Citation: Suman Chhetri, Pranab Samanta, Naresh Chandra Murmu, Suneel Kumar Srivastava, Tapas Kuila. Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites[J]. AIMS Materials Science, 2017, 4(1): 61-74. doi: 10.3934/matersci.2017.1.61
[1] | Panigrahi R, Srivastava SK (2015) Trapping of Microwave Radiation in Hollow Polypyrrole Microsphere through Enhanced Internal Reflection: A Novel Approach. Sci Rep 5: 7638. doi: 10.1038/srep07638 |
[2] | Kathirgamanathan P (1993) Novel cable shielding materials based on the impregnation of microporous membranes with inherently conducting polymers. Adv Mater 5: 281–283. doi: 10.1002/adma.19930050412 |
[3] | Li P, Du D, Guo L, et al. (2016) Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J Mater Chem C 4: 6525. doi: 10.1039/C6TC01619G |
[4] | Chhetri S, Kuila T, Murmu NC (2016) Graphene Composites, In: Nazarpour S, Waite SR, Eds, Graphene Technology: From Laboratory to Fabrication, John Wiley & Sons, 63–102. |
[5] | Chen Z, Xu C, Ma C, et al. (2013) Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding. Adv Mater 25: 1296–1300. doi: 10.1002/adma.201204196 |
[6] | Li N, Huang Y, Du F, et al. (2006) Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett 6: 1141–1145. doi: 10.1021/nl0602589 |
[7] | Yang S, Lozano K, Lomeli A, et al. (2005) Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos Part A-Appl S 36: 691–697. |
[8] | Farukh M, Dhawan R, Singh BP (2015) Sandwich composites of polyurethane reinforced with poly(3,4-ethylene dioxythiophene)-coated multiwalled carbon nanotubes with exceptional electromagnetic interference shielding properties. RSC Adv 5: 75229–75238. doi: 10.1039/C5RA14105B |
[9] | Ling J, Zhai W, Feng W, et al. (2013) Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl Mater Inter 5: 2677–2684. doi: 10.1021/am303289m |
[10] | Chen Y, Zhang HB, Yang Y, et al. (2016) High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. Adv Funct Mater 26: 447–455. doi: 10.1002/adfm.201503782 |
[11] | Maiti S, Shrivastava NK, Suin S, et al. (2013) Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material through Graphite Nanoplate–MWCNT–Graphite Nanoplate Networking. ACS Appl Mater Inter 5: 4712–4724. doi: 10.1021/am400658h |
[12] | Liang J, Wang Y, Huang Y, et al. (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47: 922–925. doi: 10.1016/j.carbon.2008.12.038 |
[13] | Singh BP, Choudhary V, Saini P, et al. (2012) Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Adv 2: 022151. doi: 10.1063/1.4730043 |
[14] | Lonkar SP, Deshmukh YS, Abdala AA, et al. (2015) Recent advances in chemical modifications of graphene. Nano Res 8: 1039–1074. doi: 10.1007/s12274-014-0622-9 |
[15] | Kuila T, Bose S, Mishra AK, et al. (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57: 1061–1105. doi: 10.1016/j.pmatsci.2012.03.002 |
[16] | Jana M, Saha S, Khanra P, et al. (2015) Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as supercapacitor electrode material. J Mater Chem A 3: 7323–7331. doi: 10.1039/C4TA07009G |
[17] | Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213: 1060−1077. |
[18] | Liang J, Huang Y, Zhang L, et al. (2009) Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Adv Funct Mater 19: 2297−2302. |
[19] | Wang Y, Shi ZX, Fang JH, et al. (2011) Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method. Carbon 49: 1199−1207. |
[20] | Zaman I, Kuan HC, Meng QS, et al. (2012) A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites. Adv Funct Mater 22: 2735−2743. |
[21] | Zaman I, Kuan HC, Dai JF, et al. (2012) From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 4: 4578−4586. |
[22] | Tang LC, Wan YJ, Yan D, et al. (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60: 16–27. doi: 10.1016/j.carbon.2013.03.050 |
[23] | Verma P, Saini P, Malik RS, et al. (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon 89: 308–317. doi: 10.1016/j.carbon.2015.03.063 |
[24] | Wang JC, Xiang CS, Liu Q, et al. (2008) Ordered Mesoporous Carbon/Fused Silica Composites. Adv Funct Mater 18: 2995–3002. doi: 10.1002/adfm.200701406 |
[25] | Zhang HB, Yan Q, Zheng WG, et al. (2011) Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl Mater Inter 3: 918−924. |
[26] | Fang M, Zhen Z, Li J, et al. (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20: 9635−9643. |
[27] | Chhetri S, Samanta P, Murmu NC, et al. (2016) Effect of Dodecyal Amine Functionalized Graphene on the Mechanical and Thermal Properties of Epoxy-based Composites. Polym Eng Sci [In Press]. |
[28] | Jin FL, Ma CJ, Park SJ, et al. (2011) Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A 528: 8517−8522. |
[29] | Yu G, Wu P (2014) Effect of chemically modified graphene oxide on the phase separation behaviour and properties of an epoxy/polyetherimide binary system. Polym Chem 5: 96−104. |