Research article

Global existence of classical solutions and steady-state bifurcation in a prey-taxis predator-prey system with hunting cooperation and a logistic source for predators

  • Received: 06 March 2025 Revised: 23 May 2025 Accepted: 11 June 2025 Published: 16 June 2025
  • In this paper, we studied a generalized reaction-diffusion system that models predator-prey dynamics, incorporating prey-taxis along with a hunting cooperation effect and a logistic source for the predator population, subject to homogeneous Neumann boundary conditions. This system describes a predator-prey interaction in which the prey, via a prey-taxis mechanism, employ group defense strategies against their predators, while the predators, through their functional response and net growth rate, not only cooperate in hunting these defended prey but also exhibit logistic growth dynamics, thereby ensuring the self-regulation of the predator population. We established that solutions to the time- and space-dependent system exhibiting such ecological characteristics exist globally and remain bounded within a one-dimensional spatial domain. Furthermore, using global bifurcation theory, we proved the existence of nonconstant positive steady states. A key ingredient in this analysis is the derivation of uniform a priori estimates for positive steady-state solutions, which play a crucial role in controlling the global solution branches.

    Citation: Kimun Ryu, Wonlyul Ko. Global existence of classical solutions and steady-state bifurcation in a prey-taxis predator-prey system with hunting cooperation and a logistic source for predators[J]. Electronic Research Archive, 2025, 33(6): 3811-3833. doi: 10.3934/era.2025169

    Related Papers:

  • In this paper, we studied a generalized reaction-diffusion system that models predator-prey dynamics, incorporating prey-taxis along with a hunting cooperation effect and a logistic source for the predator population, subject to homogeneous Neumann boundary conditions. This system describes a predator-prey interaction in which the prey, via a prey-taxis mechanism, employ group defense strategies against their predators, while the predators, through their functional response and net growth rate, not only cooperate in hunting these defended prey but also exhibit logistic growth dynamics, thereby ensuring the self-regulation of the predator population. We established that solutions to the time- and space-dependent system exhibiting such ecological characteristics exist globally and remain bounded within a one-dimensional spatial domain. Furthermore, using global bifurcation theory, we proved the existence of nonconstant positive steady states. A key ingredient in this analysis is the derivation of uniform a priori estimates for positive steady-state solutions, which play a crucial role in controlling the global solution branches.



    加载中


    [1] W. Ko, K. Ryu, A diffusive predator-prey system with hunting cooperation in predators and prey-taxis: Ⅰ global existence and stability, J. Math. Anal. Appl., 543 (2025), 129005. https://doi.org/10.1016/j.jmaa.2024.129005 doi: 10.1016/j.jmaa.2024.129005
    [2] B. Griffith, Group predator defense by mule deer in Oregon, J. Mammal., 69 (1988), 627–629. https://doi.org/10.2307/1381359 doi: 10.2307/1381359
    [3] Y. Sait$\bar{\rm{o}}$, Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator, Exper. Appl. Acarol., 2 (1986), 47–62. https://doi.org/10.1007/BF01193354 doi: 10.1007/BF01193354
    [4] E. C. Haskell, J. Bell, Pattern formation in a predator-mediated coexistence model with prey-taxis, Discrete Contin. Dyn. Syst. - Ser. B, 25 (2020), 2895–2921. https://doi.org/10.3934/dcdsb.2020045 doi: 10.3934/dcdsb.2020045
    [5] J. M. Lee, T. Hillen, M. A. Lewis, Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70 (2008), 654–676. https://doi.org/10.1007/s11538-007-9271-4 doi: 10.1007/s11538-007-9271-4
    [6] R. Tyson, S. R. Lubkin, J. D. Murray, Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38 (1999), 359–375. https://doi.org/10.1007/s002850050153 doi: 10.1007/s002850050153
    [7] C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65–75. https://doi.org/10.1006/tpbi.1999.1414 doi: 10.1006/tpbi.1999.1414
    [8] L. Berec, Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72 (2010), 94–121. https://doi.org/10.1007/s11538-009-9439-1 doi: 10.1007/s11538-009-9439-1
    [9] W. Ko, K. Ryu, A diffusive predator-prey system with hunting cooperation in predators and prey-taxis: Ⅱ stationary pattern formation, J. Math. Anal. Appl., 543 (2025), 128947. https://doi.org/10.1016/j.jmaa.2024.128947 doi: 10.1016/j.jmaa.2024.128947
    [10] K. Ryu, W. Ko, On dynamics and stationary pattern formations of a diffusive predator-prey system with hunting cooperation, Discrete Contin. Dyn. Syst. - Ser. B, 27 (2022), 6679–6709. https://doi.org/10.3934/dcdsb.2022015 doi: 10.3934/dcdsb.2022015
    [11] K. Ryu, W. Ko, M. Haque, Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities, Nonlinear Dyn., 94 (2018), 1639–1656. https://doi.org/10.1007/s11071-018-4446-0 doi: 10.1007/s11071-018-4446-0
    [12] D. Sen, S. Ghorai, M. Banerjee, Allee effect in prey versus hunting cooperation on predator - enhancement of stable coexistence, Int. J. Bifurcation Chaos, 29 (2019), 1950081. https://doi.org/10.1142/S0218127419500810 doi: 10.1142/S0218127419500810
    [13] K. Vishwakarma, M. Sen, Influence of Allee effect in prey and hunting cooperation in predator with Holling type-Ⅲ functional response, J. Appl. Math. Comput., 68 (2022), 249–269. https://doi.org/10.1007/s12190-021-01520-1 doi: 10.1007/s12190-021-01520-1
    [14] M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13–22. https://doi.org/10.1016/j.jtbi.2017.02.002 doi: 10.1016/j.jtbi.2017.02.002
    [15] H. Amann, Dynamic theory of quasilinear parabolic equtions. Ⅱ. Reaction-diffusion systems, Differ. Integr. Equations, 3 (1990), 13–75. https://doi.org/10.57262/die/1371586185 doi: 10.57262/die/1371586185
    [16] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (eds. H. Schmeisser and H. Triebel), Springer Fachmedien Wiesbaden, (1993), 9–126. https://doi.org/10.1007/978-3-663-11336-2_1
    [17] A. Friedman, Partial Differential Equations, Dover, New York, 2008.
    [18] H. Jin, Z. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [19] Y. Li, J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564–1595. https://doi.org/10.1088/0951-7715/29/5/1564 doi: 10.1088/0951-7715/29/5/1564
    [20] M. Winkler, On the Cauchy problem for a degenerate parabolic equation, Z. Anal. Anwend., 20 (2001), 677–690. https://doi.org/10.4171/ZAA/1038 doi: 10.4171/ZAA/1038
    [21] B. E. Ainseba, M. Bendahmane, A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086–2105. https://doi.org/10.1016/j.nonrwa.2007.06.017 doi: 10.1016/j.nonrwa.2007.06.017
    [22] T. Hillen, K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
    [23] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. https://doi.org/10.1016/j.nonrwa.2009.05.005 doi: 10.1016/j.nonrwa.2009.05.005
    [24] S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [25] Y. Cai, Q. Cao, Z. A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Applicalbe Anal., 101 (2022), 81–99. https://doi.org/10.1080/00036811.2020.1728259 doi: 10.1080/00036811.2020.1728259
    [26] Q. Wang, C. Gai, J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239–1284. https://doi.org/10.3934/dcds.2015.35.1239 doi: 10.3934/dcds.2015.35.1239
    [27] Y. Tao, M. Winkler, Large time behavior in a forager-exploiter model with different taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci., 29 (2019), 2151–2182. https://doi.org/10.1142/S021820251950043X doi: 10.1142/S021820251950043X
    [28] J. Wang, Global existence and stabilization in a forager-exploiter model with general logistic sources, Nonlinear Anal. Theory Methods Appl., 222 (2022), 112985. https://doi.org/10.1016/j.na.2022.112985 doi: 10.1016/j.na.2022.112985
    [29] C. Wang, Z. Zheng, The effects of cross-diffusion and logistic source on the boundedness of solutions to a pursuit-evasion model, Electron. Res. Arch., 31 (2023), 3362–3380. https://doi.org/10.3934/era.2023170 doi: 10.3934/era.2023170
    [30] M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equations, 37 (2012), 319–351. https://doi.org/10.1080/03605302.2011.591865 doi: 10.1080/03605302.2011.591865
    [31] L. Dung, H. L. Smith, Steady states of models of microbial growth and competition with chemotaxis, J. Math. Anal. Appl., 229 (1999), 295–318. https://doi.org/10.1006/jmaa.1998.6167 doi: 10.1006/jmaa.1998.6167
    [32] D. Luo, Q. Wang, Global bifurcation and pattern formation for a reaction-diffusion predator-prey model with prey-taxis and double Beddington-DeAngelis functional responses, Nonlinear Anal. Real World Appl., 67 (2022), 103638. https://doi.org/10.1016/j.nonrwa.2022.103638 doi: 10.1016/j.nonrwa.2022.103638
    [33] X. Wang, W. Wang, G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431–443. https://doi.org/10.1002/mma.3079 doi: 10.1002/mma.3079
    [34] S. Wu, J. Wang, J. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 2275–2312. https://doi.org/10.1142/S0218202518400158 doi: 10.1142/S0218202518400158
    [35] N. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equations, 4 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
    [36] R. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9
    [37] Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521–529. https://doi.org/10.1016/j.jmaa.2011.02.041 doi: 10.1016/j.jmaa.2011.02.041
    [38] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022
    [39] M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664–1673. https://doi.org/10.1002/mana.200810838 doi: 10.1002/mana.200810838
    [40] Y. Luo, Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis, Math. Biosci. Eng., 18 (2021), 6672–6699. https://doi.org/10.3934/mbe.2021331 doi: 10.3934/mbe.2021331
    [41] M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1016/0022-1236(71)90015-2 doi: 10.1016/0022-1236(71)90015-2
    [42] O. Ladyzhenskaya, V. Solonnikov, N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI, 1968. https://doi.org/10.1090/mmono/023
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(665) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog