Citation: Samaneh Nasiri, Michael Zaiser. Rupture of graphene sheets with randomly distributed defects[J]. AIMS Materials Science, 2016, 3(4): 1340-1349. doi: 10.3934/matersci.2016.4.1340
[1] | Wang S, Ang PK,Wang Z, et al. (2009) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10: 92–98. |
[2] | Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447: 1066–1068. doi: 10.1038/4471066a |
[3] | Lee C,Wei X, Kysar JW, et al. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385–388. doi: 10.1126/science.1157996 |
[4] | Zhao Q, Nardelli MB, Bernholc J (2002) Ultimate strength of carbon nanotubes: A theoretical study. Phys Rev B 65: 144105. doi: 10.1103/PhysRevB.65.144105 |
[5] | Barber A, Kaplan-Ashiri I, Cohen SR, et al. (2002) Stochastic strength of nanotubes: An appraisal of available data. Compos Sci Technol 65: 2380–2384. |
[6] | Mielke SL, Troya DZ, Zhang S, et al. (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390: 413–420. doi: 10.1016/j.cplett.2004.04.054 |
[7] | Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. (2004) Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 70: 245416. doi: 10.1103/PhysRevB.70.245416 |
[8] | Khare R, Mielke SL, Paci JT, et al. (2007) Coupled quantum mechanical/ molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75: 075412. doi: 10.1103/PhysRevB.75.075412 |
[9] | Bhattacharya B, Lu Q (2006) Ultimate strength of carbon nanotubes: A theoretical study. J Stat Mech 2006: P06021. |
[10] | Yang M, Koutsos V, Zaiser M (2007) Size e ect in the tensile fracture of single-walled carbon nanotubes with defects. Nanotechnology 18: 155708. |
[11] | Wang MC, Yan C, Ma L, et al. (2012) E ect of defects on fracture strength of graphene sheets. Comp Mater Sci 54: 236–239. doi: 10.1016/j.commatsci.2011.10.032 |
[12] | Xu L, Wei N, Zheng Y (2013) Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture. Nanotechnology 24: 505703. doi: 10.1088/0957-4484/24/50/505703 |
[13] | Sellerio AL, Taloni A, Zapperi S (2015) Fracture size e ects in nanoscale materials: the case of graphene. Phys Rev Appl 4: 024011. doi: 10.1103/PhysRevApplied.4.024011 |
[14] | Pastewka L, Pou P, Perez R, et al. (2008) Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range. Phys Rev B 78: 161402 |
[15] | Duxbury PM, Leath PL, Beale PD (1987) Breakdown properties of quenched random systems: the random-fuse network. Phys Rev B 36: 367–380. doi: 10.1103/PhysRevB.36.367 |
[16] | Manzato C, Shekhawat A, Nukala PK, et al. (2012) Fracture strength of disordered media: Universality,interactions, and tail asymptotics. Phys Rev Lett 108: 065504. doi: 10.1103/PhysRevLett.108.065504 |
[17] | Duxbury PM, Kim SG, Leath PL (1994) Size e ect and statistics of fracture in random materials. Mater Sci Eng A 176: 25–31. doi: 10.1016/0921-5093(94)90955-5 |