Citation: Niklas Ehrlin, Christina Bjerkén, Martin Fisk. Cathodic hydrogen charging of Inconel 718[J]. AIMS Materials Science, 2016, 3(4): 1350-1364. doi: 10.3934/matersci.2016.4.1350
[1] | Slama C, Abdellaoui M (2000) Structural characterization of the aged Inconel 718. J Alloy Compd 306: 277–284. doi: 10.1016/S0925-8388(00)00789-1 |
[2] | Reed RC. 2. The Physical Metallurgy of Nickel and its Alloys, In: Superalloys - Fundamentals and Applications: Cambridge University Press. |
[3] | Liu L, Tanaka K, Hirose A, et al. (2002) Effects of precipitation phases on the hydrogen embrittlement sensitivity of Inconel 718. Sci Technol Adv Mater 3: 335. doi: 10.1016/S1468-6996(02)00039-6 |
[4] | Hirose A, Arita Y, Nakanishi Y, et al. (1996) Decrease in hydrogen embrittlement sensitivity of INCONEL 718 by laser surface softening. Mater Sci Eng A 219: 71–79. doi: 10.1016/S0921-5093(96)10384-1 |
[5] | Sjöberg G, Cornu D (2001) Hydrogen Embrittlement of Cast Alloy 718 - Effects of Homogenization, Grain Size and delta-phase, 679–690. |
[6] | Hicks PD, Altstetter CJ (1992) Hydrogen-enhanced cracking of superalloys. Metall T A 23: 237–249. doi: 10.1007/BF02660868 |
[7] | Hicks PD, Altstetter CJ (1990) Internal hydrogen effects on tensile properties of Iron- and Nickel-base superalloys. Metall T A 21A: 365. |
[8] | Senor DJ, Peddicord KL, Strizak JP (1991) Effects of hydrogen on the fracture morphology of Inconel 718. Mater Lett 11: 373–378. doi: 10.1016/0167-577X(91)90137-U |
[9] | Birnbaum HK (1989) Mechanisms of hydrogen-related fracture of metals. Office of Naval Research USN 00014-83-K-0468. |
[10] | Dadfarnia M, Martin ML, Nagao A, et al. (2015) Modeling hydrogen transport by dislocations. J Mech Phys Solids 78: 511–525. doi: 10.1016/j.jmps.2015.03.002 |
[11] | Pound BG (1990) Hydrogen trapping in precipitation-hardened alloys. Acta Metall et Mater 38: 2373–2381. doi: 10.1016/0956-7151(90)90250-K |
[12] | Milella P (2013) Hydrogen Embrittlement and Sensitization Cracking, In: Anonymous Fatigue and Corrosion in Metals: Springer Milan, 689–729. |
[13] | Au M (2007) High temperature electrochemical charging of hydrogen and its application in hydrogen embrittlement research. Mater Sci Eng A 454–455: 564–569. |
[14] | Liu L, Zhai C, Lu C, et al. (2005) Study of the effect of delta phase on hydrogen embrittlement of Inconel 718 by notch tensile tests. Corros Sci 47: 355–367. doi: 10.1016/j.corsci.2004.06.008 |
[15] | Fournier L, Delafosse D, Magnin T (1999) Cathodic hydrogen embrittlement in alloy 718. Mater Sci Eng A 269: 111–119. doi: 10.1016/S0921-5093(99)00167-7 |
[16] | Oriani RA (1993) The physical and metallurgical aspects of hydrogen in metals. ICCF4 Fourth International Conference on Cold Fusion. |
[17] | Beloglazov SM (2003) Peculiarity of hydrogen distribution in steel by cathodic charging. J Alloy Compd 356–357: 240–243. |
[18] | Kimura A, Birnbaum HK (1987) The effects of cathodically charged hydrogen on the flow stress of nickel and nickel-carbon alloys. Acta Metall 35: 1077–1088. doi: 10.1016/0001-6160(87)90055-1 |
[19] | Panagopoulos CN, Georgiou EP, Chaliampalias D (2014) Cathodic hydrogen charging of zinc. Corros Sci 79: 16–20. doi: 10.1016/j.corsci.2013.10.016 |
[20] | Ulmer DG, Altstetter CJ (1987) Hydrogen concentration gradients in cathodically charged austenitic stainless steel. J Mater Res 2: 305–312. doi: 10.1557/JMR.1987.0305 |
[21] | Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater Sc Eng A 176: 191–202. doi: 10.1016/0921-5093(94)90975-X |
[22] | Raizman A, Barak J, Zamir D, et al. (1983) NMR study of hydrogen in cathodically charged Inconel 718. J Nucl Mater 119: 73–77. doi: 10.1016/0022-3115(83)90054-5 |
[23] | Delafosse D, Magnin T (2001) Hydrogen induced plasticity in stress corrosion cracking of engineering systems. Eng Fract Mech 68: 693–729. doi: 10.1016/S0013-7944(00)00121-1 |
[24] | Hamma H, Rasmussen SB, Rogez J, et al. (2006) Conductivity, calorimetry and phase diagram of the NaHSO4–KHSO4 system. Thermochim Acta 440: 200–204. doi: 10.1016/j.tca.2005.11.022 |
[25] | Xu J, Sun XK, Liu QQ, et al. (1994) Hydrogen Permeation Behavior in IN718 and GH761 Superalloys 25A: 539–544. |
[26] | Jebaraj JJM, Morrison DJ, Suni II. (2014) Hydrogen diffusion coefficients through Inconel 718 in different metallurgical conditions. Corros Sci 80: 517–522. doi: 10.1016/j.corsci.2013.11.002 |
[27] | Turnbull A, Ballinger RG, Hwang IS, et al. (1992) Hydrogen Transport in Nickel-Base Alloys 23A: 3231–3244. |
[28] | G A, C B. (1998) Surfaces, Oxford Chemistry Primer 59 Eds., Oxford: Oxford University Press. |
[29] | Kupka M, Stępień K, Nowak K (2014) Studies on hydrogen diffusivity in iron aluminides using the Devanathan–Stachurski method. J Phys Chem Solids 75: 344–350. doi: 10.1016/j.jpcs.2013.10.009 |
[30] | ASTM (2011) Standard Practice for Evaluation of Hydrogen Uptake, Permeation, Transport in Metals by an Electrochemical Technique G148-97. |
[31] | Liu L, Tanaka K, Hirose A, et al. (2003) Experimental and numerical analyses of the mechanism for decreasing hydrogen-embrittlement sensitivity of aged Inconel 718 by laser surface annealing. J Laser Appl 15: 134–144. doi: 10.2351/1.1585080 |
[32] | Chao B, Chae S, Zhang X, et al. (2007) Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing. Acta Mater 55: 2805–2814. doi: 10.1016/j.actamat.2006.12.019 |
[33] | Basak D, Overfelt RA, Wang D (2003) Measurement of Specific Heat Capacity and Electrical Resistivity of Industrial Alloys Using Pulse Heating Techniques. Int J Thermophys 24: 1721–1733. doi: 10.1023/B:IJOT.0000004101.88449.86 |
[34] | Brouwer RC, Griessen R (1989) Electromigration of hydrogen in alloys: Evidence of unscreened proton behavior. Phys Rev Lett 62: 1760–1763. doi: 10.1103/PhysRevLett.62.1760 |
[35] | Ho PS, Watson TS (1989) Electromigration in metals. Rep Prog Phys 52: 301–348. doi: 10.1088/0034-4885/52/3/002 |
[36] | van Ek J, Lodder A (1994) Electromigration of hydrogen in metals: Theory and experiment. Defect and Diffus Forum 115–116: 1–38. |
[37] | Guyer JE, Wheeler D, Warren JA (2009) FiPy: Partial Differential Equations with Python. Comput Sci Eng 11: 6–15. |
[38] | Gray HR (1974) Embrittlement of Nickel-, Cobalt-, and Ironbase Superalloys by Exposure to Hydrogen TND-7805. |
[39] | He J, Fukuyama S, Yokogawa K, et al. (1994) Effect of Hydrogen on Deformation Structure of Inconel 718. Mater T JIM 35: 689–694. doi: 10.2320/matertrans1989.35.689 |
[40] | Dong J, Zhang M, Xie X, et al. (2002) Interfacial segregation and cosegregation behaviour in a nickel-base alloy 718. Mater Sci Eng A 328: 8–13. doi: 10.1016/S0921-5093(01)01491-5 |
[41] | Hicks PD (1990) Hydrogen embrittlement of selected nickel and iron-base superalloys. ProQuest Dissertations and Theses. |