We consider dynamical systems that have emerged in financial studies and exhibit chaotic behaviour. The main purpose is to develop a data-based method for reconstruction of the trajectories of these systems. This methodology can then be used for prediction and control and it can also be utilized even if the dynamics of the system are unknown. To this end, we combine merits from Koopman operator theory, Extended Dynamic Mode Decomposition and Takens' embedding theorem. The result is a linear autoregressive model whose trajectories approximate the orbits of the original system. Finally, we enrich this method with machine learning techniques that can be used to train the autoregressive model.
Citation: John Leventides, Evangelos Melas, Costas Poulios, Paraskevi Boufounou. Analysis of chaotic economic models through Koopman operators, EDMD, Takens' theorem and Machine Learning[J]. Data Science in Finance and Economics, 2022, 2(4): 416-436. doi: 10.3934/DSFE.2022021
We consider dynamical systems that have emerged in financial studies and exhibit chaotic behaviour. The main purpose is to develop a data-based method for reconstruction of the trajectories of these systems. This methodology can then be used for prediction and control and it can also be utilized even if the dynamics of the system are unknown. To this end, we combine merits from Koopman operator theory, Extended Dynamic Mode Decomposition and Takens' embedding theorem. The result is a linear autoregressive model whose trajectories approximate the orbits of the original system. Finally, we enrich this method with machine learning techniques that can be used to train the autoregressive model.
[1] | Ahmad I, Ouannas A, Shafiq M, Pham V, Baleanu D (2021) Finite-time stabilization of a perturbed chaotic finance model. J Adv Res 32: 1–14. https://doi.org/10.1016/j.jare.2021.06.013 doi: 10.1016/j.jare.2021.06.013 |
[2] | Chen H, Yu L, Wang Y, Guo M (2021) Synchronization of a Hyperchaotic Finance System. Complexity 2021: 7. https://doi.org/10.1155/2021/6618435 doi: 10.1155/2021/6618435 |
[3] | Chian AC (2000) Nonlinear dynamics and chaos in macroeconomics. Int J Theor Appl Financ 3: 601–613. |
[4] | Chian AC-L, Rempel EL, Rogers C (2006) Complex economic dynamics: Chaotic saddle, crisis and intermittency. Chaos Solitons Fractals 29: 1194–1218. https://doi.org/10.1016/j.chaos.2005.08.218 doi: 10.1016/j.chaos.2005.08.218 |
[5] | Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57: 617–656. https://doi.org/10.1007/978-0-387-21830-4-17 doi: 10.1007/978-0-387-21830-4-17 |
[6] | Evstigneev I, Taksar M (2009) Dynamic interaction models of economic equilibrium. J Econ Dyn Control 33: 166–182. https://doi.org/10.1016/j.jedc.2008.04.011 doi: 10.1016/j.jedc.2008.04.011 |
[7] | Fanti L, Manfredi P (2007) Chaotic business cylces and fiscal policy: an IS-LM model with distributed tax collection lags. Chaos Solitons Fractals Elsevier 32: 736–744. |
[8] | Gao Q, Ma JH (2009) Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn 58: 209–216. https://doi.org/10.1007/s11071-009-9472-5 doi: 10.1007/s11071-009-9472-5 |
[9] | Georgescu M, Mezić I (2015) Building energy modeling: A systematic approach to zoning and model reduction using Koopman Mode Analysis. Energy Buildings 86: 794–802. https://doi.org/10.1016/j.enbuild.2014.10.046 doi: 10.1016/j.enbuild.2014.10.046 |
[10] | Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York. |
[11] | Guégan D (2009) Chaos in economics and finance. Annu Rev Control 33: 89–93. https://doi.org/10.1016/j.arcontrol.2009.01.002 doi: 10.1016/j.arcontrol.2009.01.002 |
[12] | Haas L (1998) Stabilizing chaos in a dynamic macroeconomic model. J Econ Behav Organ 33: 313–332. https://doi.org/10.1016/S0167-2681(97)00061-9 doi: 10.1016/S0167-2681(97)00061-9 |
[13] | Hirsch MW, Smale S (1974) Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, San Diego. |
[14] | Holyst J, Hagel T, Haag G, Weidlich W (1996) How to control a chaotic economy? J Evolut Econ Springer 6: 31–42. https://doi.org/10.1007/BF01202371 doi: 10.1007/BF01202371 |
[15] | Hua JC, Noorian F, Moss D, Leong PHW, Gunaratne GH (2017) High-dimensional time series prediction using kernel-based Koopman mode regression. Nonlinear Dyn 90: 1785–1806. https://doi.org/10.1007/s11071-017-3764-y doi: 10.1007/s11071-017-3764-y |
[16] | Jian JG, Deng XL, Wang JF (2009) Globally Exponentially Attractive Set and Synchronization of a Class of Chaotic Finance System. Lect Notes Comput Sci 5551: 253–261, Springer, Berlin. https://doi.org/10.1007/978-3-642-01507-6-30 doi: 10.1007/978-3-642-01507-6-30 |
[17] | Lorenz HW (1993) Nonlinear Dynamical Economics and Chaotic Motion. Springer, Berlin. https://doi.org/10.1007/978-3-662-22233-1 |
[18] | Ma JH, Chen YS (2001) Study of the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system. Appl Math Mech 22: 1240–1251. https://doi.org/10.1007/BF02437847 doi: 10.1007/BF02437847 |
[19] | Ma R, Wu J, Wu K, et al. (2022) Adaptive fixed-time synchronization of Lorenz systems with application in chaotic finance systems. Nonlinear Dyn in press. https://doi.org/10.21203/rs.3.rs-1443857/v1 |
[20] | Mann J, Kutz JN (2016) Dynamic mode decomposition for financial trading strategies. Quant Financ 16: 1643–1655. https://doi.org/10.1080/14697688.2016.1170194 doi: 10.1080/14697688.2016.1170194 |
[21] | Mauroy A, Mezić I, Susuki Y (Editors) (2020) The Koopman Operator in Systems and Control. Lect Notes Control Inf Sci, Springer. https://doi.org/10.1007/978-3-030-35713-9 |
[22] | Mezić I, Banaszuk A (2004) Comparison of systems with complex behavior. Physica D 197: 101–133. https://doi.org/10.1016/j.physd.2004.06.015 doi: 10.1016/j.physd.2004.06.015 |
[23] | Muldoon MR, MacKay RS, Huke JP, et al. (1993) Topology from time series. Physica D 65: 1–16. https://doi.org/10.1016/0167-2789(92)00026-U doi: 10.1016/0167-2789(92)00026-U |
[24] | Ni H, Dong X, Zheng J, et al. (2021) An Introduction to Machine Learning in Quantitative Finance. World Scientific. |
[25] | Packard NH, Crutchfield JP, Farmer JD, et al. (1980) Geometry from a time series. Phys Rev Lett 45: 712–716. https://doi.org/10.1103/PhysRevLett.45.712 doi: 10.1103/PhysRevLett.45.712 |
[26] | Pan X, Wu J (2022) Stochastic stabilization of the chaotic finance system via adaptive fixed-time control. Chin Control Conf., in press. https://doi.org/10.23919/CCC55666.2022.9902830 |
[27] | Puu T (1989) Nonlinear Economic Dynamics, Lect Notes Econ Math Syst 336. Springer-Verlag. https://doi.org/10.1007/978-3-642-97291-1-1 |
[28] | Rigatos GG (2017) State-space approaches for Modelling and Control in Financial Engineering. Systems theory and machine learning methods. Intell Syst Ref Library 125, Springer. https://doi.org/10.1007/978-3-319-52866-3 |
[29] | Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65: 579–616. https://doi.org/10.1007/BF01053745 doi: 10.1007/BF01053745 |
[30] | Schaffer WM, Kot M (1986) Differential systems in ecology and epiemiology. Chaos, Manchester University Press, Manchester. |
[31] | Stavroglou SK, Pantelous AA, Stanley HE, et al. (2019) Hidden interactions in financial markets. Proc Nat Acad Sci USA 116: 10646–10651. https://doi.org/10.1073/pnas.1819449116 doi: 10.1073/pnas.1819449116 |
[32] | Takens F. (1981) Detecting strange attractors in turbulance. Dynamical Systems and Turbulance, Springer Lecture Notes in Mathematics, Springer-Verlag, Berlin. 1981: 366–381. https://doi.org/10.1007/BFb0091924 |
[33] | Wijeratne AW, Yi FQ, Wei JJ (2009) Bifurcation analysis in the diffusive Lotka–Volterra system: an application to market economy. Chaos Solitons Fractals 40: 902–911. https://doi.org/10.1016/j.chaos.2007.08.043 doi: 10.1016/j.chaos.2007.08.043 |
[34] | Yu H, Cai G, Li Y (2012) Dynamic analysis and control of a new hyperchaotic finance system. Nonlinear Dyn 67: 2171–2182. https://doi.org/10.1007/s11071-011-0137-9 doi: 10.1007/s11071-011-0137-9 |
[35] | Zhao XS, Li ZB, Li S (2011) Synchronization of a chaotic finance system. Appl Math Comput 217: 6031–6039. https://doi.org/10.1016/j.amc.2010.07.017 doi: 10.1016/j.amc.2010.07.017 |