Citation: Geoffrey E. Tupholme. Moving row of antiplane shear cracks within one-dimensional piezoelectric quasicrystals[J]. AIMS Materials Science, 2016, 3(4): 1365-1381. doi: 10.3934/matersci.2016.4.1365
[1] | Shechtman D, Blech I, Gratias D, et al. (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53: 1951–1953. doi: 10.1103/PhysRevLett.53.1951 |
[2] | Fan TY (2011) The mathematical theory of elasticity of quasicrystals and its applications. Science Press, Springer-Verlag, Beijing/Heidelberg. |
[3] | Fan TY (2013) Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering 5: 407–448. doi: 10.4236/eng.2013.54053 |
[4] | Ding DH, Yang WG, Hu CZ, et al. (1993) Generalized elasticity theory of quasicrystals. Phys Rev B 48: 7003–7009. doi: 10.1103/PhysRevB.48.7003 |
[5] | Altay G, Dökmeci MC (2012) On the fundamental equations of piezoelasticity of quasicrystal media. Int J Solids Struct 49: 3255–3262. doi: 10.1016/j.ijsolstr.2012.06.016 |
[6] | Li CL, Liu YY (2004) The physical property tensors of one-dimensional quasicrystals. Chin Phys 13: 924–931. doi: 10.1088/1009-1963/13/6/024 |
[7] | Wang X, Pan E (2008) Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana J Phys 70: 911–933. doi: 10.1007/s12043-008-0099-8 |
[8] | Yang LZ, Gao Y, Pan E, et al. (2014) Electric-elastic field induced by a straight dislocation in one-dimensional quasicrystals. Acta Phys Polonica A 126: 467–470. doi: 10.12693/APhysPolA.126.467 |
[9] | Li XY, Li PD, Wu TH, et al. (2014) Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys Lett A 378: 826–834. doi: 10.1016/j.physleta.2014.01.016 |
[10] | Yu J, Guo J, Xing Y (2015) Complex variable method for an anti-plane elliptical cavity of one-dimensional hexagonal piezoelectric quasicrystals. Chin J Aero 28: 1287–1295. doi: 10.1016/j.cja.2015.04.013 |
[11] | Yu J, Guo J, Pan E, et al. (2015) General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics. Appl Math Mech 36: 793–814. doi: 10.1007/s10483-015-1949-6 |
[12] | Zhang L, Zhang Y, Gao Y (2014) General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect. Phys Lett A 378: 2768–2776. doi: 10.1016/j.physleta.2014.07.027 |
[13] | Yang J, Li X (2016) Analytical solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects. Theor Appl Fract Mech 82: 17–24. doi: 10.1016/j.tafmec.2015.07.012 |
[14] | Guo J, Zhang Z, Xing Y (2016) Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Phil Mag 96: 349–369. doi: 10.1080/14786435.2015.1132852 |
[15] | Fan C, Li Y, Xu G, et al. (2016) Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals. Mech Res Comm 74: 39–44. doi: 10.1016/j.mechrescom.2016.03.009 |
[16] | Tupholme GE, One-dimensional piezoelectric quasicrystals with an embedded moving, non-uniformly loaded shear crack. Acta Mech [in press]. |
[17] | Guo J, Pan E (2016) Three-phase cylinder model of one-dimensional piezoelectric quasi-crystal composites. ASME J Appl Mech 83: 081007. doi: 10.1115/1.4033649 |
[18] | Guo J, Yu J, Xing Y, et al. (2016) Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole. Acta Mech 227: 2595–2607. doi: 10.1007/s00707-016-1657-7 |
[19] | Bilby BA, Eshelby JD (1968) Dislocations and the theory of fracture. In: Liebowitz H, Fracture, New York: Academic Press, 1: 99–182. |
[20] | Lardner RW (1974) Mathematical theory of dislocations and fracture. University of Toronto Press, Toronto. |
[21] | Leibfried G (1951) Verteilung von versetzungen im statischen gleichgewicht. Z Phys 130: 214–226. doi: 10.1007/BF01337695 |
[22] | Muskhelishvili NI (1953) Singular integral equations. Noordhoff Int. Pub., Leyden. |
[23] | Gakhov FD (1966) Boundary value problems. Pergamon, Oxford. |