Citation: P. Di Pietro, G. Forte, L. D’Urso, C. Satriano. The hybrid nanobiointerface between nitrogen-doped graphene oxide and lipid membranes: a theoretical and experimental study[J]. AIMS Materials Science, 2017, 4(1): 43-60. doi: 10.3934/matersci.2017.1.43
[1] | Rui L, Liu J, Li J, et al. (2015) Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases. BBA-Biomembranes 1848: 1203–1211. |
[2] | Ali MA, Kamil RK, Srivastava S, et al. (2014) Lipid-lipid interactions in aminated reduced graphene oxide interface for biosensing application. Langmuir 30: 4192–4201. |
[3] | Makharza S, Cirillo G, Bachmatiuk A, et al. (2013) Graphene oxide-based drug delivery vehicles: Functionalization, characterization, and cytotoxicity evaluation. J Nanopart Res 15: 2099–2124. |
[4] | Shen H, Zhang L, Liu M, et al. (2012) Biomedical applications of graphene. Theranostics 2: 283–294. |
[5] | Sawosz E, Jaworski S, Kutwin M, et al. (2015) Graphene functionalized with arginine decreases the development of glioblastoma multiforme tumor in a gene-dependent manner. Int J Mol Sci 16: 25214–25233. |
[6] | Lei H, Zhou X, Wu H, et al. (2014) Morphology change and detachment of lipid bilayers from the mica substrate driven by graphene oxide sheets. Langmuir 30: 4678–4683. |
[7] | Yang K, Feng L, Shi X, et al. (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42: 530–547. |
[8] | Novoselov KS, Fal’ko VI, Colombo L, et al. (2012) A roadmap for graphene. Nature 490: 192–200. |
[9] | Loh KP, Bao Q, Eda G, et al. (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2: 1015–1024. |
[10] | Seabra AB, Paula AJ, de Lima R, et al. (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27: 159–168. |
[11] | Liu X, Chen KL (2015) Interactions of graphene oxide with model cell membranes: Probing nanoparticle attachment and lipid bilayer disruption. Langmuir 31: 12076–12086. |
[12] | Yi P, Chen KL (2013) Interaction of multiwalled carbon nanotubes with supported lipid bilayers and vesicles as model biological membranes. Environ Sci Technol 47: 5711–5719. |
[13] | Frost R, Jönsson GE, Chakarov D, et al. (2012) Graphene oxide and lipid membranes: Interactions and nanocomposite structures. Nano Lett 12: 3356–3362. |
[14] | Wang Z, Dong Y, Li H, et al. (2014) Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5: 5002–5009. |
[15] | Fazaeli Y, Akhavan O, Rahighi R, et al. (2014) In vivo SPECT imaging of tumors by 198, 199Au-labeled graphene oxide nanostructures. Mater Sci Eng C 45: 196–204. |
[16] | Yang X, Mei T, Yang J, et al. (2014) Synthesis and characterization of alkylamine-functionalized graphene for polyolefin-based nanocomposites. Appl Surf Sci 305: 725–731. |
[17] | Rao KS, Senthilnathan J, Ting JM, et al. (2014) Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications. Nanoscale 6: 12758–12768. |
[18] | Chua CK, Sofer Z, Luxa J, et al. (2015) Selective nitrogen functionalization of graphene by bucherer-type reaction. Chem-A Eur J 21: 8090–8095. |
[19] | Chaban VV, Prezhdo OV (2015) Synergistic Amination of Graphene: Molecular Dynamics and Thermodynamics. J Phys Chem Lett 6: 4397–4403. |
[20] | Zuccaro L, Krieg J, Desideri A, et al. (2015) Tuning the isoelectric point of graphene by electrochemical functionalization. Sci Rep 5: 11794–11806. |
[21] | Wu L, Zeng L, Jiang X (2015) Revealing the Nature of Interaction between Graphene Oxide and Lipid Membrane by Surface-Enhanced Infrared Absorption (SEIRA) Spectroscopy. J Am Chem Soc 137: 10052–10055. |
[22] | Alok A, Singh ID, Singh S, et al. (2015) Curcumin—Pharmacological actions and its role in oral submucous fibrosis: A review. J Clin Diagnostic Res 9: ZE01–ZE03. |
[23] | Chen Y, Wu Q, Zhang Z, et al. (2012) Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 17: 5972–5987. |
[24] | Cheng YC, Kaloni TP, Zhu ZY, et al. (2012) Oxidation of graphene in ozone under ultraviolet light. Appl Phys Lett 101: 073110–073114. |
[25] | Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80: 1339–1339. |
[26] | Ren PG, Wang H, Huang HD, et al. (2014) Characterization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/high-density polyethylene nanocomposites: A comparative study. J Appl Polym Sci 131: 39803–39811. |
[27] | Lerf A, He H, Forster M, et al. (1998) Structure of Graphite Oxide Revisited. J Phys Chem B 102: 4477–4482. |
[28] | Perdew J, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77: 3865–3868. |
[29] | McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72: 5639–5648. |
[30] | Krishnan R, Binkley JS, Seeger R, et al. (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72: 650–654. |
[31] | Forte G, Travaglia A, Magrì A, et al. (2014) Adsorption of NGF and BDNF derived peptides on gold surfaces. Phys Chem Chem Phys 16: 1536–1544. |
[32] | Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, et al. (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 4: 31–47. |
[33] | Lau KF, Alper HE, Thacher TS, et al. (1994) Effects of Switching-Functions on the Behavior of Liquid Water in Molecular-Dynamics Simulations. J Phys Chem 98: 8785–8792. |
[34] | D’Urso L, Satriano C, Forte G, et al. (2012) Water structure and charge transfer phenomena at the liquid-graphene interface. Phys Chem Chem Phys 14: 14605–14610. |
[35] | Bourlinos AB, Gournis D, Petridis D, et al. (2003) Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19: 6050–6055. |
[36] | Eda G, Lin YY, Mattevi C, et al. (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22: 505–509. |
[37] | Lai Q, Zhu S, Luo X, et al. (2012) Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv 2: 032146–032150. |
[38] | Dementjev AP, de Graaf A, Van de Sanden MCM, et al. (2000) X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films. Diam Relat Mater 9: 1904–1907. |
[39] | Petit C, Seredych M, Bandosz TJ (2009) Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J Mater Chem 19: 9176–9185. |
[40] | Mungse HP, Singh R, Sugimura H, et al. (2015) Molecular pillar supported graphene oxide framework: conformational heterogeneity and tunable d-spacing. Phys Chem Chem Phys 17: 20822–20829. |
[41] | Satriano C, Svedhem S, Kasemo B (2012) Well-defined lipid interfaces for protein adsorption studies. Phys Chem Chem Phys 14: 16695–16698. |
[42] | Axelrod D, Koppel DE, Schlessinger J, et al. (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16: 1055–1069. |
[43] | Satriano C, Marletta G, Kasemo B (2008) Oxygen plasma-induced conversion of polysiloxane into hydrophilic and smooth SiOx surfaces. Surf Interface Anal 40: 649–656. |
[44] | Tsukamoto M, Kuroda K, Ramamoorthy A, et al. (2014) Modulation of raft domains in a lipid bilayer by boundary-active curcumin. Chem Commun 50: 3427–3430. |