.2298/TSCI151207168C
    [81] Esfe MH, Saedodin S, Wongwises S, et al. (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim 119: 1817-1824. doi: 10.1007/s10973-014-4328-8
    [82] Teng TP, Hung YH, Teng TC, et al. (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30: 2213-2218. doi: 10.1016/j.applthermaleng.2010.05.036
    [83] Xie H, Wang J, Xi T, et al. (2002) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23: 571-580. doi: 10.1023/A:1015121805842
    [84] Kim CK, Lee GJ, Rhee CK (2012) A study on heat transfer characteristics of spherical and fibrous alumina nanofluids. Thermochim Acta 542: 33-36. doi: 10.1016/j.tca.2011.12.016
    [85] Toghraie D, Chaharsoghi VA, Afrand M (2016) Measurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluid: Effects of temperature and nanoparticles concentration. J Therm Anal Calorim 125: 527-535. doi: 10.1007/s10973-016-5436-4
    [86] Nasiri A, Shariaty-Niasar M, Rashidi A, et al. (2011) Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp Therm Fluid Sci 35: 717-723. doi: 10.1016/j.expthermflusci.2011.01.006
    [87] Wang XJ, Li XF (2009) Influence of pH on nanofluids' viscosity and thermal conductivity. Chinese Phys Lett 26: 056601. doi: 10.1088/0256-307X/26/5/056601
    [88] Sahooli M, Sabbaghi S (2013) CuO nanofluids: The synthesis and investigation of stability and thermal conductivity. J Nanofluids 1: 155-160. doi: 10.1166/jon.2012.1014
    [89] Zhu D, Li X, Wang N, et al. (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr Appl Phys 9: 131-139. doi: 10.1016/j.cap.2007.12.008
    [90] Calise F, Vanoli L (2012) Parabolic trough photovoltaic/thermal collectors: Design and simulation model. Energies 5: 4186-4208. doi: 10.3390/en5104186
    [91] Sokhansefat T, Kasaeian AB, Kowsary F (2014) Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energ Rev 33: 636-644. doi: 10.1016/j.rser.2014.02.028
    [92] Chaudhari K, Walke P, Wankhede U, et al. (2015) An experimental investigation of a nanofluid (Al2O3 + H2O) based parabolic trough solar collectors. Br J Appl Sci Technol 9: 551-557. doi: 10.9734/BJAST/2015/11946
    [93] Coccia G, Di Nicola G, Colla L, et al. (2016) Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: Numerical simulation of the yearly yield. Energ Convers Manage 118: 306-319. doi: 10.1016/j.enconman.2016.04.013
    [94] Mwesigye A, Huan Z, Meyer JP (2016) Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid. Energ Convers Manage 120: 449-465. doi: 10.1016/j.enconman.2016.04.106
    [95] Bellos E, Tzivanidis C, Antonopoulos KA, et al. (2016) Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energ 94: 213-222. doi: 10.1016/j.renene.2016.03.062
    [96] Benabderrahmane A, Benazza A, Aminallah M, et al. (2016) Heat transfer behaviors in a parabolic trough solar collector tube with compound technique. IJSRET 5: 568-575.
    [97] Amina B, Miloud A, Samir L, et al. (2016) Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids. J Therm Sci 25: 410-417. doi: 10.1007/s11630-016-0878-3
    [98] Ghasemi SE, Ranjbar AA (2016) Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study. J Mol Liq 222: 159-166. doi: 10.1016/j.molliq.2016.06.091
    [99] Potenza M, Milanese M, Colangelo G, et al. (2017) Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Appl Energ 203: 560-570. doi: 10.1016/j.apenergy.2017.06.075
    [100] Ghasemi SE, Ranjbar AA (2017) Effect of using nanofluids on efficiency of parabolic trough collectors in solar thermal electric power plants. Int J Hydrogen Energ 42: 21626-21634. doi: 10.1016/j.ijhydene.2017.07.087
    [101] Bellos E, Tzivanidis C, Tsimpoukis D (2018) Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renew Sustain Energ Rev 91: 358-375. doi: 10.1016/j.rser.2018.03.091
    [102] Klevinskis A, Bucinskas V (2011) Analysis of a flat-plate solar collector. MLA 3: 39
    [103] Natarajan E, Sathish R (2009) Role of nanofluids in solar water heater. Int J Adv Manuf Technol 3-7.
    [104] Yousefi T, Shojaeizadeh E, Veysi F, et al. (2003) An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 862: 771-779.
    [105] Alim MA, Abdin Z, Saidur R, et al. (2013) Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energ Buildings 66: 289-296. doi: 10.1016/j.enbuild.2013.07.027
    [106] Jamal-Abad MT, Zamzamian A, Imani E, et al. (2013) Experimental study of the performance of a flat-plate collector using cu-water nanofluid. J Thermophys Heat Tr 27: 756-760. doi: 10.2514/1.T4074
    [107] Moghadam AJ, Farzane-Gord M, Sajadi M, et al. (2014) Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Therm Fluid Sci 58: 9-14. doi: 10.1016/j.expthermflusci.2014.06.014
    [108] Said Z, Sabiha MA, Saidur R, et al. (2015) Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod 92: 343-353. doi: 10.1016/j.jclepro.2015.01.007
    [109] Meibodi SS, Kianifar A, Niazmand H, et al. (2015) Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG-water nanofluids. Int Commun Heat Mass 65: 71-75. doi: 10.1016/j.icheatmasstransfer.2015.02.011
    [110] Verma SK, Tiwari AK, Chauhan DS (2016) Performance augmentation in flat plate solar collector using MgO/water nanofluid. Energ Convers Manag 124: 607-617. doi: 10.1016/j.enconman.2016.07.007
    [111] Noghrehabadi A, Hajidavaloo E, Moravej M (2016) Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid. Case Stud Therm Eng 8: 378-386. doi: 10.1016/j.csite.2016.08.006
    [112] Karami M, Akhavan-Behabadi MA, Dehkordi MR, et al. (2016) Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol Energy Mat Sol C 144: 136-142. doi: 10.1016/j.solmat.2015.08.018
    [113] He Q, Wang S, Zeng S, et al. (2013) Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Convers Manag 73: 150-157. doi: 10.1016/j.enconman.2013.04.019
    [114] Parvin S, Nasrin R, Alim MA (2014) Heat transfer and entropy generation through nanofluid filled direct absorption solar collector. Int J Heat Mass Tran 71: 386-395. doi: 10.1016/j.ijheatmasstransfer.2013.12.043
    [115] Gupta HK, Agrawal GD, Mathur J (2015) An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Sol Energy 118: 390-396. doi: 10.1016/j.solener.2015.04.041
    [116] Delfani S, Karami M, Akhavan-Behabadi MA (2015) Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew Energ 87: 754-764. doi: 10.1016/j.renene.2015.11.004
    [117] Gorji TB, Ranjbar AA (2017) Thermal and exergy optimization of a nanofluid-based direct absorption solar collector. Renew Energ 106: 274-287. doi: 10.1016/j.renene.2017.01.031
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4957) PDF downloads(440) Cited by(5)

Article outline

Figures and Tables

Figures(11)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog