This paper verifies the semi-local convergence of a sixth-order iterative method for solving nonlinear systems. In the proof, the recursive relation method is used to prove the semi-local convergence of the iterative method in Banach spaces. The proof process outlined above does not necessitate the higher-order continuous differentiability of the function $ L(u) $. The advantage of the iterative method is that by employing auxiliary sequences and functions, convergence can be established using only first-order Fréchet derivatives. The proposed sixth-order method reduces computational costs compared to existing sixth-order methods by requiring only one LU decomposition per iteration instead of two. Finally, this sixth-order iterative approach is utilized for solving Hammerstein equations along with real gas equation of state. The experimental results prove the effectiveness of the iterative method.
Citation: Li Yu, Xiaofeng Wang. Semi-local convergence of a sixth-order iterative method for solving nonlinear systems[J]. Electronic Research Archive, 2025, 33(6): 3794-3810. doi: 10.3934/era.2025168
This paper verifies the semi-local convergence of a sixth-order iterative method for solving nonlinear systems. In the proof, the recursive relation method is used to prove the semi-local convergence of the iterative method in Banach spaces. The proof process outlined above does not necessitate the higher-order continuous differentiability of the function $ L(u) $. The advantage of the iterative method is that by employing auxiliary sequences and functions, convergence can be established using only first-order Fréchet derivatives. The proposed sixth-order method reduces computational costs compared to existing sixth-order methods by requiring only one LU decomposition per iteration instead of two. Finally, this sixth-order iterative approach is utilized for solving Hammerstein equations along with real gas equation of state. The experimental results prove the effectiveness of the iterative method.
| [1] | J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, 1970. https://doi.org/10.1016/C2013-0-11263-9 |
| [2] |
H. Ren, Q. Wu, The convergence ball of the secant method under H$\ddot{o}$lder continuous divided differences, J. Comput. Appl. Math., 194 (2006), 284–293. http://doi.org/10.1016/j.cam.2005.07.008 doi: 10.1016/j.cam.2005.07.008
|
| [3] |
X. Wang, N. Shang, Local convergence analysis of a novel derivative-free method with and without memory for solving nonlinear systems, Int. J. Comput. Math., 102 (2025), 846–863. https://doi.org/10.1080/00207160.2025.2464701 doi: 10.1080/00207160.2025.2464701
|
| [4] | W. Li, X. Wang, Fractal behavior of King's optimal eighth-order iterative method and its numerical application, Math. Commun., 29 (2024), 217–236. |
| [5] |
P. P. Zabrejko, D. F. Nguen, The majorant method in the theory of newton-kantorovich approximations and the pták error estimates, Numer. Funct. Anal. Optim., 9 (1987), 671–684. http://doi.org/10.1080/01630568708816254 doi: 10.1080/01630568708816254
|
| [6] |
D. Ruan, X. Wang, Y. Wang, Local convergence of seventh-order iterative method under weak conditions and its applications, Eng. Comput., 42 (2025), 1599–1615. https://doi.org/10.1108/EC-08-2024-0775 doi: 10.1108/EC-08-2024-0775
|
| [7] |
I. K. Argyros, S. George, On the complexity of extending the convergence domain of Newton's method under the weak majorant condition, Can. Math. Bull., 67 (2024), 781–795. https://doi.org/10.4153/S000843952400016X doi: 10.4153/S000843952400016X
|
| [8] |
H. Singh, J. R. Sharma, S. Kumar, A simple yet efficient two-step fifth-order weighted-Newton method for nonlinear models, Numer. Algor., 93 (2023), 203–225. https://doi.org/10.1007/s11075-022-01412-w doi: 10.1007/s11075-022-01412-w
|
| [9] |
A. Cordero, R. V. Rojas-Hiciano, J. R. Torregrosa, M. P. Vassileva, Maximally efficient damped composed Newton-type methods to solve nonlinear systems of equations, Appl. Math. Comput., 492 (2025), 129231. https://doi.org/10.1016/j.amc.2024.129231 doi: 10.1016/j.amc.2024.129231
|
| [10] |
T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differenqtial equation with three weakly singular kernels, J. Appl. Math. Comput., 71 (2025), 3861–3889. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
|
| [11] |
K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
|
| [12] | H. Yuan, Q. Zhu, The well-posedness and stabilities of mean-field stochastic differential equations driven by G-Brownian motion, SIAM J. Control Optim. 63 (2025), 596–624. https://doi.org/10.1137/23M1593681 |
| [13] | Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes. IEEE Trans. Autom. Control, 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 |
| [14] |
A. Cordero, E. Martínez, J. R. Torregrosa, Iterative methods of order four and five for systems of nonlinear equations, J. Comput. Appl. Math., 231 (2009), 541–551. https://doi.org/10.1016/j.cam.2009.04.015 doi: 10.1016/j.cam.2009.04.015
|
| [15] |
A. Cordero, J. L. Hueso, E. Martínez, J. R. Torregrosa, A modified Newton-Jarratt's composition, Numer. Algor., 55 (2010), 88–99. https://doi.org/10.1007/s11075-009-9359-z doi: 10.1007/s11075-009-9359-z
|
| [16] |
A. Cordero, J. R. Torregrosa, M. P. Vassileva, Pseudocomposition: A technique to design predictor-corrector methods for systems of nonlinear equations, Appl. Math. Comput., 218 (2012), 11496–11504. https://doi.org/10.1016/j.amc.2012.04.081 doi: 10.1016/j.amc.2012.04.081
|
| [17] | G. E. Alefeld, F. A. Potra, Z. Shen, On the existence theorems of Kantorovich, Moore and Miranda, in Topics in Numerical Analysis, 15 (2001), 21–28. http://doi.org/10.1007/978-3-7091-6217-0_3 |
| [18] |
A. Cordero, J. G. Maimó, E. Martinez, J. R. Torregrosa, M. P. Vassileva, Semilocal convergence of the extension of Chun's method, Axioms, 10 (2021), 161. http://doi.org/10.3390/axioms10030161 doi: 10.3390/axioms10030161
|
| [19] |
S. Yadav, S. Singh, R. P. Badoni, A. Kumar, M. Singh, Semilocal convergence of Chebyshev Kurchatov type methods for non-differentiable operators, Comput. Math. Appl., 170 (2024), 275–281. https://doi.org/10.1016/j.camwa.2024.07.003 doi: 10.1016/j.camwa.2024.07.003
|
| [20] |
I. K. Argyros, A new convergence theorem for the Steffenssen method in Banach space and applications, Rev. Anal. Numér. Théor. Approx., 29 (2000), 119–127. https://doi.org/10.33993/jnaat292-661 doi: 10.33993/jnaat292-661
|
| [21] | J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics, 2000. |
| [22] |
J. A. Ezquerro, M. A. Hernández, Halley's method for operators with unbounded second derivative, Appl. Numer. Math., 57 (2007), 354–360. https://doi.org/10.1016/j.apnum.2006.05.001 doi: 10.1016/j.apnum.2006.05.001
|