In this paper, we define non-lightlike framed rectifying curves. They may have singularities. We give equivalent definitions and a construction method for non-lightlike framed rectifying curves. Moreover, we also study the relationship between the non-lightlike framed rectifying curves and the non-lightlike framed helices, as well as the properties of the centrode of non-lightlike framed rectifying curves.
Citation: Jiaqi Huang, Kaixin Yao, Donghe Pei. Non-lightlike framed rectifying curves in Minkowski 3-space[J]. Electronic Research Archive, 2024, 32(10): 5914-5925. doi: 10.3934/era.2024273
In this paper, we define non-lightlike framed rectifying curves. They may have singularities. We give equivalent definitions and a construction method for non-lightlike framed rectifying curves. Moreover, we also study the relationship between the non-lightlike framed rectifying curves and the non-lightlike framed helices, as well as the properties of the centrode of non-lightlike framed rectifying curves.
[1] | B. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Am. Math. Mon., 110 (2003), 147–152. https://doi.org/10.2307/3647775 doi: 10.2307/3647775 |
[2] | B. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sin., 33 (2005), 77–90. |
[3] | S. Deshmukh, B. Chen, S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turkish J. Math., 42 (2018), 609–620. https://doi.org/10.3906/mat-1701-52 doi: 10.3906/mat-1701-52 |
[4] | Z. İşbilir, M. Tosun, A new insight on rectifying-type curves in Euclidean 4-space, Int. Electron. J. Geom., 16 (2023), 644–652. https://doi.org/10.36890/iejg.1291893 doi: 10.36890/iejg.1291893 |
[5] | H. A. Erdem, A. Uçum, K. İlarslan, C. Camcı, New approach to timelike Bertrand curves in 3-dimensional Minkowski space, Carpathian Math. Publ., 15 (2023), 482–494. https://doi.org/10.15330/cmp.15.2.482-494 doi: 10.15330/cmp.15.2.482-494 |
[6] | Y. Li, J. Qian, Geometric structure of lightlike growth surface in Minkowski space, Acta Math. Sin. (Chin. Ser.), 66 (2023), 1045–1056. https://doi.org/10.12386/A20220058 doi: 10.12386/A20220058 |
[7] | K. Ilarslan, E. Nesovic, Some characterizations of null, pseudo null and partially null rectifying curves in Minkowski space-time, Taiwan. J. Math., 12 (2008), 1035–1044. https://doi.org/10.11650/twjm/1500574245 doi: 10.11650/twjm/1500574245 |
[8] | K. Ilarslan, E. Nesovic, On rectifying curves as centrodes and extremal curves in the Minkowski 3-space, Novi Sad J. Math, 37 (2007), 53–64. |
[9] | P. Lucas, J. Ortega-Yagües, Rectifying curves in the three-dimensional hyperbolic space, Mediterr. J. Math., 13 (2016), 2199–2214. https://doi.org/10.1007/s00009-015-0615-2 doi: 10.1007/s00009-015-0615-2 |
[10] | P. Lucas, J. Ortega-Yagües, Rectifying curves in the three-dimensional sphere, J. Math. Anal. Appl., 421 (2015), 1855–1868. https://doi.org/10.1016/j.jmaa.2014.07.079 doi: 10.1016/j.jmaa.2014.07.079 |
[11] | M. Aydin, A. Has, B. Yilmaz, A non-newtonian approach in differential geometry of curves: Multiplicative rectifying curves, Bull. Korean Math. Soc., 61 (2024), 849–866. https://doi.org/10.4134/BKMS.b230491 doi: 10.4134/BKMS.b230491 |
[12] | S. Honda, M. Takahashi, Framed curves in the Euclidean space, Adv. Geom., 16 (2016), 265–276. https://doi.org/10.1515/advgeom-2015-0035 doi: 10.1515/advgeom-2015-0035 |
[13] | Y. Wang, D. Pei, R. Gao, Generic properties of framed rectifying curves, Mathematics, 7 (2019), 37. https://doi.org/10.3390/math7010037 doi: 10.3390/math7010037 |