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Abstract: In this paper, we define non-lightlike framed rectifying curves. They may have singularities.
We give equivalent definitions and a construction method for non-lightlike framed rectifying curves.
Moreover, we also study the relationship between the non-lightlike framed rectifying curves and
the non-lightlike framed helices, as well as the properties of the centrode of non-lightlike framed
rectifying curves.
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1. Introduction

Rectifying curves have been studied a lot in three-dimensional Euclidean space. Rectifying curve
whose definition and equivalent definitions are provided in [1]. Chen and Dillen revealed the
relationship between the center point of the spatial curve and the rectifying curve in [2]. Rectifying
curves have many properties in Euclidean space [3]. In four-dimensional Euclidean space, İşbilir and
Tosun [4] studied rectifying curves. Many scholars studied the properties of multiple curves in
three-dimensional Minkowski space [5, 6]. There have also been studies about rectifying curves, such
as three-dimensional Minkowski space [7, 8], three-dimensional hyperbolic space [9], and
three-dimensional spheres [10]. There is a new article about rectifying curves [11]. These are all
valuable geometric information obtained by analyzing the curvature and the torsion of the regular
rectifying curve and the Frenet-Serret formula. If the curve has singularities, then other methods need
to be used for research. The definition of framed curves has been given in [12]. Framed curves are
spatial curves that have moving frames. The framed base curve may have singularities. Next, the
rectifying curve was studied by the adapted frame in [13].
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Inspired by the above work, we study non-lightlike framed rectifying curves. We define the non-
lightlike framed rectifying curves, study the construction of the non-lightlike framed rectifying curves,
and obtain valuable geometric information.

In Section 2, we review the basic knowledge of non-lightlike framed curves. In Section 3, the non-
lightlike framed rectifying curves are defined and their equivalent definitions are given. In Section 4,
a method for constructing non-lightlike framed rectifying curves is provided, and examples of regular
curves and singular curves are also provided. In Section 5, we define non-lightlike framed helices
to obtain the relationship between them and non-lightlike framed rectifying curves. The centrodes of
non-lightlike framed rectifying curves are also studied.

All maps and manifolds considered here are differentiable of class C∞.

2. Preliminary

Let R3
1 be Minkowski 3-space with the pseudo scalar product ⟨, ⟩, the pseudo vector product ∧, and

the norm || ||. The pseudo scalar product is equipped with the signature (−,+,+).
For any nonzero vector a ∈ R3

1, it is called spacelike, timelike, or lightlike if ⟨a, a⟩ is positive,
negative, or zero, respectively. We say the regular curve γ : I → R3

1 is spacelike, timelike, or lightlike
if the vector γ

′

(t) is spacelike, timelike or lightlike for all t ∈ I, respectively. For n ∈ R3
1\{0}, define

a set P = {a ∈ R3
1|⟨a, n⟩ = 0}. It is obvious that P is a plane in R3

1. The vector n is called the pseudo
normal vector of the plane P. The plane P is called spacelike, timelike, or lightlike if the vector n is
timelike, spacelike, or lightlike, respectively.

There are three pseudo spheres in R3
1:

S 2
1 = {a ∈ R

3
1|⟨a, a⟩ = 1},

LC∗ = {a ∈ R3
1\{0}|⟨a, a⟩ = 0}

and
H2

0 = {a ∈ R
3
1|⟨a, a⟩ = −1}.

We call them de Sitter 2-space, (open) lightcone, and hyperbolic 2-space, respectively. Let
∆ = {(β1,β2) ∈ R3

1 × R
3
1|⟨β1,β2⟩ = 0, ||β1|| = 1, ||β2|| = 1} and γ : I → R3

1 be a non-lightlike curve.

Definition 2.1. We call (γ,β1,β2) : I → R3
1 × ∆ a non-lightlike framed curve if ⟨γ

′

(t),β1(t)⟩ = 0,
⟨γ
′

(t),β2(t)⟩ = 0 for any t ∈ I. We call γ : I → R3
1 a non-lightlike framed base curve if there exists

(β1,β2) : I → ∆ such that (γ,β1,β2) is a non-lightlike framed curve.

Define µ(t) = β1(t) ∧ β2(t). There exists a function α : I → R satisfying γ
′

(t) = α(t)µ(t).
{β1(t),β2(t),µ(t)} is a moving frame along γ. Frenet-type formulas are

β
′

1(t)
β
′

2(t)
µ
′

(t)

 =


0 l1(t) l2(t)
σl1(t) 0 l3(t)
−σδl2(t) δl3(t) 0



β1(t)
β2(t)
µ(t)

 ,
γ
′

(t) = α(t)µ(t),
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where
σ = ⟨µ(t),µ(t)⟩, δ = ⟨β1(t),β1(t)⟩, l1(t) = −σδ⟨β

′

1(t),β2(t)⟩,

l2(t) = σ⟨β
′

1(t),µ(t)⟩, l3(t) = σ⟨β
′

2(t),µ(t)⟩, α(t) = σ⟨γ
′

(t),µ(t)⟩.

(l1, l2, l3, α) : I → R4 is called the curvature of (γ,β1,β2). If µ(t) is spacelike (timelike) , we call γ a
spacelike (timelike) framed base curve.

We know t0 is a singular point of γ if and only if α(t0) = 0.

Proposition 2.2. γ : I → R3
1 is a non-lightlike regular curve, and (γ,β1,β2) : I → R3

1 × ∆ is a non-
lightlike framed curve. The relations between the curvature (l1, l2, l3, α) of (γ,β1,β2) and the curvature
κ and the torsion τ of γ are

(|α|κ)(t) =
√
|l2

2 − σl2
3|(t),

(−δα(l2
2 − σl2

3)τ)(t) = (l
′

2l3 − l
′

3l2 + σl1l2
2 − l1l2

3)(t).

We assume l2
2(t) , σl2

3(t) and denote ε = sgn(l2
2 − σl2

3)(t).

Definition 2.3. (γ,β1,β2) : I → R3
1×∆ is a non-lightlike framed curve, and its curvature is (l1, l2, l3, α).

Let (
β1(t)
β2(t)

)
=

1√
ε(l2

2 − σl2
3)(t)

(
εl2(t) −εσl3(t)
−l3(t) l2(t)

) (
β1(t)
β2(t)

)
.

We call β1 direction the principal normal direction of (γ,β1,β2) and β2 direction the binormal direction
of (γ,β1,β2).

We have µ(t) = β1(t) ∧ β2(t). {β1(t),β2(t),µ(t)} is called the Frenet-type frame along γ. Frenet-type
formulas are 

β
′

1(t)

β
′

2(t)
µ
′

(t)

 =


0 L1(t) L2(t)
σL1(t) 0 0
−σεδL2(t) 0 0



β1(t)
β2(t)
µ(t)

 ,
γ
′

(t) = α(t)µ(t),

where

L1(t) = ε
 l
′

2l3 − l
′

3l2

l2
2 − σl2

3

(t) + σl1(t)
 ,

L2(t) =
√
ε(l2

2(t) − σl2
3(t)).

Then (L1, L2, 0, α) is the curvature of (γ,β1,β2).

Remark 2.4. (γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed curve, and its curvature is (l1, l2, 0, α).

If l2(t) > 0, then β1(t) = β1(t) and β2(t) = β2(t). If l2(t) < 0, then β1(t) = −β1(t) and β2(t) = −β2(t).
In this article, we only study the non-lightlike framed curve (γ,β1,β2) and its frame is the Frenet-

type frame {β1(t),β2(t),µ(t)}.
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Remark 2.5. γ : I → R3
1 is a non-lightlike regular curve and (γ,β1,β2) : I → R3

1 ×∆ is a non-lightlike
framed curve. Let l3 = 0 be in Proposition 2.2. We have the relations among the curvature κ, the torsion
τ of γ and the curvature (L1, L2, 0, α) of (γ,β1,β2) are

κ(t) =
L2

|α|
(t), τ(t) = −σδ

L1

α
(t)

For a non-lightlike framed curve (γ,β1,β2) : I → R3
1 × ∆, the rectifying plane of γ at t0 is the plane

through γ(t0) and spanned by β2(t0) and µ(t0).

3. Non-lightlike framed rectifying curves

Definition 3.1. (γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed curve. We call (γ,β1,β2) a non-

lightlike framed rectifying curve if γ satisfies

γ(t) = (ψµ + ϕβ2)(t)

for two functions ψ(t), ϕ(t) : I → R. γ is called a base curve of a non-lightlike framed rectifying
curve (Figure 1).

0

2

0.5

1.5

1

γ

2

1.5

1
1.5

2

0.5 1

tangent veotor

0.50

O

0

binormal vector

rectifying plane

Figure 1. γ is a base curve of a non-lightlike framed rectifying curve.

We call f (t) = ⟨γ(t), γ(t)⟩ the distance squared function of a non-lightlike framed curve (γ,β1,β2).

Theorem 3.2. (γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed curve. The following statements

are equivalent.
(1) ⟨γ(t),µ(t)⟩

′

= σα(t).
(2) The distance squared function satisfies

f (t) = σ⟨γ(t),µ(t)⟩2 − ϕ2σεδ.
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(3) ⟨γ(t),β2(t)⟩ = ϕεδ, ϕ ∈ R\{0}.
(4) γ(t) is a base curve of a non-lightlike framed rectifying curve.

Proof. Let γ(t) be a base curve of a non-lightlike framed rectifying curve. We know there exist two
functions ψ(t) and ϕ(t) such that

γ(t) = (ψµ + ϕβ2)(t). (3.1)

According to the Frenet-type formulas and deriving (3.1), we have

(αµ)(t) = (ψ
′

µ + (−σεδψL2 + σϕL1)β1 + ϕ
′

β2)(t).

Then

ψ
′

(t) = α(t), (σεδψL2)(t) = (σϕL1)(t), ϕ
′

(t) = 0. (3.2)

From the first equation of (3.2), we obtain ⟨γ,µ⟩
′

(t) = σψ
′

(t) = σα(t). This proves the statement (1).
By (3.1) and (3.2), we can obtain that

⟨γ, γ⟩(t) = (σψ2 − ϕ2σεδ)(t) = (σ⟨γ,µ⟩2 − ϕ2σεδ)(t),

If ϕ = 0, then ψ(t) = 0 and γ(t) is a point. So ϕ , 0. This proves statements (2) and (3).
Conversely, we assume the statement (1) holds , then

⟨γ,µ⟩
′

(t) = (⟨αµ,µ⟩ + ⟨γ,−σεδL2β1⟩)(t) = σα(t).

By assumption, we obtain ⟨γ(t),β1(t)⟩ = 0. So γ(t) is a base curve of a non-lightlike framed rectifying
curve.

If the statement (2) holds, then

⟨γ, γ⟩(t) = (σ⟨γ,µ⟩2 − ϕ2σεδ)(t).

Then,
2⟨γ, αµ⟩(t) = (2σ⟨γ,µ⟩σα + ⟨γ,−σεδL2β1⟩)(t).

So we get ⟨γ(t),β1(t)⟩ = 0. γ(t) is a base curve of a non-lightlike framed rectifying curve.
If the statement (3) holds, ⟨γ(t),β2(t)⟩ = ϕσεδ. By taking the derivative, we have

(⟨αµ,β2⟩ + ⟨γ, σL1β1⟩)(t) = 0.

So ⟨γ(t),β1(t)⟩ = 0. γ(t) is a base curve of a non-lightlike framed rectifying curve. □

Remark 3.3. (γ,β1,β2) is a non-lightlike framed rectifying curve. If the base curve of a non-lightlike
framed rectifying curve γ is singular at t0, then from Eq (3.2) and the statement (2) in Theorem 3.2,
we have

L1

L2
(t) =

σδψ

ϕ
(t),

(
L1

L2
(t)

)′
=
σδα

ϕ
(t).

So
(

L1(t0)
L2(t0)

)′
= 0. Moreover, we know

f
′

(t) = (2α⟨γ,µ⟩)(t).

So f
′

(t0) = 0.

Electronic Research Archive Volume 32, Issue 10, 5914–5925.
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4. The construction of non-lightlike framed rectifying curves

Theorem 4.1. (γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed rectifying curve. γ(t) is a base curve

of a non-lightlike framed rectifying curve if and only if γ(t) can be expressed as one of the following
two equations

γ(t) = ρ(sec(
∫
||y
′

(t)||dt + M))y(t),

where M is a constant, ρ ∈ R\{0} and y(t) is a spacelike framed base curve on S 2
1. Or

γ(t) = 2ϕ
e
∫
||y′ (t)||dt+1

2 M

|1 − e2
∫
||y′ (t)||dt+M |

y(t),

where M is a constant, ϕ ∈ R\{0} and y(t) is a spacelike (timelike) framed base curve on H2
0 (S 2

1).

Proof. First, we prove the first equation. Let γ(t) be a base curve of a spacelike framed rectifying
curve, which has a spacelike rectifying plane. So ⟨γ, γ⟩(t) = (ψ2(t) + ρ2)(t), where ρ ∈ R\{0}. Let

y(t) =

 1

(ψ2 + ρ2)
1
2

γ

 (t) be a spacelike framed base curve on S 2
1. We have

γ
′

(t) =

 ψα

(ψ2 + ρ2)
1
2

y + (ψ2 + ρ2)
1
2 y
′

 (t).

Since γ
′

(t) = α(t)µ(t) and y′(t) is orthogonal to y(t), we can obtain

⟨γ
′

, γ
′

⟩(t) =
(
ψ2α2

ψ2 + ρ2 + (ψ2 + ρ2)⟨y
′

, y
′

⟩

)
(t).

So

||y
′

(t)|| =
(
|ρα|

ψ2 + ρ2

)
(t).

We only consider ρα(t) ≥ 0, and it is similar for ρα(t) ≤ 0. Then∫
||y
′

(t)||dt + M = arctan
ψ(t)
ρ
.

That is
ψ(t) = ρ tan(

∫
||y
′

(t)||dt + M).

So
γ(t) = ρ(sec(

∫
||y
′

(t)||dt + M))y(t).

Conversely, let (y,βy1 ,βy2) be a spacelike framed curve and γ(t) be defined by

γ(t) = ρ(sec(
∫
||y
′

(t)||dt + M))y(t).
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Let ψ(t) = ρ(tan2(
∫
||y′(t)||dt + M)) and α(t) = ψ

′

(t). Then

γ(t) =
(
(ψ

2
+ ρ2)

1
2 y

)
(t),

γ
′

(t) =

 ψα

(ψ
2
+ ρ2)

1
2

y + (ψ
2
+ ρ2)

1
2 y
′

 (t).

Since y(t) is also a spacelike framed curve, we define that y′(t) = ψ(t)µy(t), where µy(t) = βy1(t)∧βy2(t).
We can obtain ∫

||y
′

(t)||dt + M = arctan
ψ(t)
ρ

and

||y
′

(t)|| =

 |ρα|
ψ

2
+ ρ2

 (t).

Therefore, we denote that y′(t) =
 ρα

ψ
2
+ ρ2
µy

 (t). That is y(t) =

 ρα

ψ
2
(t) + ρ2

 (t). Then we have

γ
′

(t) =

α ψ

(ψ
2
+ ρ2)

1
2

y +
ρ

(ψ
2
+ ρ2)

1
2

µy

 (t) = (αµ)(t).

Hence, we can calculate that ⟨γ,µ⟩2(t) = ψ(t). Since ⟨γ, γ⟩(t) = (ψ
2
+ ρ2)(t), we have

⟨γ, γ⟩(t) = (⟨γ,µ⟩2 + ρ2)(t).

It indicates that the function satisfies the statement (2) in Theorem 3.2. So γ(t) is a base curve of a
spacelike framed rectifying curve.

Next we prove the second equation. Let γ(t) be the base curve of a spacelike framed rectifying
curve, which has a timelike rectifying plane and a spacelike position vector. (We only prove this case,
and the proof for other cases is similar to it.) So ⟨γ, γ⟩(t) = (ψ2 − ϕ2)(t), where ϕ ∈ R\{0}. Let

y(t) =

 1

(ψ2 − ϕ2)
1
2

γ

 (t) be a spacelike framed base curve on S 2
1. We have

γ
′

(t) =

 −ψα

(ψ2 − ϕ2)
1
2

y + (ψ2 − ϕ2)
1
2 y
′

 (t),

Since γ
′

(t) = (αµ)(t) and y′(t) is orthogonal to y(t),

⟨γ
′

, γ
′

⟩(t) = α2(t) =
(
−ψ2α2

ψ2 − ϕ2 + (ψ2 − ϕ2)⟨y
′

, y
′

⟩

)
(t).

So
||y
′

(t)|| =
∣∣∣∣∣ ϕα

ψ(t)2 − ϕ2

∣∣∣∣∣ (t)
Electronic Research Archive Volume 32, Issue 10, 5914–5925.
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and ∫
||y
′

(t)||dt + M =
1
2

ln
∣∣∣∣∣ψ(t) − ϕ
ψ(t) + ϕ

∣∣∣∣∣ .
Then,

ψ(t) = ϕ
1 + e2

∫
||y′ (t)||dt+M

1 − e2
∫
||y′ (t)||dt+M

.

So

γ(t) = 2ϕ
e
∫
||y′ (t)||dt+1

2 M

|1 − e2
∫
||y′ (t)||dt+M |

y(t).

Conversely, we can obtain the proof of this section by referring to the proof of the first equation. □

Remark 4.2. If γ(t) is a base curve of a spacelike framed rectifying curve, which has a timelike
rectifying plane and a lightlike position vector, then ⟨γ(t), γ(t)⟩ = 0. That means ψ2(t) = ϕ2, α(t) = 0,
then γ(t) is a point. So γ(t) does not exist.

Example 4.3. Let y1(t) =
− √3

2
,

√
7

2
cos 2t,

√
7

2
sin 2t

 , t ∈ (
−

π

2
√

3
,
π

2
√

3

)
be a curve on S 2

1. We

have ||y′1(t)|| =
√

7. Let ρ = 1 and M = 0. We have the curve

γ1(t) = (sec
√

7t)
− √3

2
,

√
7

2
cos 2t,

√
7

2
sin 2t


is a base curve of a non-lightlike framed rectifying curve in R3

1 (Figure 2).

1.35-1.15

-1.1

2

-1.05

-1

1.31

-0.95

-0.9

-0.85

0 1.25
-1

1.2-2

Figure 2. The curve γ1(t) is a non-lightlike framed rectifying curve.
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Example 4.4. Let y2(t) = (sinh t2, cosh t2, 0), t ∈
(
−
π

2
,
π

2

)
be a curve on S 2

1. We have ||y′2(t)|| = 2|t|. Let
ρ = 1 and M = 0. We have the curve

γ2(t) = sec t2(sinh t2, cosh t2, 0)

is a base curve of a non-lightlike framed rectifying curve with a singular point R3
1 (Figure 3).

0.9 1 1.1 1.2 1.3 1.4 1.5

-1

0

1

0

0.2

0.4

0.6

0.8

Figure 3. The curve γ2(t) is a base curve of a non-lightlike framed rectifying curve
with a singular point. The black point is the singular point of the curve, whose two
segments coincide.

5. Non-lightlike framed rectifying curves versus non-lightlike framed helices and centrodes

Definition 5.1. (γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed curve. γ is called a non-lightlike

framed helix if there exists a fixed unit vector η satisfying

⟨µ(t), η⟩ = p,

where p ∈ R\{0}.

Remark 5.2. For a non-lightlike framed curve (γ,β1,β2), we can also call γ a non-lightlike framed
helix if there exists a fixed unit vector η satisfying

⟨µ(t), η⟩ = p,

where p ∈ R\{0}.
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(γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed curve with the curvature (L1, L2, 0, α). γ is a

non-lightlike framed helix. We consider the ratio
L1(t)
L2(t)

.

Since
⟨µ, η⟩

′

(t) = (⟨−σεδL2β1, η⟩(t) = 0.

Then

⟨β1(t), η⟩ = 0. (5.1)

η is located in the plane, and the plane has basis vectors µ(t) and β2(t). Since ⟨µ(t), η⟩ = p, we have
⟨β2(t), η⟩ is a constant, denoted by p1. If p1 = 0, then µ(t) =

σ

p
η. At this point, γ is a segment of a

straight line. So we always assume p1 , 0. We take the derivative of (5.1), so

⟨L2µ + L1β2, η⟩(t) = 0.

Then
L1

L2
(t) = −

p
p1
.

By Theorem 3.2, we can obtain γ(t) is a base curve of the non-lightlike framed rectifying curve if and
only if

L1

L2
(t) = c1

∫
α(t)dt + c2,

where c1, c2 ∈ R , c1 , 0.

Proposition 5.3. (γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed curve and its curvature is

(L1, L2, 0, α). The curvature satisfies
(

L1(t)
L2(t)

)′
= c1α(t).

(1) If c1 = 0, then (γ,β1,β2) is a non-lightlike framed helix.
(2) If c1 , 0, then (γ,β1,β2) is a non-lightlike framed rectifying curve.

Definition 5.4. (γ,β1,β2) : I → R3
1×∆ is a non-lightlike framed curve and its curvature is (L1, L2, 0, α).

We call d(t) the centrode of (γ,β1,β2) if

d(t) = (L1µ + L2β2)(t).

Proposition 5.5. (γ,β1,β2) : I → R3
1 × ∆ is a non-lightlike framed curve, and its curvature is

(L1, L2, 0, α). Where L1(t) is a nonzero constant and L2(t) is a nonconstant function.
(1) Let d(t) = (L1µ + L2β2)(t) be the centrode of (γ,β1,β2). Then d(t) is a base curve of a non-

lightlike framed rectifying curve.
(2) The base curve of any non-lightlike framed rectifying curve in R3

1 is the centrode of some non-
lightlike framed curve.

6. Conclusions

Future research could extend the concept of non-lightlike framed rectifying curves to
high-dimensional Minkowski space or it could study lightlike framed rectifying curves. This provides
assistance in studying the properties and classification of higher-dimensional non-lightlike framed
rectifying curves.
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9. P. Lucas, J. Ortega-Yagües, Rectifying curves in the three-dimensional hyperbolic space, Mediterr.
J. Math., 13 (2016), 2199–2214. https://doi.org/10.1007/s00009-015-0615-2
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