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Abstract: We consider dynamical systems that have emerged in financial studies and exhibit chaotic
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of these systems. This methodology can then be used for prediction and control and it can also be
utilized even if the dynamics of the system are unknown. To this end, we combine merits from Koopman
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we enrich this method with machine learning techniques that can be used to train the autoregressive model.
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1. Introduction

Chaotic dynamical systems are deterministic dynamical systems which are characterized by the fact
that small changes in the initial conditions lead to very large differences at a later time. Chaotic dynamical
systems are to be contradistinguished with stochastic dynamical systems. Stochastic dynamical systems
are not deterministic and a probability space is required to study their evolution.

In recent years, chaotic systems have been receiving more and more attention and interest because
of their potential applications in many areas which range from physics and telecommunications to
biological networks and economic models. Since the chaotic phenomenon in economics was discovered
in 1985, it has been widely accepted that the economy and the finance systems are very complicated
nonlinear systems containing many complex factors and accordingly, many efforts have been devoted to
their study (Chian et al., 2006; Gao and Ma, 2009; Gu’egan, 2009; Wijeratne et al., 2009). As stated in
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Chian et al. (2006), characterization of the complex dynamics of economic systems is a powerful tool
for pattern recognition and forecasting of business and financial cycles, as well as for optimization of
management strategy and decision technology. Therefore, the need for analysis and control of these
systems is emerging and many researchers have been working towards this direction.

In this paper, we indicate a method for approximating a macroeconomic chaotic system and recon-
structing its trajectories using a linear finite dimensional dynamical system. This method sits across
Koopman operators, EDMD, Takens theorem and Machine Learning. EDMD and its precursor DMD,
as well as, Koopman operators, Takens’ theorem and Machine Learning have been extensively used in
Finance (for instance, Hua et al., 2017; Mauroy et al., 2020; Mann and Kutz, 2016; Stavroglou et al.,
2019; Ni et al., 2021).

Roughly speaking, the Koopman operator “lifts” the dynamics of the original system from the state
space to linear spaces consisting of functions defined on the state space (which are called observables).
The advantage of this lifting is that we obtain a linearization of the original system which holds to
the whole state space and many properties of the dynamics correspond to spectral properties of the
Koopman operator. The disadvantage is that the linear system induced by the Koopman operator is
infinite dimensional. Therefore, its dynamics and spectral properties cannot be calculated while several
methods for analysis and control cannot be applied.

The Extended Dynamic Mode Decomposition provides us with a method for obtaining finite di-
mensional approximations of the Koopman operator. These approximations, under some suitable
assumptions, converge to the Koopman operator. Therefore, they can also be used to reconstruct the
trajectories in the phase space of the original nonlinear system.

The success of EDMD depends on a set of observables (a dictionary) which is chosen a priori.
This method is purely data-driven and is based on instantaneous measurements of the values of the
observables. Then, the linear dynamical system that is provided advances the measurements form one
time to the next.

On the other hand, it is generally feasible to extract information about features of phase space from
time series of general measurements made on an evolving system (Sauer et al., 1991). The central result
in this direction was proved by (Takens, 1981) who showed how a time series of measurements of a
single observable can be used to reconstruct qualitative features of the phase space of the system. The
technique described by Takens, the method of delays, is so simple that it can be applied to essentially any
time series whatever, and has made possible the wide—ranging search for chaos in dynamical systems.
Takens’ theorem asserts that the phase space of a dynamical system and in particular strange attractors of
the system can be diffeomorphically embedded in a higher dimensional space spanned by an appropriate
number of time lags of a single observable of the system.

This is a very powerful result since it allows to recover the dynamics from the observation of just
one variable, the embedding preserves the topology of the phase space and it preserves the topology of
the attractor in particular, the embedding being a diffeomorphism allows system identification, it also
allows to calculate the box-counting dimension of the attractor, and it allows to calculate the (positive)
Lyapunov exponents. However, Takens’ theorem does not allow reconstruction of the trajectories
of the dynamical system. This is to be juxtaposed with the Koopman-EDMD theory which aims at
reconstructing the trajectories of the system.
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What the two approaches have in common is that both are data-driven since the observables they
use are constructed from data measured during the evolution of the system. In Takens’ theorem the
observables are simpler in form and they are the time lags of a single observable. In Koopman-EDMD
theory the observables are usually the state variables of the dynamical system and non—linear functions
of them. In this paper we use an hybrid method in order to reconstruct with simple means trajectories of
a macroeconomic dynamical system which exhibits chaotic behaviour. In particular we use Koopman-
EDMD theory with observables those used by Takens’ Theorem. The finite dimensional approximation
to the Koopman operator which drives the dynamics and reconstructs the trajectories of the system
is obtained by two different methods: By a Linear autoregressive model and by an Autoregression
with machine learning methods. The use of the Linear autoregressive model leads to more faithful
reconstruction of the trajectories of the dynamical system at hand than the use of Autoregression with
machine learning methods. However, this is attributed to the fact the error made in the case of the Linear
autoregressive model can be corrected whereas this is not feasible in the case of Autoregression with
machine learning methods where the error made in the prediction of the future value of the observable
from the previous values cannot be corrected and accumulates over time.

Therefore, the motivation, innovation and contribution of this paper can be summarized as follows:
This paper addresses the trajectory approximation of an hyperchaotic system via EDMD methods. The
EDMD methods give rise to a linear system on an enhanced state space that can approximate a given
trajectory. Having data of a given trajectory in a finite horizon allows to construct a discrete linear system
of dimension n >> m, where m is the dimension of the state space of the nonlinear system. Takens’
Theorem indicates how large n can be. Here we demonstrate the approximation of a single trajectory of
a chaotic system via EDMD methods equivalent to linear Autoregressive construction. Furthermore, we
demonstrate the use of the same method on multiple trajectories. Finally, we demonstrate how we can use
the same data in order to construct nonlinear trajectory approximation via machine learning methods.

Trajectory approximation of chaotic nonlinear systems is a particularly difficult problem as these
trajectories are sensitive to initial conditions and also exhibit variable spectrum and almost periodicity
properties. Simultaneous approximation of orbits that differ seems a challenge via any method requiring
big data and accurate approaches. The use of linear dynamic models seems in certain respects more
appropriate as the knowledge of its structure allows to correct the fitted model if significant part of the
spectrum of the data is lost due to numerical or other errors. This is demonstrated in this paper. The
conclusions in this paper are derived with the use of an economic model (Yu et al., 2012) which exhibits
hyperchaotic behaviour. We note that the scope the methods and the results in this paper are entirely
different from those in Yu et al. (2012). In a nutshell in this paper we approximate the trajectory of the
hyperchaotic system introduced in Yu et al. (2012) via EDMD methods whereas in Yu et al. (2012) the
general structure of this system is studied, namely, its equilibrium points, its bifurcations, e.t.c..

The EDMD method is data driven. Consequently our method can be applied to any dynamical
system for which probably the dynamical law which drives its dynamics is unknown and data, in the
form of time series, can be collected for some of its trajectories in state space. Moreover, our approach
can be advocated for any nonlinear dynamical system whose dynamical law which drives its dynamics
might be known but a linearization of its dynamics via the EDMD method may be required in order
for example to study control theory of this linearized system; control theory of linear systems is much
better understood than the control theory of nonlinear systems.
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The rest of the paper is organized as follows. In Section 2, we firstly review a dynamical system which
has emerged from financial studies and it shows chaotic behaviour for some values of the parameters.
Furthermore, we briefly present some basic facts about the Koopman operator. We also describe the
EDMD algorithm and the main idea about the connections with Takens’ theorem. The latter is analyzed
with more details in Subsection 2.5. In Section 3 we consider the chaotic system of Section 2.1 and
we developed our methodology for approximating and reconstructing a single trajectory of the system.
In Section 4, we demonstrate the proposed approach in the case where we wish to simultaneously
approximate two orbits of the original system with the same autoregressive model. Finally, Section 5
concludes the paper.

2. Preliminaries

2.1. Chaotic and hyperchaotic macroeconomic models

Various financial system have been found to exhibit chaotic dynamics (Chian, 2000; Fanti and
Manfredi, 2007; Gu’egan, 2009; Hass, 1998; Holyst et al., 1996; Lorenz, 1993). A lot of research has
been invested in the analysis, control and stabilization of these systems (for instance, see Ahmad et al.,
2021; Chen et al., 2021; Ma et al., 2022; Pan and Wu, 2022; for some recent studies). In the present
paper, we use in our analysis a chaotic dynamical model that describes the time evolution of three state
variables: x is the interest rate, y is the investment demand and z is the price exponent. For more details
about the origination, the development and the economic interpretation of the model, we refer to Ma
and Chen (2001), Yu et al. (2012), Jian et al. (2009) and Zhao et al. (2011). The system is described by
the following non-linear differential equations.

xX= z+(@y—-a)x
y= l-by-x (1)
= —Xx-—-cz

where a, b, ¢ are positive constant parameters that represent the amount of savings, the cost per
investment and the elasticity of demand respectively (see Ma and Chen, 2001).

When the values of parameters are chosen as a = 0.9, b = 0.2, ¢ = 1.2 and for initial conditions
(x0,¥0,20) = (1,3,2) the system (1) has a strange attractor that can be classified neither as a stable
equilibrium nor as a periodic or almost periodic oscillation. Therefore, the system exhibits chaotic
behaviour (see Ma and Chen, 2001; Rigatos, 2017).

Later, in Yu et al. (2012), it was observed that x depends not only on the investment demand and the
price exponent, but also on the average profit margin (denoted by u(t)). Therefore, in Yu et al. (2012) a
dynamical system consisting of four state variables (x, y, z, u) is proposed which is described by the next
first order non-linear differential equations

X= z+(O—-a)x+u
y= 1-by—x*
= —-x-—cz

= —dxy—ku

where a, b, ¢, d, k are positive parameters. It is shown that, if the parameters’ values are chosen to be
a=09,b=02,c=1.5,d=0.2,k=0.17, then the system shows hyperchaotic behaviour (see Yu et
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al., 2012). A hyperchaotic system is usually defined as a chaotic system with more than one positive
Lyapunov exponent. Therefore, these system show more complex behaviour than chaotic systems.

2.2. Koopman operators

The Koopman operator theory represents an increasingly popular formalism of dynamical systems
since it allows the analysis of nonlinear and complicated systems. Therefore, it can be utilized in chaotic
and hyperchaotic systems.

Assume that (M, f) is a continuous dynamical system, where M C R” is a real manifold, f is the
evolution map and the system is described by the equation X = f(x). We also denote by ®,(x,) the flow
map defined as the state of the system at time # when we start from the initial condition X.

Any function g: M — C is called an observable of the system (M, f). Let now ¥ be a function
space of observables which enjoys the property: for any g € # and any ¢ > 0, it holds that g o ®, € F.
Then, the Koopman operator, which is actually a semigroup of operators, is defined for any ¢ > 0, as
K,: ¥ — F with

Ki(g) = g o D,.

It is easily verified that K is linear for any ¢ > 0. Throughout this paper, following the common practice,
we will use the term Koopman operator to refer to the whole class of operators K = (K;);»o. In many
applications, the space ¥ coincides with the Hilbert space L?(/M), however other choices can be used as well.

Similarly, the Koopman operator can be defined for any discrete dynamical system x;,; = f(x;)
defined on the state space M. The Koopman operator is the composition of any observable with the
evolution map f, thatis, K: ¥ — F is defined by K(g) = g o f, for any observable g € F. Here, ¥ is
a linear space of observables which is closed under composition with f and the space L*(M) remains a
standard choice.

Roughly speaking the Koopman operator updates every observable in the space ¥ according to
the evolution of the dynamical system. It defines a linear dynamical system (7, K) which completely
describes the original system (M, f). This linearization is applied to any nonlinear system and it is
global, i.e. it does not hold only to the area of some attractor or fixed point. Furthermore, many
properties of the original system can be codified as properties of the Koopman operator and, usually
they can be related to the eigenstructure of K. However, since K is usually infinite dimensional, its
spectral properties cannot be calculated except some rare cases.

To overcome the problem of dimensionality, one has to look for finite dimensional approximations
of the Koopman operator, i.e. finite dimensional subspaces of the domain of K which are invariant
under K. The most natural candidates for this project are the spaces generated by eigenvectors of K,
which, however, are difficult to find. Hence, we are obliged to search for finite dimensional linear
approximations of the Koopman operator. Towards this direction, the Dynamic Mode Decomposition
(DMD) and its generalization the so-called Extended Dynamic Mode Decomposition (EDMD) have
been proved very successful.

2.3. Extended Dynamic Mode Decomposition (EDMD)

We next describe briefly the main steps of the EDMD algorithm. Firstly, one has to consider a set of
observables {g, g2, ..., g,}. This set is usually called a dictionary. The cardinality p of the dictionary is
expected to be much bigger than n (the dimension of the original state space M). The DMD (Dynamic
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Mode Decomposition) uses only the observables g;(x) = x;, fori = 1,2,...,n. However, in EDMD we
can choose any observables. Hence, an augmented state space is constructed and EDMD provides, in
general, better approximations than DMD. We denote the augmented state space by M and its elements
by y = [g1(X),...,8,X)]".

The second step is to collect the data. We consider a trajectory of the original system with initial
condition xy. The trajectory is witnessed for some finite time horizon 7" and sampling points are
collected at a fixed time interval AT. Uniform sampling is not mandatory and other sampling methods
can be applied. Therefore, ny = A—TT points in this trajectory are considered. We denote our data by

(Xs)zio-

0

These data correspond to data (y,)?, in the augmented space M. We now consider the data matrices

Y[O,no—l] = [YO,Yl, . --,yno—l] and Y[l,ng] = [Y1,Y2, . --,yno].

Finally, using least square regression methods, we obtain a p X p matrix A, such that Y ,,; ~
AY|0,-1)- Therefore, we have

A = argmin
AeRrxp

Yiing — AY[o,no—llH-

Here, || - || denotes some matrix norm, for instance the Frobenius norm.
This procedure can also be applied to several trajectories. In this case, we construct data matrices
Y ji0.10-17 and Y jio1 ) fOr every trajectory j = 1,2,..., k. Then, the matrix A is chosen such that

AcRpxp

k
A = argminz “Yj[l,no] - AYj[OJl()—l]H'
j=1

Roughly speaking, A is a best-fit matrix which relates the two data matrices in every trajectory. This
matrix generates a finite dimensional linear system that advances spatial measurements from one time
to the next and therefore it may provide approximations of the original nonlinear system.

One of the advantages of the EDMD method is that it depends on data. Hence, it may be applied
when the dynamics of the system is unknown. On the other hand, the success of this method depends
on the dictionary which is chosen a priori. In many cases, it is a difficult problem to find the suitable
observables. Recent studies try to utilize machine learning and artificial intelligence methods in order to
“train” the dictionary.

2.4. Koopman operator and time-delayed coordinates

As it has been mentioned, EDMD advances measurements of the state of the system from one time
to the next. However, we may also obtain measurements coordinates for the approximation of Koopman
operator using time-delayed measurements of the system. This approach is also data-driven and utilize
the information from the previous measurements to predict the future. It is particularly useful in chaotic
systems. In the case of fixed points or periodic orbits, more data from previous measurements have
small contributions. On the contrary, when the trajectories densely fill a strange attractor, more data
provide more information.

Data Science in Finance and Economics Volume 2, Issue 4, 416—436.
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From this point of view, Koopman operators can interact with Takens embedding theorem. The
latter could provide us information about the dimensions of the augmented state-space as well as the
dictionary that should be chosen. A connection between Koopman operators and Takens Theorem has
already been investigated in Mezi¢ and Banaszuk (2004).

2.5. Takens’ theorem

We firstly need some definitions. A dynamical system on a manifold M is specified by a flow
¢(.)(') RxM—> M,

where ¢(x) = x, ¢, is a diffeomorphism for all # and ¢, o ¢, = ¢, (e.g. ¢ is the solution to a system of
ODEy).

Roughly speaking, an attractor of a dynamical system is a subset of the state space to which orbits
originating from typical initial conditions tend as time increases. It is very common for dynamical
systems to have more than one attractor. For each such attractor, its basin of attraction is the set of initial
conditions leading to long—time behavior that approaches that attractor.

An attracting set A for the flow ¢, is a closed set such that:

e the basin of attraction B(A) has positive measure,
e for A’ C A the difference B(A) \ B(A’) has positive measure.

A set A C M is an attractor if it is an attracting set that contains a dense orbit of the flow ¢,. An
attractor A is strange attractor ((Eckmann and Ruelle, 1985; Guckenheimer and Holmes, 1983), if its
box-counting dimension d is non-integer.

Theorem 2.1 (Takens’ theorem). Let M be a compact manifold of (integer) dimension q. Then for
generic pairs (¢,y), where

e ¢: M — M is a C*~diffeomorphism of M in itself,
e y: M — M is a a C*—differentiable function,

the map @, : M — R**! given by

D (1) = (y(), Y(B(). Y@ (1)), o0 Y@ ()
is an embedding (i.e. an injective and an immersive map) of M in R*1*!

If ¢, is a flow on M and 7 > 0 is a fixed time, then we can define the delay map by

D(x) := ((x), Y(@—(X)), Y(@-2r(X)), ..., Y(@—r(X))) - 2)

If M is a manifold that is an attractor for the flow ¢,, then ¢_; is a diffeomorphism of M into itself, so if
k > 2dim(M) + 1 for generic y, 7, Takens’ theorem (see Sauer et al., 1991; Packard et al., 1980; Takens,
1981; Muldoon et al., 1993) says that the delay map defined by (2) is actually an embedding.

Finally, we close with some details about the meaning of generic. Let P be a property of functions in
C*(M, N) they might or might not have. Then we say that P(f) is true for generic f € CX(M, N) if the
set of functions for which it holds is open and dense in the C* topology. So arbitrary small perturbations
turn bad choices in good choices.
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The central plank of this theory is a result— suggested by several people ( Packard et al., 1980) and
eventually proved in (Takens, 1981)— which shows how a time series of measurements of a single
observable can often be used to reconstruct qualitative features of the phase space of the system. The
technique described by Takens, the method of delays (2), is so simple that it can be applied to essentially
any time series whatever, and has made possible the wide-ranging search for chaos.

3. Application to chaotic economic models

We consider the 4-dimensional (financial) dynamical system described in Section 2.1, which for the
parameter values a = 0.9, b = 0.2, c = 1.5, d = 0.2, k = 0.17 exhibits chaotic behaviour. We select
initial conditions for the four variables to be: x(0) = 1, y(0) = 5, z(0) = 1, u(0) = 1. For this values the
trajectory for x(7) is depicted in Figure 1.

[#5]

[}

100

3
]

I

[}
[=F]
(=T
[

=

Figure 1. The trajectory of the investment rate x(t), for initial values x(0) = 1, y(0) = 5,
z2(0) =1, u(0) =1

The vector of variables (x, y, z, u) converges to a chaotic attractor in R*. According to Whitney
Takens theorem we can embed this attractor to a higher dimensional space of dimension d at least 8
by considering a single observable and a vector of d of its lagged values. We try to use this idea so
that to attempt to reconstruct the above trajectory by using a 9-dimensional dynamical system. The
simplest way to do that is to consider x as an observable and to model the evolution of the vector
(x(T = 9AY),...,x(T)) assuming a sampling period At in our case Af = 1.

3.1. Linear autoregressive model

The simplest model for this evolution is a linear autoregressive model
Xn+9 = AgXp48 + ...+ dpXy,.
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We model the time series of the above plotted variable x(¢) obtained after sampling and we get the results
showed in Tables 1 and 2. Using these results, we reconstruct the x trajectory as shown in Figure 2.

Table 1. Basic parameter table. We have adjusted R = 0.986.

Estimate Standard error t-Statistic p-value
#1 0.382345 0.0526912 7.25634 1.1104 x10~!!
#2 0.0528833 0.0593214 0.891471 0.373854
#3 0.0510388 0.0532897 0.95776 0.339454
4 0.0669098 0.0533061 1.2552 0.211016
#5 —-0.0546443 0.0532567 —-1.02606 0.306227
16 -0.0756992 0.0534338 —-1.41669 0.158283
7 0.488672 0.0536388 9.11044 1.47733 x107'°
#8 0.457925 0.0622202 7.35974 6.12628 x10712
#9 —-0.374469 0.040841 —-9.16895 1.01965 x10~!°

Table 2. Analysis of variance.

DF SS MS F-Statistic p-value
#1 1 440.283 440.283 12718.8 2.36926 x10717°
12 1 0.252312 0.252312 7.28877 0.00759293
13 1 39.9561 39.9561 1154.25 1.03165 x107%°
#4 1 0.388756 0.388756 11.2304 0.000978538
#5 1 0.447058 0.447058 12.9146 0.000419584
16 1 4.09436 4.09436 118.277 1.52056 x1072!
17 1 9.81632 9.81632 283.573 5.71589 x107%
18 1 0.0967607 0.0967607 2.79521 0.0962645
#9 1 29102 29102 84.0696 1.01965 x1071¢
Error 182 6.30022 0.0346166
Total 191 504.545

Data Science in Finance and Economics
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20 40 0 g0 100
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Figure 2. Reconstruction of the trajectory of x.

Furthermore, we extrapolate the modes of the above AR system which have modulus close to unity
on the unit circle by radial projection. The new AR system reconstructs x(¢) as depicted in Figure 3.

20t

0 ol 100

o

20 a0

Figure 3. Reconstruction of the trajectory of x.

The above results demonstrate that the considered chaotic financial system can be approximated,
at least orbitwise and in finite horizon, by AR models of high enough dimensions and thus EDMD
methods may assist in modeling the Takens embedding for the purpose of simulating single or multiple
chaotic trajectories.

Data Science in Finance and Economics Volume 2, Issue 4, 416-436.
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3.2. Autoregression with machine learning methods

Finally, we apply two further methods to explore nonlinear relationships for the transition proposed
by the Takens embedding using machine learning methods. Both are generally described by a nonlinear
autoregression

Xn+9 = F(xn+8a cees Xn),

which was realised by two machine learning approaches, namely random forest interpolation and
Gaussian process interpolation. The results for the same trajectory reconstruction are depicted in Figures
4 (for random forests) and 5 (for Gaussian process interpolation). Details of the two approaches are
given in Tables 3 and 4.

20 40 50 8o 100

L]

Figure 4. Reconstruction of the trajectory of x using random forests.

2.0t
1.5}
1.0}

20 a0 60 ol 100

(%]
tn
e —

Figure 5. Reconstruction of the trajectory of x using Gaussian interpolation process.
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Table 3. Information for the random forest method.

Predictor information

Method

Number of features

Number of training examples
Number of trees

Random Forest
1

190

50

Table 4. Information for the Gaussian interpolation process.

Predictor information

Method

Number of features

Number of training examples
Assume Deterministic
Numerical Covariance Type
Nominal Covariance Type

Gaussian process

1

190

False

Squared Exponential
Hamming Distance

Estimation Method Maximum Posterior
Optimization Method Find Minimum

Both methods fit well to the training data however when used for trajectory reconstruction starting
from the same initial condition the subsequent calculation of the trajectory suffers from error accumulation
and therefore reconstruction worsens with time. Gaussian process interpolation seems to work better.

4. Simultaneous reconstruction of two orbits

In this section, we try to simultaneously approximate two orbits of the hyperchaotic dynamical
system via a single autoregressive dynamical system. To achieve this goal we need to increase the
number of lags to 30.

First of all, we use data from numerical integration to plot the second orbit. This orbit is shown in
Figure 6 and corresponds to initial conditions x(0) = 0, y(0) = 2, z(0) = 0 and #(0) = 1 and time horizon
t € [0, 100]. We note that the new initial conditions give rise to an orbit that is quite far from the first
one. Hence, the task of the simultaneous approximation is quite challenging. The new autoregression
is supposed to produce a new dynamical system that approximate the two trajectories by a single
autoregressive equation and different initial conditions.

Data Science in Finance and Economics Volume 2, Issue 4, 416-436.
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EIIII :IE -EIE E;i IE;EI
Figure 6. The trajectory of the investment rate x(¢), for initial values x(0) = 0, y(0) = 2,
z(0) = 0, u(0) = 1 and time horizon 7" = 100.

4.1. Linear autoregressive model.

Similarly to the case of one trajectory, the simplest autoregressive model that one may consider is lin-
ear. The regression results are depicted in Table 6. The value of the adjusted R? is 0.9777954946531674.
We can see that this value is smaller than the corresponding value of the one orbit case, however, it is
still very close to 1. The regression function is given by:

30
Xn+31 = E ajXn+j,

J=1

where (a j)izlo are the estimates given by the first column in Figure 6.

Finally, we can use the above linear autoregressive dynamical system to approximate the two different
original trajectories of x(¢). Figure 7 shows the plots of these approximations.
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Table 5. Analysis of variance.

DF SS MS F-Statistic p-value
#1 1 885.406 885.406 13286.5 1.38351 x107>%
12 1 0.466206 0.466206 6.99591 0.00858584
13 1 24.5391 24.5391 368.235 1.2149 x107
4 1 1.85537 1.85537 27.8417 2.47799 x107’
#5 1 2.68491 2.68491 40.2899 7.76562 x1071°
16 1 17.6117 17.6117 264.283 2.08632 x10~4
#7 1 23.8109 23.8109 357.307 1.51675 x1073
18 1 11.7662 11.7662 176.565 3.37191 x1073?
19 1 6.70749 6.70749 100.653 1.07024 x107%°
810 1 0.204543 0.204543 3.06939 0.0807683
11 1 8.20769 8.20769 123.165 2.54294 x107%
#12 1 0.0414977 0.0414977 0.622716 0.430643
13 1 0.0341088 0.0341088 0.511839 0.474883
§14 1 1.21188 1.21188 18.1856 0.0000266385
15 1 2.18295 2.18295 32.7575 2.46335 x1078
16 1 1.68824 1.68824 25.3338 8.1894 x1077
§17 1 0.371216 0.371216 5.57049 0.0188848
#18 1 4.50535 4.50535 67.6076 5.53381 x1071
819 1 0.313024 0.313024 4.69725 0.030972
20 1 0.360659 0.360659 5.41207 0.0206423
121 1 0.718296 0.718296 10.7788 0.00114403
§22 1 1.03007 1.03007 15.4573 0.000104143
123 1 1.23863 1.23863 18.5869 0.0000218361
#24 1 0.0496161 0.0496161 0.744542 0.388877
#25 1 0.00615967 0.00615967 0.0924324 0.761311
126 1 0.202932 0.202932 3.0452 0.0819668
#27 1 2.1012 2.1012 31.5307 4.36478 x1078
128 1 0.157497 0.157497 2.36341 0.125231
29 1 0.199552 0.199552 2.99448 0.0845438
#30 1 0.0705909 0.0705909 1.05929 0.304179
Error 310 20.6583 0.0666397
Total 340 1020.4
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Table 6. Basic parameter table.

Estimate Standard error t-Statistic p-value
#1 0.245794 0.0552653 4.44753 0.0000121198
2 —-0.473285 0.0566816 —-8.34989 2.30183 x10715
#3 —-0.00730259 0.0626806 —-0.116505 0.907368
4 —-0.384589 0.0599047 —-6.42001 5.1073 x1071°
#5 —-0.244072 0.0613891 -3.97582 0.0000873291
#6 0.353163 0.0626402 -5.63797 3.87278 x1078
17 0.00100867 0.0631682 0.0159681 0.98727
#8 —0.142987 0.0620628 -2.30391 0.0218891
#9 0.136853 0.0610078 2.24321 0.0255892
#10 -0.241157 0.0608958 -3.96016 0.0000929613
11 0.167892 0.0599006 2.80285 0.00538436
#12 —0.128651 0.0605339 -—2.12527 0.0343548
13 0.0686504 0.0554803 1.23738 0.216881
#14 —0.0330885 0.0555248 —-0.595923 0.551661
15 0.327951 0.0537379 6.10279 3.10786 x107°
#16 —-0.0368829 0.0559783 —-0.658877 0.510464
#17 0.171794 0.0557006 3.08425 0.00222441
#18 0.357909 0.0566593 6.31687 9.25464 x1071°
#19 0.194009 0.0603826 3.213 0.00145176
#20 0.0956424 0.0602179 1.58827 0.113244
121 0.247097 0.0593144 4.16589 0.0000402579
22 0.183056 0.0604346 3.029 0.00265998
23 0.335842 0.060323 5.5674 5.60543 x1078
#24 —-0.00644882 0.0597654 -0.107902 0.914143
25 0.162157 0.0582993 2.78146 0.00574279
#26 —-0.102138 0.0573372 —1.78136 0.0758319
#27 0.301513 0.0564203 5.34406 1.76445 x1077
128 0.0609255 0.0545446 1.11699 0.264865
#29 0.0523586 0.0520694 1.00555 0.315414
#30 0.0408878 0.039727 1.02922 0.304179

4.2. Non-linear autoregression using machine learning methods.

We next assume that the autoregressive model x,.31 = F(X,430, - -

., X,) 1s non-linear. Using the

previous data, we utilize machine learning methods to obtain a reconstruction of the trajectories of x.
Firstly, we interpolate the data with the random forest method with parameters given in Table 7.
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Figure 7. Reconstruction of (a) the first and (b) the second trajectory of x.
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Figure 8. Reconstruction of (a) the first and (b) the second trajectory of x using random
forest interpolation.

Table 7. Details of the random forest interpolation.

Predictor information

Method Random Forest
Number of features 1

Number of training examples 340

Number of trees 50

Figure 8 shows the simulated two trajectories using the random forest predictor.
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Table 8. Details of the Gaussian interpolation process.

Predictor information

Method Gaussian process
Number of features 1

Number of training examples 340

Assume Deterministic False

Numerical Covariance Type Squared Exponential
Nominal Covariance Type Hamming Distance
Estimation Method Maximum Posterior
Optimization Method Find Minimum

Finally, we can interpolate the previous data with the Gaussian process method instead of random
forests. The relative information of the used method are described in Table 8. Finally, Figure 9 contains
the approximations of the two trajectories of x that can be obtained using this method.

o

o

(a) (b)
Figure 9. Reconstruction of (a) the first and (b) the second trajectory of x using Gaussian
interpolation.

5. Conclusions

Given a chaotic system with a strange attractor, Takens’ theorem informs us that we can obtain
a structure topologically equivalent to the attractor by means of a delay embedding. Furthermore, it
provides us with an upper bound for the required dimension of the embedding. However, this is mainly
a theoretical result which may not be very useful in practice, since we may not know the quantities that
appear in it. Furthermore, in some cases the estimation of the dimension may be too high.

In this paper, we combine the result of Takens’ theorem with ideas from Koopman operators and
Extended Dynamic Mode Decomposition. Since EDMD depends on data, it provides the necessary
tools for numerical calculations, which are absent from the Takens’ framework. In this way, we
obtain a numerical method for reconstruction of the trajectories of a chaotic dynamical system. This
reconstruction may also lead to simplified versions of the chaotic dynamical system as well as to a better
understanding of its dynamics.

In particular, we applied the methodology to a chaotic dynamical system that appears in financial
studies. According to Takens’ theorem, we consider one observable of the system. This observable may

Data Science in Finance and Economics Volume 2, Issue 4, 416—436.



433

be one of the state variables. We used the variable x of the system. Similar work can also be executed
for the other variables as well as for other observables, if they can provide useful information about the
system. Then, we take time-delayed measurements of this observable

x(¢) = [x(7), x(t = AD), ..., x(t — dAD] .

Takens’ theorem provides information about the number d of measurements. In particular, when d > 2n,
the embedding is faithful. Therefore, we may seek for a map F: RY — R such that

x(t+1) = F(x(2)) = F(x(1), x(t — At), ..., x(t — dAv)).

In Section 3, we have tested several choices for the function F. The simplest case is to consider a
linear dependence of x( + 1) form the previous measurement. Other choices that we examined use
machine learning methods (random forests, Gaussian interpolation) to find the map F and to reconstruct
the trajectory of the variable x of the original dynamical system.

What is the advantage in our approach is the combination of the Koopman-EDMD theory, Takens’
theorem and Machine Learning that allows us to use data measurements in order to obtain the orbits
of a system exhibiting very complicated behaviour. The key problem with many facets we are faced
with is the reconstruction of the trajectories of dynamical systems in general and of financial dynamical
systems in particular (Puu (1989)). A first step towards this direction is to use more observables in the
Koopman-EDMD theory consisting of the state variables, the observables used in Takens’ theorem and
(non) linear functions of them.

Koopan Mode Analysis has been applied in energy economics (Georgescu and Mezi¢ (2015)) and in
financial economics. More specifically, the findings of the present paper could have practical application
in financial trading, extending further the work of Mann and Kutz (2016) who used the Koopman
operator in financial trading, developing dynamic mode decomposition on portfolios of financial data.
Furthermore, they could be considered together with Hua et al. (2017) proposed novel methodology for
high dimensional time series prediction based on the kernel method extension of data-driven Koopman
spectral analysis, by researchers on quantitative finance.
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