Research article

On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum

  • Received: 01 July 2024 Revised: 05 September 2024 Accepted: 09 September 2024 Published: 26 September 2024
  • This paper focuses on investigating the initial-boundary value problem of incompressible heat conducting Navier-Stokes equations with variable coefficients over bounded domains in $ \mathbb{R}^3 $, where the viscosity coefficient and heat conduction coefficient are powers of temperature. We obtain the global well-posedness of a strong solution under the assumption that the initial data and the measure of the initial vacuum region are sufficiently small. It is worth mentioning that the initial density is allowed to contain vacuum, and there are no restrictions on the power index of the temperature-dependent viscosity coefficient and heat conductivity coefficient. At the same time, the exponential decay-in-time results are also obtained.

    Citation: Jianxia He, Qingyan Li. On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum[J]. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253

    Related Papers:

  • This paper focuses on investigating the initial-boundary value problem of incompressible heat conducting Navier-Stokes equations with variable coefficients over bounded domains in $ \mathbb{R}^3 $, where the viscosity coefficient and heat conduction coefficient are powers of temperature. We obtain the global well-posedness of a strong solution under the assumption that the initial data and the measure of the initial vacuum region are sufficiently small. It is worth mentioning that the initial density is allowed to contain vacuum, and there are no restrictions on the power index of the temperature-dependent viscosity coefficient and heat conductivity coefficient. At the same time, the exponential decay-in-time results are also obtained.



    加载中


    [1] S. Chapman, T. Cowling, The Mathematical Theory of Non-uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3$^{rd}$ edition, Cambridge University Press, London, 1970.
    [2] T. P. Liu, Z. P. Xin, T. Yang, Vacuum states of compressible flow, Discrete Contin. Dyn. Syst., 4 (1998), 1–32. https://doi.org/10.3934/dcds.1998.4.1 doi: 10.3934/dcds.1998.4.1
    [3] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.
    [4] H. Grad, Asymptotic theory of the Boltzmann equation, Phys. Fluids, 6 (1963), 147–181. https://doi.org/10.1063/1.1706716 doi: 10.1063/1.1706716
    [5] Y. Guo, S. Q. Liu, Incompressible hydrodynamic approximation with viscous heating to the Boltzmann equation, Math. Models Methods Appl. Sci., 27 (2017), 2261–2296. https://doi.org/10.1142/S0218202517500440 doi: 10.1142/S0218202517500440
    [6] S. Q. Liu, T. Yang, H. J. Zhao, Compressible Navier-Stokes approximation to the Boltzmann equation, J. Differ. Equations, 256 (2014), 3770–3816. https://doi.org/10.1016/j.jde.2014.02.020 doi: 10.1016/j.jde.2014.02.020
    [7] P. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., Oxford University Press, New York, 1996.
    [8] X. Zhang, Z. Tan, The global wellposedness of the 3D heat-conducting viscous incompressible fluids with bounded density, Nonlinear Anal. Real World Appl., 22 (2015), 129–147. https://doi.org/10.1016/j.nonrwa.2014.08.001 doi: 10.1016/j.nonrwa.2014.08.001
    [9] Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluids with vacuum, J. Korean Math. Soc., 45 (2008), 645–681. https://doi.org/10.4134/JKMS.2008.45.3.645 doi: 10.4134/JKMS.2008.45.3.645
    [10] X. Zhong, Global strong solutions for 3D viscous incompressible heat conducting Navier-Stokes flows with non-negative density, J. Differ. Equations, 263 (2017), 4978–4996. https://doi.org/10.1016/j.jde.2017.06.004 doi: 10.1016/j.jde.2017.06.004
    [11] W. Wang, H. B. Yu, P. X. Zhang, Global strong solutions for 3D viscous incompressible heat conducting Navier-Stokes flows with the general external force, Math. Methods Appl. Sci., 41 (2018), 4589 –4601. https://doi.org/10.1002/mma.4915 doi: 10.1002/mma.4915
    [12] X. Zhong, Global well-posedness to the Cauchy problem of two-dimensional nonhomogeneous heat conducting Navier-Stokes equations, J. Geom. Anal., 32 (2022), 200. https://doi.org/10.1007/s12220-022-00947-7 doi: 10.1007/s12220-022-00947-7
    [13] X. Zhong, Global well-posedness to the 3D Cauchy problem of nonhomogeneous heat conducting Navier-Stokes equations with vacuum and large oscillations, J. Math. Fluid Mech., 24 (2022), 14. https://doi.org/10.1007/s00021-021-00649-0 doi: 10.1007/s00021-021-00649-0
    [14] X. Zhong, Global existence and large time behavior of strong solutions for 3D nonhomogeneous heat conducting Navier-Stokes equations, J. Math. Phys., 61 (2020), 111503. https://doi.org/10.1063/5.0012871 doi: 10.1063/5.0012871
    [15] H. Abidi, G. L. Gui, P. Zhang, On the decay and stability to global solutions of the 3-D inhomogeneous Navier-Stokes equations, Commun. Pure Appl. Math., 64 (2011), 832–881. https://doi.org/10.1002/cpa.20351 doi: 10.1002/cpa.20351
    [16] H. Abidi, G. L. Gui, P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Ration. Mech. Anal., 204 (2012), 189–230. https://doi.org/10.1007/s00205-011-0473-4 doi: 10.1007/s00205-011-0473-4
    [17] W. Craig, X. D. Huang, Y. Wang, Global strong solutions for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747–758. https://doi.org/10.1007/s00021-013-0133-6 doi: 10.1007/s00021-013-0133-6
    [18] H. Y. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Commun. Partial. Differ. Equations, 28 (2003), 1183–1201. https://doi.org/10.1081/PDE-120021191 doi: 10.1081/PDE-120021191
    [19] R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differ. Equations, 9 (2004), 353–386. https://doi.org/10.57262/ade/1355867948 doi: 10.57262/ade/1355867948
    [20] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, New York, 1994.
    [21] J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093–1117. https://doi.org/10.1016/j.jmaa.2004.11.022 doi: 10.1016/j.jmaa.2004.11.022
    [22] O. A. Ladyzhenskaya, V. A. Solonnikov, Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Soviet Math., 9 (1978), 697–749. https://doi.org/10.1007/BF01085325 doi: 10.1007/BF01085325
    [23] J. Naumann, On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids, Math. Methods Appl. Sci., 29 (2006), 1883–1906. https://doi.org/10.1002/mma.754 doi: 10.1002/mma.754
    [24] E. Feireisl, J. Málek, On the Navier-Stokes equations with temperature-dependent transport coefficients, Int. J. Differ. Equations, 2006 (2006), 090616. https://doi.org/10.1155/DENM/2006/90616 doi: 10.1155/DENM/2006/90616
    [25] H. Amann, Heat-conducting incompressible viscous fluids. Navier-Stokes equations and related nonlinear problems, Plenum Press, New York, 1995.
    [26] J. Frehse, J. Málek, M. R$\breve{{\rm{u}}}$ẑiĉka, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids, Commun. Partial Differ. Equations, 35 (2010), 1891–1919. https://doi.org/10.1080/03605300903380746 doi: 10.1080/03605300903380746
    [27] H. Xu, H.B. Yu, Global regularity to the Cauchy problem of the 3D heat conducting incompressible Navier-Stokes equations, J. Math. Anal. Appl., 464 (2018), 823–837. https://doi.org/10.1016/j.jmaa.2018.04.037 doi: 10.1016/j.jmaa.2018.04.037
    [28] H. Xu, H. B. Yu, Global strong solutions to the 3D inhomogeneous heat-conducting incompressible fluids, Appl. Anal., 98 (2019), 622–637. https://doi.org/10.1080/00036811.2017.1399362 doi: 10.1080/00036811.2017.1399362
    [29] X. Zhong, Global strong solution for viscous incompressible heat conducting Navier-Stokes flows with density-dependent viscosity, Anal. Appl., 16 (2018), 623–647. https://doi.org/10.1142/S0219530518500069 doi: 10.1142/S0219530518500069
    [30] Q. Duan, Z. P. Xin, S. G. Zhu, On regular solutions for three-dimensional full compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, Arch. Ration. Mech. Anal., 247 (2023), 71. https://doi.org/10.1007/s00205-022-01840-x doi: 10.1007/s00205-022-01840-x
    [31] Q. Duan, Z. P. Xin, S. G. Zhu, Well-posedness of regular solutions for 3-D full compressible Navier-Stokes equations with degenerate viscosities and heat conductivity, preprint, arXiv: 2307.06609. https://doi.org/10.48550/arXiv.2307.06609
    [32] T. Zhang, D.Y. Fang, Existence and uniqueness results for viscous, heat-conducting 3-D fluid with vacuum, preprint, arXiv: math/0702170. https://doi.org/10.48550/arXiv.math/0702170
    [33] Z. H. Guo, Q. Y. Li, Global existence and large time behaviors of the solutions to the full incompressible Navier-Stokes equations with temperature-dependent coefficients, J. Differ. Equations, 274 (2021), 876–923. https://doi.org/10.1016/j.jde.2020.10.031 doi: 10.1016/j.jde.2020.10.031
    [34] W. C. Dong, Q. Y. Li, Global well-posedness for the 2D incompressible heat conducting Navier-Stokes equations with temperature-dependent coefficients and vacuum, preprint, arXiv: 2401.06433. https://doi.org/10.48550/arXiv.2401.06433
    [35] Y. Cao, Y. C. Li, S. G. Zhu, Local classical solutions to the full compressible Navier-Stokes system with temperature-dependent heat conductivity, Methods Appl. Anal., 28 (2021), 105–152. https://doi.org/10.4310/MAA.2021.v28.n2.a2 doi: 10.4310/MAA.2021.v28.n2.a2
    [36] Y. Cao, Y. C. Li, Local strong solutions to the full compressible Navier-Stokes system with temperature-dependent viscosity and heat conductivity, SIAM J. Math. Anal., 54 (2022), 5588–5628. https://doi.org/10.1137/21M1419544 doi: 10.1137/21M1419544
    [37] J. K. Li, Y. S. Zheng, Local existence and uniqueness of heat conductive compressible Navier-Stokes equations in the presence of vacuum without initial compatibility conditions, J. Math. Fluid Mech., 25 (2023), 14. https://doi.org/10.1007/s40818-019-0064-5 doi: 10.1007/s40818-019-0064-5
    [38] X. D. Huang, Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differ. Equations, 259 (2015), 1606–1627. https://doi.org/10.1016/j.jde.2015.03.008 doi: 10.1016/j.jde.2015.03.008
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(40) PDF downloads(2) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog