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Abstract: This paper focuses on investigating the initial-boundary value problem of incompressible
heat conducting Navier-Stokes equations with variable coefficients over bounded domains in R3, where
the viscosity coefficient and heat conduction coefficient are powers of temperature. We obtain the
global well-posedness of a strong solution under the assumption that the initial data and the measure of
the initial vacuum region are sufficiently small. It is worth mentioning that the initial density is allowed
to contain vacuum, and there are no restrictions on the power index of the temperature-dependent
viscosity coefficient and heat conductivity coefficient. At the same time, the exponential decay-in-time
results are also obtained.
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1. Introduction

In this paper, we consider the nonhomogeneous incompressible heat conducting Navier-Stokes
equations that can be written as

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) − div

(
2µD(u)

)
+ ∇P = 0,

cv[(ρθ)t + div(ρuθ)] − div(κ∇θ) = 2µ|D(u)|2,
div u = 0,

(1.1)

supplemented with the initial data:

(ρ, u, θ)(x, 0) = (ρ0, u0, θ0)(x), x ∈ Ω, (1.2)
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and the boundary condition:

u = 0, ∇θ · n = 0, on ∂Ω. (1.3)

Here Ω ⊂ R3 is a bounded smooth domain, and n is the unit outward normal to ∂Ω. ρ, u, θ, and P
stand for the density, velocity, absolute temperature, and pressure of the fluid, respectively. D(u) =
1
2

(
∇u+ (∇u)T ) is the deformation tensor. The coefficients µ, cv, and κ denote the viscosity, specific heat

at constant volume, and heat conductivity, respectively.
From a physical perspective, viscosity and heat conductivity coefficients depend on temperature.

In fact, when deriving Navier-Stokes equations from the Chapman-Enskog expansion based on the
Boltzmann equation, Chapman and Cowling [1], Liu, Xin and Yang [2] confirmed that viscosity and
heat conductivity coefficients depend on temperature. For more details, one can refer to [3–6]. This
played a guiding role in later mathematical research, and scholars began to focus on investigating the
case of variable coefficients. Specifically, there is a special case

µ = c1θ
b, κ = c2θ

b,

where c1, c2, b are positive constants. For this situation, if the intermolecular potential of the cut-off
reverse power force model varies with r−a(a ∈ (0,+∞], r represents the intermolecular distance), then
there is the following interesting discovery in [1]

b =
a + 4

2a
.

Furthermore, b = 1
2 corresponds to rigid elastic spherical molecules; b = 1 corresponds to Maxwellian

molecules; b = 5
2 corresponds to ionized gas. For these reasons, we mainly concentrate on the case

that µ, κ satisfy the following physical restrictions:

µ = µ(θ) = θα, κ = κ(θ) = θβ, for α, β ≥ 0. (1.4)

The incompressible heat conduction Navier-Stokes equations with constant coefficients have been
widely studied, and a large amount of literature can be found on their well-posedness. The weak
solvability of homogeneous systems was proved by Lions [7]. For inhomogeneous fluids, Zhang and
Tan [8] obtained the global well-posedness of a strong solution for the initial density with a positive
lower bound in the whole 3D space. When the initial density includes vacuum, the unique local strong
solution was guaranteed by [9] with the help of compatibility conditions. With it, Zhong [10] extended
this local solution to the global solution under the condition that µ−4∥

√
ρ0u0∥

2
L2∥∇u0∥

2
L2 is small in 3D

bounded domain. Wang, Yu and Zhang [11] studied problems with general external force and also
obtained a similar result. The existence and uniqueness of the global strong solution to the Cauchy
problem were proved by Zhong [12, 13], that is, 2D allows for large initial data, while 3D required
∥ρ0∥L∞∥

√
ρ0u0∥

2
L2∥∇u0∥

2
L2 to be sufficiently small. Furthermore, Zhong [14] also studied the 3D initial-

boundary value problem with special boundaries, namely the Navier-slip boundary with velocity and
Neumann boundary with temperature, and obtained a globally strong solution under the assumption
that ∥

√
ρ0u0∥

2
L2∥u0∥

2
L2 is small. Without thermal conductivity, it is the classic incompressible Navier-

Stokes equations. Abidi et al. [15, 16], and Craig et al. [17] studied the well-posedness and decay
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behavior in critical space. There were many important research results on the well-posedness of solu-
tions to nonhomogeneous incompressible Navier-Stokes equations, which can be referred to [18–22],
and their references.

In general, the Navier-Stokes equations with variable coefficients can more accurately describe
the motion of fluids in practice. When considering that viscosity and heat conduction depend on
temperature or density, the strong coupling makes the study of system (1.1) more difficult. For 3D
homogeneous incompressible heat conduction Navier-Stokes equations with µ = µ(θ), κ = κ(θ), weak
solutions were established by Naumann [23] in bounded domains and by Feireisl and Málek [24]
in periodic domains, respectively. Amann [25] considered the initial-boundary value problem with
coefficients depending on D(u) and θ, and showed the unique solvability under the assumption of
small data through the linearization method. Later, Frehse et al. [26] proved the existence of a global
weak solution for shear-thickening heat conducting incompressible fluids with µ = µ(ρ, θ, |D(u)|2), κ =
κ(ρ, θ) in bounded regions. When the initial vacuum is taken into account, one needs to put more effort
into the structure of the equation. In the 3D domain (both bounded or unbounded), Cho and Kim [9]
considered the cases µ = µ(ρ, ρθ), κ = κ(ρ, ρθ) and obtained the unique local strong solution under the
compatibility conditions {

− div(2µ0D(u0)) + ∇P0 =
√
ρ0g1,

− div(κ0∇θ0) − 2µ0|D(u0)|2 =
√
ρ0g2,

for some P0 ∈ H1, (g1, g2) ∈ L2. On this basis, for the case µ = µ(ρ, θ), κ = const., Xu and Yu [27, 28]
extended this strong solution globally under the small initial energy. Specifically, the global strong
solution to the initial-boundary value problem was established in [28], and the global existence and
algebraic decay of the strong solution to the Cauchy problem were established in [27]. For the 2D
case, if µ = µ(ρ) ≥ µ > 0, κ = κ(ρ) ≥ κ > 0, the global strong solution was established by Zhong [29]
under the smallness on ∥∇µ(ρ0)∥Lq(2 < q < ∞). Although these research results considered variable
coefficients, it is necessary that the viscosity or heat conductivity does not degenerate. Recently, for
the degenerate compressible Naiver-Stokes equations for non-isentropic flow, Xin and his collaborators
[30,31] obtained several important progresses on the local-in-time well-posedness of regular solutions
with vacuum. Meanwhile, Zhang and Fang [32] also established the unique local strong solution and
blow-up criterion for the 3D case. In the absence of vacuum, Guo and Li [33] showed the existence
and uniqueness of a global strong solution to the problem (1.1)–(1.4) and also obtained the large-time
behavior.

Based on the above research results, we are very interested in the problem of nonhomogeneous
heat conduction incompressible Navier-Stokes equations with temperature-dependent viscosity and
heat conductivity. Little is known about the global solvability of the initial-boundary value problem
(1.1)–(1.4) with vacuum. The problem becomes quite difficult when vacuum is taken into account. To
study this issue, we must deal with the following main obstacles:

(i) Strong coupling caused by temperature-dependent viscosity. Compared with the constant coeffi-
cients equation, the temperature-dependent equations have a stronger coupling between the momentum
equations and the temperature equations, which makes the structure of the equations more complex.
The temperature-dependent viscosity makes it difficult to estimate the velocity and temperature in the
higher order, and even the lower order estimates cannot be obtained directly. Based on the regu-
larity theory of the Stokes equations (see [21]), to get an H2-estimate of u, we need to first deal with
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∥∇µ(θ)∥Lq . Similarly, to get the estimate of θ, we need to deal with ∥κ(θ)∥L∞ first. Dealing with ∥∇µ(θ)∥Lq

and ∥κ(θ)∥L∞ is essentially a matter of getting a consistent bound on temperature. It is precisely because
we have no restrictions on the power index of viscosity µ and thermal conductivity κ that this creates a
certain hindrance to energy estimation. To overcome this difficulty, we need to simultaneously estimate
the energy of both velocity and temperature, and we need to make very detailed estimates. Meanwhile,
we make full use of the bootstrap argument.

(ii) Strong nonlinearity due to temperature-dependent heat conductivity. For the case where the
heat conductivity is a constant, the key is to obtain a consistent estimate of temperature. If the heat
conductivity depends on temperature, the estimation of temperature is a huge challenge. In the process
of controlling the additional terms generated by nonlinear terms in the energy equation, we do time-
weighted energy estimates. We first obtain the upper bound of t

1
2 ∥∇2θ∥L2 , and then combine it with the

local existence theorem to obtain a consistent estimate of ∥∇2θ∥L2 .
(iii) Degradation caused by vacuum. Vacuum leads to the degeneracy of time evolution in momen-

tum equations and temperature equations. When it comes to the initial vacuum, it is usually natural to
introduce the compatibility condition.

These obstacles require us to make full use of its structural characteristics and make precise es-
timates starting from the equations. The main objective of this article is to investigate the global
well-posedness and large time behavior of strong solutions to the (1.1)–(1.4) under the assumption of
small initial data.

Without loss of generality, we abbreviate∫
f dx ≜

∫
Ω

f dx. (1.5)

For 1 ≤ r ≤ ∞, k ≥ 1, the standard Sobolev spaces are abbreviated as follows:

Lr = Lr(Ω), Wk,r = Wk,r(Ω) = { f ∈ Lr|∇a f ∈ Lr, ∀|a| ≤ k}, Hk = Hk(Ω) = Wk,2,

H1
0,σ = H1

0,σ(Ω) = { f ∈ H1| div f = 0, f = 0 on ∂Ω},
H2

n = H2
n(Ω) = { f ∈ H2|∇ f · n = 0 on ∂Ω}.

The definition of strong solutions to be established in this article is as follows:

Definition 1.1. Given T ∈ (0,∞) and q ∈ (3, 6], (ρ, u, θ, P) is called a strong solution to the initial-
boundary value problem (1.1)–(1.4) on [0,T ] ×Ω, if

ρ ∈ C([0,T ]; W1,q), ρt ∈ C([0,T ]; Lq),
u ∈ C([0,T ]; H1

0,σ ∩ H2) ∩ L2([0,T ]; W2,q),
θ ∈ C([0,T ]; H2

n) ∩ L2([0,T ]; W2,q),
P ∈ C([0,T ]; H1) ∩ L2([0,T ]; W1,q),
(
√
ρut,
√
ρθt) ∈ L∞([0,T ]; L2), (ut, θt) ∈ L2([0,T ]; H1),

(1.6)

and (ρ, u, θ, P) satisfies the system (1.1)–(1.4) a.e. on [0,T ] ×Ω.

We prove the global existence of a strong solution, which allows for an initial density containing
vacuum. The specific conclusion is as follows:
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Theorem 1.1. For some positive constants θ and q ∈ (3, 6], suppose that the initial data (ρ0, u0, θ0)
satisfies

0 ≤ ρ0 ∈ W1,q, u0 ∈ H1
0,σ ∩ H2, θ ≤ θ0 ∈ H2

n, (1.7)

and the compatibility conditions{
− div(2µ(θ0)D(u0)) + ∇P0 =

√
ρ0g1,

− div(κ(θ0)∇θ0) − 2µ(θ0)|D(u0)|2 =
√
ρ0g2,

(1.8)

for some P0 ∈ H1 and (g1, g2) ∈ L2. Then there exist two positive constants ϵ0 and ϵ1 depending on
Ω, θ, α, β and the initial data, such that if

|V | ≤ ϵ0, ∥
√
ρ0u0∥L2 + β∥

√
ρ0θ0∥L2 ≤ ϵ1, (1.9)

where V = {x ∈ Ω|ρ0(x) = 0}, the initial-boundary value problem (1.1)–(1.4) admits a unique global
strong solution (ρ, u, θ, P), and the following large-time behavior holds:

∥u∥2H2 + ∥P∥2H1 + ∥
√
ρut∥

2
L2 ≤ Ce−C−1t, (1.10)

∥θ −
1
ρ0|Ω|

E0∥
2
H2 + ∥

√
ρθt∥

2
L2 ≤ Ce−C−1t, (1.11)

where

E0 =

∫
ρ0(θ0 +

1
2
|u0|

2)dx, ρ0 =
1
|Ω|

∫
ρ0dx.

Remark 1.1. The authors in [34] studied the well-posedness of strong solutions to the system (1.1)–
(1.4) in 2D and also proposed the condition (1.9)1. In addition, for the initial-boundary value prob-
lem of temperature-dependent non-isentropic compressible Navier-Stokes equations with vacuum, the
unique local strong solution was established by Cao and his collaborators [35, 36] under the assump-
tion that the size of the initial vacuum domain is sufficiently small and compatibility conditions. From
this perspective, the conditions (1.8) and (1.9)1 we proposed are also reasonable. Establishing strong
solutions without compatibility conditions as in [37] is meaningful and is left for further research.

Remark 1.2. When the initial density is far away from vacuum and ∥
√
ρ0u0∥L2+∥

√
ρ0θ0∥L2 is sufficiently

small, the authors in [33] established the global existence of a strong solution to the system (1.1)–(1.4)
and obtained the exponential decay-in-time results. Compared to their results, our results do not
require the initial density to be far away from the vacuum, which is also the highlight of this article.

Here, we would like to express some opinions on the analysis of this article. The local existence and
uniqueness of strong solutions are guaranteed by Lemma 2.1. Our main idea is to reasonably combine
the bootstrap argument with time-weighted estimates. We are committed to establishing consistent a
prior estimates that are independent of time. As pointed out in [33], the core is to obtain the bound of
θ. But the method they use is aimed at the initial density with a positive lower bound and is not suitable
for situations with vacuum. In order to overcome the difficulties caused by vacuum, we borrow the
technique from [36] and divide the domain Ω into two parts: {x ∈ Ω|ρ(x) ≤ c0} and {x ∈ Ω|ρ(x) > c0}.
Further utilize the smallness of the initial data and measure of the initial vacuum region to obtain
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consistent estimates. With global a priori estimates, we can successfully extend the local solution to
the global one. Finally, we also obtain exponential decay.

The remaining content of this article is arranged as follows: in the second section, we reviewed
the existence of local strong solutions, basic inequalities and lemmas. In the third section, we mainly
establish a priori estimates and prove Theorem 1.1.

2. Preliminaries

In this section, we review the known results and basic inequalities, which are crucial for our subse-
quent calculations.

We first elaborate on the conclusion of the local existence of a strong solution, which is guaranteed
by [9].

Lemma 2.1. Assume that the initial data (ρ0, u0, θ0) satisfy (1.7) and (1.8). Then there exists a small
time T0 > 0 and a unique strong solution (ρ, u, θ, P) to the system (1.1)–(1.4) on Ω × (0,T0).

The following Poincaré-type inequality is extremely helpful for studying problems involving vac-
uum (see [24]).

Lemma 2.2. Let f ∈ H1, 0 ≤ g ≤ C1, and
∫

gdx ≥ (C1)−1. Then for p ∈ [1, 6], one has

∥ f ∥Lp ≤ C∥g f ∥L1 +C∥∇ f ∥L2 ,

where C depends only on p,C1,Ω.

The direct application of Lemma 2.2 is to control term ∥θt∥L6 . Specifically, we can take g = ρ and
combine

∫
ρdx =

∫
ρ0dx to easily derive

∥ f ∥Lp ≤ C∥ρ f ∥L1 +C∥∇ f ∥L2 ,

where C only depends on p, ∥ρ0∥L1 ,Ω. This inequality is frequently used in the a priori estimates in
Section 3.1.

The following estimation of high-order derivatives is based on the regularity theory of the Stokes
equations with variable viscosity coefficient; please refer to [38] for details.

Lemma 2.3. Assume that µ(θ) satisfies

µ(θ) ∈ C1[0,∞), 0 < µ ≤ µ(θ) ≤ µ < ∞, ∇µ(θ) ∈ Lq (3 < q ≤ 6).

Let (u, P) ∈ H1
0,σ × L2 be the unique weak solution to the following system

− div
(
2µ(θ)D(u)

)
+ ∇P = F, in Ω,

div u = 0, in Ω,
u = 0, on ∂Ω,∫
P
µ(θ)

dx = 0.

(2.1)

There are the following conclusions:
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(1) If F ∈ Lr with 2 ≤ r < q, then (u, P) ∈ W2,r ×W1,r and

∥u∥W2,r + ∥
P
µ(θ)
∥W1,r ≤ C(1 + ∥∇µ(θ)∥

q
q−3×

5r−6
2r

Lq )∥F∥Lr . (2.2)

(2)If F ∈ H1, ∇2µ(θ) ∈ L2, then (u, P) ∈ H3 × H2 and

∥u∥H3 + ∥
P
µ(θ)
∥H2 ≤ C(1 + ∥∇µ(θ)∥

4+ q
q−3

H1 )∥F∥H1 . (2.3)

Here C depends only on µ, µ, q, r,Ω.

Proof. The proof of (2.2) has been given in [38], but for simplicity, we have omitted it here. We now
provide a detailed proof process for (2.3). We rewrite (2.1) as

−∆u + ∇(
P
µ(θ)

) =
F
µ(θ)
+

2∇µ(θ) · D(u)
µ(θ)

−
P∇µ(θ)
µ(θ)2 .

According to the regularity theory of the Stokes system, Gagliardo-Nirenberg inequality, we have

∥u∥H3 + ∥
P
µ(θ)
∥H2

≤ C∥
F
µ(θ)
∥H1 +C∥

∇µ(θ) · D(u)
µ(θ)

∥H1 +C∥
P∇µ(θ)
µ(θ)2 ∥H1

≤ C∥F∥L2 +C∥∇F∥L2 +C∥F∇µ(θ)∥L2 +C∥∇µ(θ) · D(u)∥L2 +C∥∇µ(θ)
P
µ(θ)
∥L2

+C∥|∇2µ(θ)||D(u)|∥L2 +C∥|∇2µ(θ)||
P
µ(θ)
|∥L2 +C∥|∇µ(θ)||∇2u|∥L2

+C∥|∇µ(θ)||∇(
P
µ(θ)

)|∥L2 +C∥|∇µ(θ)|2|D(u)|∥L2 +C∥|∇µ(θ)|2|
P
µ(θ)
|∥L2

≤ C∥F∥H1 +C∥F∥L4∥∇µ(θ)∥L4 +C∥∇µ(θ)∥Lq∥(∇u,
P
µ(θ)

)∥
L

2q
q−2

+C∥∇2µ(θ)∥L2∥(∇u,
P
µ(θ)

)∥L∞ +C∥∇µ(θ)∥L4∥(∇2u,∇(
P
µ(θ)

))∥L4

+C∥∇µ(θ)∥2L6∥(∇u,
P
µ(θ)

)∥L6

≤ C(1 + ∥∇µ(θ)∥H1)∥F∥H1 +C∥∇µ(θ)∥H1∥(∇u,
P
µ(θ)

)∥H1

+C∥∇µ(θ)∥H1(∥∇u∥
1
4
L2∥∇

3u∥
3
4
L2 + ∥

P
µ(θ)
∥

1
4
L2∥∇

2(
P
µ(θ)

)∥
3
4
L2 + ∥(∇u,

P
µ(θ)

)∥L2)

+C∥∇µ(θ)∥H1(∥∇2u∥
1
4
L2∥∇

3u∥
3
4
L2 + ∥∇(

P
µ(θ)

)∥
1
4
L2∥∇

2(
P
µ(θ)

)∥
3
4
L2 + ∥(∇

2u,∇(
P
µ(θ)

))∥L2)

+C∥∇µ(θ)∥2H1∥(∇u,
P
µ(θ)

)∥H1

≤
1
2
∥
(
∇3u,∇2(

P
µ(θ)

)
)
∥L2 +C(1 + ∥∇µ(θ)∥H1)∥F∥H1
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+C(∥∇µ(θ)∥H1 + ∥∇µ(θ)∥2H1 + ∥∇µ(θ)∥4H1)∥(∇u,
P
µ(θ)

)∥H1 ,

where we have used the following inequality

∥∇2u∥L4 ≤ C∥∇2u∥
1
4
L2∥∇

3u∥
3
4
L2 +C∥∇2u∥L2 .

By virtue of (2.2),

∥u∥H2 + ∥
P
µ(θ)
∥H1 ≤ C(1 + ∥∇µ(θ)∥

q
q−3

Lq )∥F∥L2 .

Hence,

∥u∥H3 + ∥
P
µ(θ)
∥H2 ≤ C(1 + ∥∇µ(θ)∥

4+ q
q−3

H1 )∥F∥H1 ,

which implies that (2.3) is valid. We finish the proof of Lemma 2.3. □

3. Global well-posedness

This section is divided into two subsections. The first subsection is to establish time-weighted a
priori estimates. The second subsection extends the unique local strong solution to the global strong
solution using the bootstrap argument based on the obtained estimates. It also proves the conclusion of
exponential decay.

3.1. A priori estimates

In this subsection, we will establish the necessary a priori estimates, which can extend the local
solution to the global solution. In order to get consistent estimates that do not depend on time, we do
some time-weighted estimates. Let (ρ, u, θ, P) be the strong solution of Navier-Stokes equations (1.1)–
(1.4) with initial data (ρ0, u0, θ0) on Ω × (0,T ], and the initial data satisfies conditions (1.7)–(1.9). For
simplicity, let us take cv = 1. For a general positive constant cv, the calculation is the same. The letter
C represents a generic positive constant that depends on ρ̃ ≜ ∥ρ0∥L∞ , θ, and Ω but does not depend on
T .

Our main idea is to apply the bootstrap argument. To this end, we first propose the following a
priori assumptions:

sup
0≤t≤T

(
∥∇u∥2H1 + ∥θ∥

2
H2 + ∥

√
ρθt∥

2
L2

)
+

∫ T

0
∥(
√
ρθt,∇θt,∇

2u,∇2θ)∥2L2dt ≤ M. (3.1)

Here M is a positive constant that depends only on the initial data.
We first use the standard method to find the upper and lower bounds of density and the lower bound

of temperature.

Lemma 3.1. It holds that ∀ (x, t) ∈ Ω × [0,T ],

0 ≤ ρ(x, t) ≤ ρ̃, θ ≤ θ(x, t), (3.2)

sup
0≤t≤T

(ti∥
√
ρu∥2L2) +

∫ T

0
ti∥∇u∥2L2dt ≤ C∥

√
ρ0u0∥

2
L2 , i = 0, ..., 8. (3.3)
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Proof. The proof of (3.2)1 is provided by [7, 24, 33]. Then, applying the standard maximum principle
(see [36] or [24, p.43]) to (1.1)3 along with θ0 ≥ θ shows (3.2)2. Finally, multiplying (1.1)2 by u and
then integrating over Ω, using integration by parts, one has

1
2

d
dt

∫
ρ|u|2dx + 2

∫
θα|D(u)|2dx = 0. (3.4)

By integrating the above equation on [0, t] and with the help of θ ≥ θ and 2∥D(u)∥2L2 = ∥∇u∥2L2 , it can
be inferred that

sup
0≤t≤T
∥
√
ρu∥2L2 +

∫ T

0
∥∇u∥2L2dt ≤ C∥

√
ρ0u0∥

2
L2 . (3.5)

Furthermore, multiplying (3.4) by t, integrating with respect to t, and taking advantage of Poincaré
inequality and (3.5) yield

sup
0≤t≤T

(t∥
√
ρu∥2L2) +

∫ T

0
t∥∇u∥2L2dt ≤ C

∫ T

0
∥
√
ρu∥2L2dt ≤ C

∫ T

0
∥∇u∥2L2dt ≤ C∥

√
ρ0u0∥

2
L2 . (3.6)

Similarly, for i = 2, ..., 8, the following formula can also be obtained

sup
0≤t≤T

(ti∥
√
ρu∥2L2) +

∫ T

0
ti∥∇u∥2L2dt ≤ C∥

√
ρ0u0∥

2
L2 , (3.7)

which, combined with (3.5) and (3.6), can prove that (3.3) holds. □

Lemma 3.2. Suppose (ρ, u, θ, P) satisfies the assumptions (3.1). There exists a small positive constant
ϵ1 depending on Ω, θ, α, β and the initial data, such that for any i = 1, 2, 3, 4,

sup
0≤t≤T
∥∇u∥2L2 +

∫ T

0
∥
√
ρut∥

2
L2dt ≤ C, (3.8)

sup
0≤t≤T

(ti∥∇u∥2L2) +
∫ T

0
ti∥
√
ρut∥

2
L2dt ≤ ϵ

1
3
1 . (3.9)

Proof. Notice that Lemma 2.2 can directly provide

∥θt∥Lp ≤ C∥ρθt∥L1 + ∥∇θt∥L2 , ∀ p ∈ [1, 6]. (3.10)

Multiplying (1.1)2 by ut and integrating it over Ω, according to (3.10) and the Gagliardo-Nirenberg
inequality, we can easily show

d
dt

∫
θα|D(u)|2dx + ∥

√
ρut∥

2
L2

=

∫
αθα−1θt|D(u)|2dx −

∫
ρ(u · ∇u) · utdx

≤ C(M)∥θt∥L6∥∇u∥2
L

12
5
+C∥

√
ρu∥L3∥∇u∥L6∥

√
ρut∥L2

≤ C(M)∥(
√
ρθt,∇θt)∥L2∥∇u∥

3
2
L2∥∇u∥

1
2
H1 +

1
2
∥
√
ρut∥

2
L2 +C∥

√
ρu∥L2∥∇u∥L2∥∇u∥2H1 . (3.11)
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Then, integrating the last identity over [0, t], by virtue of Holder’s inequality, (3.1) and Lemma 3.1, we
can establish

sup
0≤t≤T
∥∇u∥2L2 +

∫ T

0
∥
√
ρut∥

2
L2dt

≤ C∥∇u0∥
2
L2 +C(M) sup

0≤t≤T
∥∇u∥L2

( ∫ T

0
∥(
√
ρθt,∇θt)∥2L2dt

) 1
2
( ∫ T

0
∥∇u∥2L2dt

) 1
4
( ∫ T

0
∥∇u∥2H1dt

) 1
4

+C sup
0≤t≤T

(∥
√
ρu∥L2∥∇u∥L2)

∫ T

0
∥∇u∥2H1dt

≤ C +C(M)ϵ
1
2
1 +C(M)ϵ1

≤ C,

provided that ϵ1 ≪ 1.
Similarly, multiplying (3.11) by ti(i ≥ 1), then integrating it over [0, t], one has from (3.1) and

Lemma 3.1 that

sup
0≤t≤T

(ti∥∇u∥2L2) +
∫ T

0
ti∥
√
ρut∥

2
L2dt

≤ C
∫ T

0
ti−1∥∇u∥2L2dt +C(M)

( ∫ T

0
t4i∥∇u∥2L2dt

) 1
4 +C(M) sup

0≤t≤T
(ti∥
√
ρu∥L2)

≤ Cϵ21 +C(M)ϵ
1
2
1 +C(M)ϵ1

≤ ϵ
1
3
1 .

The proof of Lemma 3.2 is completed. □

Lemma 3.3. Suppose (ρ, u, θ, P) satisfies the assumptions (3.1). There exist two small positive con-
stants ϵ0 and ϵ1 depending on Ω, θ, α, β and the initial data, such that

sup
0≤t≤T

(
(1 + t)∥

√
ρut∥

2
L2

)
+

∫ T

0
(1 + t)∥∇ut∥

2
L2dt ≤ C, (3.12)

sup
0≤t≤T
∥∇ρ∥Lq ≤ C. (3.13)

Proof. Differentiating (1.1)2 with respect to t, multiplying the result identity by ut, then integrating
over Ω yields

1
2

d
dt
∥
√
ρut∥

2
L2 + 2

∫
θα|D(ut)|2dx

=

∫
div(ρu)|ut|

2dx +
∫

div(ρu)u · ∇u · utdx −
∫
ρut · ∇u · utdx − 2α

∫
θα−1θtD(u) : ∇utdx

≤ 2
∫
ρ|u||ut||∇ut|dx +

∫
ρ|u||∇(u · ∇u · ut)|dx +

∫
ρ|ut|

2|∇u|dx +C(M)
∫
|θt||∇u||∇ut|dx. (3.14)

It follows from Hölder’s inequality, the Gagliardo-Nirenberg inequality, Lemmas 3.1–3.2, and (3.1)
that ∫

ρ|u||∇(u · ∇u · ut)|dx
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≤ C∥u∥L6(∥∇u∥L2∥∇u∥L6∥ut∥L6 + ∥u∥L6∥∇2u∥L2∥ut∥L6 + ∥u∥L6∥∇u∥L6∥∇ut∥L2)
≤ C∥∇u∥2L2∥∇u∥H1∥∇ut∥L2

≤
1
4

∫
θα|D(ut)|2dx +C∥∇u∥4L2∥∇u∥2H1 ,

2
∫
ρ|u||ut||∇ut|dx +

∫
ρ|ut|

2|∇u|dx

≤ C∥
√
ρut∥L3∥u∥L6∥∇ut∥L2 + (∥

√
ρut∥

1
4
L2∥
√
ρut∥

3
4

L6)
2∥∇u∥L2

≤ C∥
√
ρut∥

1
2
L2∥∇ut∥

3
2
L2∥∇u∥L2

≤
1
4

∫
θα|D(ut)|2dx +C∥

√
ρut∥

2
L2∥∇u∥4L2 .

The estimate of the last term in inequality (3.14) is more subtle. In view of ρ0 ∈ W1,q ↪→ C, we know
that there exists a positive constant c0 such that

|Vc0 | ≤ 2|V |,

where Vc0 = {x ∈ Ω|ρ0(x) ≤ c0} and V = {x ∈ Ω|ρ0(x) = 0}. Then

C(M)
∫
|θt||∇u||∇ut|dx

= C(M)
∫
ρ≤c0

|θt||∇u||∇ut|dx +C(M)
∫
ρ>c0

|θt||∇u||∇ut|dx

≤ C(M)∥1∥L12(ρ≤c0)∥θt∥L6∥∇u∥L4∥∇ut∥L2 +C(M)c−
1
2

0 ∥
√
ρθt∥L2∥∇u∥L∞∥∇ut∥L2

≤ C(M)|Vc0 |
1

12 ∥(
√
ρθt,∇θt)∥L2∥∇u∥

1
4
L2∥∇u∥

3
4
H1∥∇ut∥L2 +C(M)c−

1
2

0 ∥∇u∥L∞∥∇ut∥L2

≤
1
4

∫
θα|D(ut)|2dx +C(M)|V |

1
6 ∥∇u∥

1
2
L2∥(
√
ρθt,∇θt)∥2L2 +C(M)c−1

0 ∥∇u∥2L∞ (3.15)

owing to |{x ∈ Ω|ρ(x, t) ≤ c0}| = |Vc0 | (see [7, Theorem 2.1]), (3.1), (3.10) and the Gagliardo-Nirenberg
inequality. Moreover, since

∥∇2u∥L6 ≤ C(M)∥ρut + ρu · ∇u∥L6

≤ C(M)∥ut∥L6 +C(M)∥u∥L∞∥∇u∥L6

≤ C(M)∥∇ut∥L2 +C(M)∥∇u∥2H1 ,

then according to the Gagliardo-Nirenberg inequality, we find

∥∇u∥L∞ ≤ C∥∇u∥
1
4
L2∥∇

2u∥
3
4

L6 +C∥∇u∥L2

≤ C(M)∥∇u∥
1
4
L2(∥∇ut∥

3
4
L2 + ∥∇u∥

3
2
H1) +C∥∇u∥L2 . (3.16)

Now (3.14) implies

1
2

d
dt
∥
√
ρut∥

2
L2 +

∫
θα|D(ut)|2dx
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≤ C(M)(1 + c−4
0 )∥∇u∥2L2 +C(M)|V |

1
6 ∥∇u∥

1
2
L2∥(
√
ρθt,∇θt)∥2L2

+C(M)c−1
0 ∥∇u∥

1
2
L2∥∇

2u∥3L2 +C∥
√
ρut∥

2
L2∥∇u∥4L2 . (3.17)

Next, multiplying (3.17) by 1+ t and integrating it over [0, t], we obtain after using Grönwall’s inequal-
ity, Lemmas 3.1–3.2, and (3.1) that

sup
0≤t≤T

(
(1 + t)∥

√
ρut∥

2
L2

)
+

∫ T

0
(1 + t)∥∇ut∥

2
L2dt

≤ exp{C sup
0≤t≤T
∥∇u∥2L2

∫ T

0
∥∇u∥2L2dt}[C +C

∫ T

0
∥
√
ρut∥

2
L2dt +C(M)(1 + c−4

0 )ϵ21 +C(M)ϵ
1
6
0

+C(M)c−1
0
( ∫ T

0
(1 + t)4∥∇u∥2L2dt

) 1
4
( ∫ T

0
∥∇2u∥2L2dt

) 3
4 ]

≤ C +C(M)c−1
0 ϵ

1
2
1

≤ C,

provided that ϵ0 ≪ 1, ϵ1 ≪ 1.
Furthermore, we calculate from (1.1)1 that

∂iρt + u · ∇∂iρ + ∂iu · ∇ρ = 0.

Then, we multiply the last identity by q|∇ρ|q−2∂iρ and integrate it over Ω to obtain

d
dt
∥∇ρ∥Lq ≤ C∥∇u∥L∞∥∇ρ∥Lq . (3.18)

Combining (3.16) and Lemmas 3.1 and 3.2, we ascertain∫ T

0
∥∇u∥L∞dt

≤ C(M)(
∫ T

0
∥∇u∥2L2dt)

1
8
(
(
∫ T

0
∥∇ut∥

2
L2dt)

3
8 T

1
2 + (
∫ T

0
∥∇u∥2H1dt)

3
4 T

1
8
)

+C(
∫ T

0
∥∇u∥2L2dt)

1
2 T

1
2

≤ C(M)ϵ
1
4
1 +Cϵ1

≤ C, i f 0 ≤ T ≤ 1, (3.19)

and ∫ T

0
∥∇u∥L∞dt

=

∫ 1

0
∥∇u∥L∞dt +

∫ T

1
∥∇u∥L∞dt

≤ C(M)ϵ
1
4
1 +C(M)(

∫ T

1
t8∥∇u∥2L2dt)

1
8 (
∫ T

1
∥∇ut∥

2
L2dt)

3
8 (
∫ T

1
t−2dt)

1
2
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+C(M)(
∫ T

1
t2∥∇u∥2L2dt)

1
8 (
∫ T

1
∥∇u∥2H1dt)

3
4 (
∫ T

1
t−2dt)

1
8

+C(
∫ T

1
t2∥∇u∥2L2dt)

1
2 (
∫ T

1
t−2dt)

1
2

≤ C(M)ϵ
1
4
1 +Cϵ1

≤ C, i f T ≥ 1. (3.20)

Now according to (3.18) and Grönwall’s inequality, one has

sup
0≤t≤T
∥∇ρ∥Lq ≤ ∥∇ρ0∥Lq exp(C

∫ T

0
∥∇u∥L∞dt) ≤ C.

The proof of this lemma is finished. □

Next, we will make estimates for each order regarding θ. This is the key to all a priori estimates.

Lemma 3.4. Suppose (ρ, u, θ, P) satisfies the assumptions (3.1). It holds that

sup
0≤t≤T
∥
√
ρθ∥2L2 +

∫ T

0
∥∇θ∥2L2dt ≤ C∥

√
ρ0θ0∥

2
L2 + ϵ1, (3.21)

sup
0≤t≤T
∥ρθβ+2∥L1 +

∫ T

0
∥∇θβ+1∥2L2dt ≤ C∥ρ0θ

β+2
0 ∥L1 + ϵ1, (3.22)

sup
0≤t≤T
∥∇θβ+1∥2L2 +

∫ T

0
∥
√
ρθ

β
2 θt∥

2
L2dt ≤ C, (3.23)

sup
0≤t≤T

(t∥∇θβ+1∥2L2) +
∫ T

0
t∥
√
ρθ

β
2 θt∥

2
L2dt ≤ C∥ρ0θ

β+2
0 ∥L1 + ϵ

1
2
1 , (3.24)

sup
0≤t≤T
∥θ∥H1 ≤ C. (3.25)

Proof. Firstly, multiplying (1.1)3 by θ and integrating it over Ω yields

1
2

d
dt

∫
ρ|θ|2dx +

∫
θβ|∇θ|2dx = 2

∫
θα+1|D(u)|2dx.

By integrating the above equation on [0, t], we obtain from Lemma 3.1 that

sup
0≤t≤T
∥
√
ρθ∥2L2 +

∫ T

0
∥∇θ∥2L2dt

≤ C∥
√
ρ0θ0∥

2
L2 +C(M)

∫ T

0
∥∇u∥2L2dt

≤ C∥
√
ρ0θ0∥

2
L2 +C(M)ϵ21

≤ C∥
√
ρ0θ0∥

2
L2 + ϵ1.

Similarly, multiplying (1.1)3 by θβ+1 and integrating it over Ω × [0, t], it can be inferred that

sup
0≤t≤T
∥ρθβ+2∥L1 +

∫ T

0
∥∇θβ+1∥2L2dt ≤ C∥ρ0θ

β+2
0 ∥L1 + ϵ1. (3.26)
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Next, taking (1.1)1 and (1.3) into account, multiplying (1.1)3 by θβθt, and integrating by parts over
Ω, we obtain

1
2

d
dt
∥∇θβ+1∥2L2 + ∥

√
ρθ

β
2 θt∥

2
L2

= −

∫
(ρu · ∇θ)θβθtdx +

∫
2θα|D(u)|2θβθtdx

≤ ∥
√
ρu∥L3∥∇θ∥L6∥

√
ρθβθt∥L2 + 2∥θ∥α+βL∞ ∥D(u)∥2

L
12
5
∥θt∥L6

≤ C(M)∥
√
ρu∥

1
2
L2∥∇u∥

1
2
L2∥∇

2θ∥L2∥
√
ρθ

β
2 θt∥L2

+C(M)∥∇u∥
3
2
L2∥∇u∥

1
2
H1∥(
√
ρθt,∇θt)∥L2

≤
1
2
∥
√
ρθ

β
2 θt∥

2
L2 +C(M)∥

√
ρu∥L2∥∇2θ∥2L2 +C(M)∥∇u∥L2∥(

√
ρθt,∇θt)∥L2 , (3.27)

by the Gagliardo-Nirenberg inequality and (3.1). On the one hand, integrating (3.27) with respect to t
leads to

sup
0≤t≤T
∥∇θβ+1∥2L2 +

∫ T

0
∥
√
ρθ

β
2 θt∥

2
L2dt

≤ ∥∇θ
β+1
0 ∥

2
L2 +C(M) sup

0≤t≤T
∥
√
ρu∥L2

∫ T

0
∥∇2θ∥2L2dt

+C(M)(
∫ T

0
∥∇u∥2L2dt)

1
2
( ∫ T

0
∥(
√
ρθt,∇θt)∥2L2dt

) 1
2

≤ C +C(M)ϵ1
≤ C, (3.28)

where in the next to last inequality one has used Lemma 3.1 and (3.1). On the other hand, it follows
from (3.27), (3.1), (3.26), and Lemma 3.1 that

sup
0≤t≤T

(t∥∇θβ+1∥2L2) +
∫ T

0
t∥
√
ρθ

β
2 θt∥

2
L2dt

≤

∫ T

0
∥∇θβ+1∥2L2dt +C(M) sup

0≤t≤T
(t∥
√
ρu∥L2) +C(M)(

∫ T

0
t2∥∇u∥2L2dt)

1
2

≤ C∥ρ0θ
β+2
0 ∥L1 + ϵ1 +C(M)ϵ1

≤ C∥ρ0θ
β+2
0 ∥L1 + ϵ

1
2
1 .

By applying Lemma 2.2, (3.26) and (3.28), one can derive

sup
0≤t≤T
∥θ∥H1 ≤ C sup

0≤t≤T
(∥ρθ∥L1 + ∥∇θ∥L2) ≤ C.

Therefore, we finish the proof of Lemma 3.4. □

Lemma 3.5. Suppose (ρ, u, θ, P) satisfies the assumptions (3.1). It has

sup
0≤t≤T
∥(
√
ρθt,∇

2θ)∥2L2 +

∫ T

0
∥(∇2θ, θ

β
2∇θt)∥2L2dt ≤ C. (3.29)
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Proof. Differentiating (1.1)3 with respect to t yields

ρθtt + ρu · ∇θt − div(θβ∇θt) = −ρtθt − ρtu · ∇θ − ρut · ∇θ + 2αθα−1θt|D(u)|2

+ 2θα∂t(|D(u)|2) + div(βθβ−1θt∇θ). (3.30)

Multiplying (3.30) by θt, then integrating it over Ω, we obtain

1
2

d
dt
∥
√
ρθt∥

2
L2 + ∥θ

β
2∇θt∥

2
L2

= −

∫
ρtθ

2
t dx −

∫
ρtu · ∇θθtdx −

∫
ρut · ∇θθtdx + 2

∫
θα(|D(u)|2)tθtdx

+ 2α
∫
θα−1θt|D(u)|2θtdx − β

∫
θβ−1θt∇θ · ∇θtdx

≜
6∑

i=1

Ji. (3.31)

Now, we will use (1.1), the Gagliardo-Nirenberg inequality, (3.1), (3.10), Lemmas 3.1–3.4, and (3.15)
to estimate each term on the right hand of (3.31) as follows:

J1 ≤

∫
ρ|u||θt||∇θt|dx ≤ ∥ρu∥L3∥θt∥L6∥∇θt∥L2

≤ C∥
√
ρu∥

1
2
L2∥∇u∥

1
2
L2∥(
√
ρθt,∇θt)∥L2∥∇θt∥L2

≤ C(M)ϵ
1
2
1 ∥(
√
ρθt, θ

β
2∇θt)∥2L2 ,

J2 =

∫
u · ∇ρu · ∇θθtdx ≤ ∥u∥2

L
6q

q−3
∥∇ρ∥Lq∥∇θ∥L2∥θt∥L6

≤ C∥u∥
2q−3

2q

L2 ∥∇
2u∥

2q+3
2q

L2 ∥(
√
ρθt,∇θt)∥L2

≤
1
8
∥(
√
ρθt, θ

β
2∇θt)∥2L2 +C∥u∥

2q−3
q

L2 ∥∇
2u∥

2q+3
q

L2 ,

J3 ≤ ∥
√
ρut∥L6∥∇θ∥L2∥

√
ρθt∥L3

≤ C∥∇ut∥L2∥
√
ρθt∥

1
2
L2∥(
√
ρθt,∇θt)∥

1
2
L2

≤
1
8
∥θ
β
2∇θt∥

2
L2 +C∥(∇ut,

√
ρθt)∥2L2 ,

J4 ≤ C∥∇ut∥
2
L2 +C(M)ϵ

1
6
0 ∥(
√
ρθt, θ

β
2∇θt)∥2L2 +C(M)c−1

0 ∥∇u∥2L∞ ,

J5 ≤ C(M)
∫
ρ≤c0

|∇u|2θ2t dx +C(M)
∫
ρ>c0

|∇u|2θ2t dx

≤ C(M)∥1∥L3(ρ≤c0)∥∇u∥2L6∥θt∥
2
L6 +C(M)c−1

0

∫
ρ>c0

|∇u|2ρθ2t dx
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≤ C(M)ϵ
1
3
0 ∥(
√
ρθt, θ

β
2∇θt)∥2L2 +C(M)c−1

0 ∥∇u∥2L∞∥
√
ρθt∥

2
L2 ,

and

J6 ≤ C(M)β
∫
ρ≤c0

|θt||∇θ · ∇θt|dx +C(M)c−
1
2

0 β

∫
ρ>c0

√
ρ|θt||∇θ · ∇θt|dx

≤ C(M)∥1∥L6(ρ≤c0)∥θt∥L6∥∇θ∥L6∥∇θt∥L2 +C(M)c−
1
2

0 β∥
√
ρθt∥L4∥∇θ∥L4∥∇θt∥L2

≤ C(M)|V |
1
6 ∥(
√
ρθt, θ

β
2∇θt)∥2L2

+C(M)c−
1
2

0 β∥
√
ρθt∥

1
4
L2∥(
√
ρθt,∇θt)∥

3
4
L2∥∇θ∥

1
4
L2∥∇

2θ∥
3
4
L2∥∇θt∥L2

≤
(
C(M)ϵ

1
6
0 +

1
8
)
∥(
√
ρθt, θ

β
2∇θt)∥2L2 +C(M)c−4

0 β
8∥
√
ρθt∥

2
L2∥∇θ∥

2
L2 .

Substituting all the estimates of Ji(i = 1, ..., 6) into (3.31), then taking ϵ0 and ϵ1 satisfy

3
8
+C(M)ϵ

1
2
1 +C(M)ϵ

1
6
0 +C(M)ϵ

1
3
0 ≤

1
2
,

we deduce

d
dt
∥
√
ρθt∥

2
L2 + ∥θ

β
2∇θt∥

2
L2

≤ C∥(∇ut,
√
ρθt)∥2L2 +C∥u∥

2q−3
q

L2 ∥∇
2u∥

2q+3
q

L2 +C(M)c−1
0 ∥∇u∥2L∞

+C(M)c−1
0
(
∥∇u∥2L∞ + c−3

0 β
8∥∇θ∥2L2

)
∥
√
ρθt∥

2
L2 . (3.32)

In view of Poincaré’s inequality, Lemma 3.1 and (3.1), one has

C
∫ T

0
ti∥u∥

2q−3
q

L2 ∥∇
2u∥

2q+3
q

L2 dt

≤ C sup
0≤t≤T
∥∇2u∥2L2(

∫ T

0
ti 2q

2q−3 ∥∇u∥2L2dt)
2q−3

2q (
∫ T

0
∥∇2u∥2L2dt)

3
2q

≤ C(M)ϵ
2q−3

q

1

≤ C, i = 0, 1. (3.33)

Next, similar to (3.19), we infer that

C(M)c−1
0

∫ T

0
ti∥∇u∥2L∞dt

≤ C(M)c−1
0 (
∫ T

0
t4i∥∇u∥2L2dt)

1
4
(
(
∫ T

0
∥∇ut∥

2
L2dt)

3
4 + (
∫ T

0
∥∇u∥4H1dt)

3
4
)

+C(M)c−1
0

∫ T

0
ti∥∇u∥2L2dt

≤ C(M)c−1
0 ϵ

1
2
1 +C(M)c−1

0 ϵ
2
1

≤ C, i = 0, 1. (3.34)

Electronic Research Archive Volume 32, Issue 9, 5451–5477.



5467

Furthermore, we employ Lemma 3.4 to obtain

C(M)c−4
0 β

8
∫ T

0
∥∇θ∥2L2dt ≤ C(M)c−4

0 β
8(C∥
√
ρ0θ0∥

2
L2 + ϵ1)

≤ C(M)c−4
0 (Cϵ21 + ϵ1)

≤ C. (3.35)

Combining (3.32)–(3.35), Lemmas 3.3, 3.4, and Grönwall’s inequality gives

sup
0≤t≤T

(
(1 + t)∥

√
ρθt∥

2
L2

)
+

∫ T

0
(1 + t)∥θ

β
2∇θt∥

2
L2dt ≤ C. (3.36)

We then rewrite (1.1)3 as{
−∆θβ+1 = (β + 1)

(
2θα|D(u)|2 − ρθt − ρu · ∇θ

)
, in Ω,

∇θ · n = 0, on ∂Ω.
(3.37)

It follows from the standard L2-theory of elliptic equations that

∥∇2θβ+1∥L2 ≤ C∥(∆θβ+1,∇θβ+1)∥L2

≤ C∥θ∥αL∞∥∇u∥2L4 +C∥
√
ρθt∥L2 +C∥u∥L∞∥∇θ∥L2 +C∥∇θβ+1∥L2

≤ C(M)∥∇u∥
1
2
L2∥∇u∥

3
2
H1 +C∥

√
ρθt∥L2 +C∥∇θβ+1∥L2 , (3.38)

where in the last inequality we have used (3.1). Note that

∇2θβ+1 = β(β + 1)θβ−1∇θ ⊗ ∇θ + (β + 1)θβ∇2θ,

thus

∥∇2θ∥L2 ≤ C∥θβ∇2θ∥L2

≤ C∥∇2θβ+1∥L2 +C∥∇θβ+1∥L6∥∇θ∥L3

≤ C∥∇2θβ+1∥L2 +C∥∇θβ+1∥
1
2
L2∥∇

2θβ+1∥
3
2
L2

≤ C(M)∥∇u∥
1
2
L2∥∇u∥

3
2
H1 +C∥

√
ρθt∥L2 +C∥∇θβ+1∥L2

+C∥∇θβ+1∥
1
2
L2∥
√
ρθt∥

3
2
L2 +C∥∇θβ+1∥2L2 . (3.39)

On the one hand, according to (3.38), (3.1), Lemma 3.2, (3.36), and Lemma 3.4, we compute

t
1
2 ∥∇2θ∥L2 ≤ C(M)t

1
2 ∥∇u∥

1
2
L2 +Ct

1
2 ∥
√
ρθt∥L2 +Ct

1
2 ∥∇θβ+1∥L2

+Ct
1
2 ∥∇θβ+1∥

1
2
L2∥
√
ρθt∥

3
2
L2 +Ct

1
2 ∥∇θβ+1∥2L2

≤ C(M)ϵ
1
12
1 +C

≤ C. (3.40)
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According to the local existence theorem of the solution (see Lemma 2.1), there exists a small positive
time T0 such that

sup
0≤t≤T0

∥∇2θ∥L2 ≤ C.

This, together with (3.40), yields

sup
0≤t≤T
∥∇2θ∥L2 ≤ sup

0≤t≤T0

∥∇2θ∥L2 + T−
1
2

0 sup
T0≤t≤T

(t
1
2 ∥∇2θ∥L2) ≤ C. (3.41)

Moreover, Lemma 3.4, the Gagliardo-Nirenberg inequality, and (3.41) imply

sup
0≤t≤T
∥θ∥L∞ ≤ C sup

0≤t≤T
∥θ∥H2 ≤ C, (3.42)

sup
0≤t≤T
∥∇2θβ+1∥L2 ≤ C sup

0≤t≤T
(∥∇θ∥2L4 + ∥∇

2θ∥L2) ≤ C. (3.43)

On the other hand, by (3.1), (3.38), and (3.39), we discover∫ T

0
∥∇2θ∥2L2dt

≤ C(M) sup
0≤t≤T
∥∇u∥2H1(

∫ T

0
∥∇u∥2L2dt)

1
2 (
∫ T

0
∥∇u∥2H1dt)

1
2 +C

∫ T

0
∥(
√
ρθt,∇θ

β+1)∥2L2dt

+C sup
0≤t≤T

(∥∇θβ+1∥L2∥
√
ρθt∥L2)

∫ T

0
∥
√
ρθt∥

2
L2dt +C sup

0≤t≤T
∥∇θβ+1∥2L2

∫ T

0
∥∇θβ+1∥2L2dt

≤ C(M)ϵ1 +C

≤ C. (3.44)

Consequently, combining (3.36), (3.41) with (3.44), we complete the proof of this lemma. □

By synthesizing Lemmas 3.1–3.5, the following corollary can be obtained.

Corollary 3.1. There exist two small positive constants ϵ0 and ϵ1 as described in Theorem 1.1, such
that if

|V | ≤ ϵ0, ∥
√
ρ0u0∥L2 + β∥

√
ρ0θ0∥L2 ≤ ϵ1,

then it holds for any (x, t) ∈ Ω × [0,T ] that

ρ(x, t) ≥ 0, θ(x, t) ≥ θ,

sup
0≤t≤T

(
∥ρ∥W1,q + ∥ρt∥Lq + ∥(u, θ)∥2H2 + ∥

P
θα
∥H1 + ∥(

√
ρut,
√
ρθt)∥2L2

)
+

∫ T

0
(∥(u, θ)∥2H3 + ∥

P
θα
∥2H2 + ∥(

√
ρut,
√
ρθt,∇ut,∇θt)∥2L2)dt ≤ C.
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Proof. Now, we consider the following Stokes equations:
− div

(
2θαD(u)

)
+ ∇P = −ρut − ρu · ∇u, in Ω,

div u = 0, in Ω,
u = 0, on ∂Ω.

(3.45)

According to Lemma 2.3, we have the following regularity results:

∥
(
∇u,

P
θα
)
∥H1 ≤ C∥ρut + ρu · ∇u∥L2

≤ C∥
√
ρut∥L2 +C∥u∥L6∥∇u∥L3

≤ C∥
√
ρut∥L2 +C∥∇u∥

3
2
L2∥∇u∥

1
2
H1

≤
1
2
∥∇u∥H1 +C∥

√
ρut∥L2 +C∥∇u∥3L2 , (3.46)

and

∥
(
∇u,

P
θα
)
∥H2 ≤ C∥ρut + ρu · ∇u∥H1

≤ C∥
√
ρut∥L2 +C∥u∥L6∥∇u∥L3 +C∥∇ρ∥Lq∥ut∥

L
q

q−2
+C∥∇ut∥L2

+ ∥∇ρ∥Lq∥u∥L∞∥∇u∥
L

q
q−2
+C∥∇u∥2L4 +C∥u∥L∞∥∇2u∥L2

≤ C∥(
√
ρut,∇ut)∥L2 +C∥∇u∥2H1 , (3.47)

which indicates that

∥(∇u, P)∥H1 ≤ C(∥
√
ρut∥L2 + ∥∇u∥3L2). (3.48)

Using Lemmas 3.1–3.3, it can be inferred that

sup
0≤t≤T
∥(∇u, P)∥H1 ≤ C sup

0≤t≤T
(∥
√
ρut∥L2 + ∥∇u∥3L2) ≤ C, (3.49)∫ T

0
∥(∇u, P)∥2H2dt ≤ C

∫ T

0
(∥(
√
ρut,∇ut)∥2L2 + ∥∇u∥4H1)dt ≤ C. (3.50)

Hence,

∥ρt∥Lq = ∥u · ∇ρ∥Lq ≤ ∥u∥L∞∥∇ρ∥Lq ≤ C∥∇u∥H1∥∇ρ∥Lq ≤ C. (3.51)

On the other hand, by virtue of (3.37) and the regularity theory to the elliptic equation, one has

∥∇2θ∥H1 ≤ C∥θ−1∇θ · ∇θ + θ−β(2θα|D(u)|2 − ρθt − ρu · ∇θ)∥H1 + ∥θ∥H1

≤ C∥∇θ∥2L4 +C∥∇u∥2L4 +C∥
√
ρθt∥L2 +C∥u∥L∞∥∇θ∥L2 +C∥∇θ∥3L6

+C∥∇2θ∥L4∥∇θ∥L4 +C∥∇θ∥L6∥∇u∥2L6 +C∥∇2u∥L4∥∇u∥L4 +C∥∇θ∥L4∥θt∥L4

+C∥∇ρ∥Lq∥θt∥
L

2q
q−2
+C∥∇θt∥L2 +C∥∇θ∥2L4∥u∥L∞ +C∥∇ρ∥Lq∥u∥L∞∥∇θ∥

L
2q

q−2

+C∥∇u∥L4∥∇θ∥L4 +C∥u∥L∞∥∇2θ∥L2 + ∥ρθ∥L1 + ∥∇θ∥L2
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≤
1
2
∥∇3θ∥L2 +C∥∇3u∥L2 +C∥(∇u,∇θ)∥H1 +C∥(

√
ρθt,∇θt)∥L2 + ∥ρθ∥L1 . (3.52)

Combining (3.47), (3.52) and estimates we have obtained, it can be inferred that∫ T

0
∥∇3θ∥2L2dt ≤ C

∫ T

0
(∥(∇u,∇θ)∥2H1 + ∥(

√
ρut,
√
ρθt,∇ut,∇θt)∥2L2)dt ≤ C. (3.53)

Considering the estimates obtained in Lemmas 3.1–3.5, combined with (3.49)–(3.51) and (3.53), we
have completed the proof of the Corollary 3.1. In this way, we close the a priori assumptions (3.1). □

3.2. Proof of Theorem 1.1

With all the a priori estimates established in Corollary 3.1 at hand, the global well-posedness part
of Theorem 1.1 then follows by standard procedures.

From Lemma 2.1, we know that there exists a T0 such that the system (1.1)–(1.4) has a unique local
strong solution (ρ, u, θ, P) on Ω × (0,T0]. We now extend this local solution to the global solution
by contradiction. Therefore, from now on, we assume that |V | ≤ ϵ0, ∥

√
ρ0u0∥L2 + β∥

√
ρ0θ0∥L2 ≤ ϵ1

holds, where ϵ0 and ϵ1 are the same as in Corollary 3.1. Lemma 2.1 and (1.7) indicate that there is a
T1 ∈ (0,T0) such that (3.1) holds at T = T1. Denote

T ∗ ≜ sup{T |(ρ, u, θ, P) is a strong solution onΩ × (0,T ] and (3.1) holds}. (3.54)

Obviously, T ∗ ≥ T1 > 0. With the help of Corollary 3.1 and the standard embedding, one can deduce
that for any 0 < T ≤ T ∗,

ρ ∈ C([0,T ]; W1,q), u ∈ C([0,T ]; H1
0,σ ∩ H2), θ ∈ C([0,T ]; H2

n). (3.55)

Now we prove

T ∗ = ∞. (3.56)

Otherwise, we assume that T ∗ < ∞. Since |V | ≤ ϵ0, ∥
√
ρ0u0∥L2 + β∥

√
ρ0θ0∥L2 ≤ ϵ1, Lemmas 3.1–3.5

and the continuity argument show that the global estimates stated in Corollary 3.1 hold on [0,T ∗]. Let
v̇ ≜ vt + u · ∇v, it can be inferred from (3.55) that

(ρ∗, u∗, θ∗)(x) ≜ (ρ, u, θ)(x,T ∗) = lim
t→T ∗

(ρ, u, θ)(x, t), (3.57)

(ρ∗u̇∗, ρ∗θ̇∗)(x) ≜ (ρu̇, ρθ̇)(x,T ∗) = lim
t→T ∗

(ρu̇, ρθ̇)(x, t)

satisfies regularity condition

0 ≤ ρ∗ ∈ W1,q, u∗ ∈ H1
0,σ ∩ H2, θ ≤ θ∗ ∈ H2

n.

Thus {
− div(2µ(θ∗)D(u∗)) + ∇P∗ =

√
ρ∗g1,

− div(κ(θ∗)∇θ∗) − 2µ(θ∗)|D(u∗)|2 =
√
ρ∗g2,
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with

g1 =

{
0, x ∈ {x|ρ∗(x) = 0},

1
√
ρ∗
ρ∗u̇∗, x ∈ {x|ρ∗(x) > 0},

g2 =

{
0, x ∈ {x|ρ∗(x) = 0},

1
√
ρ∗
ρ∗θ̇∗, x ∈ {x|ρ∗(x) > 0},

satisfying g1, g2 ∈ L2, which can be guaranteed by Corollary 3.1. Therefore, taking (ρ∗, u∗, θ∗) as
the initial data, according to Lemma 2.1, the local strong solution can be extended beyond T ∗. This
contradicts the definition of T ∗. So, (3.54) has been proven.

To complete the entire proof of Theorem 1.1, we only need to prove (1.10) and (1.11), i.e., the
following proposition.

Proposition 3.1. It holds that

sup
0≤t≤T

(
eC−1t(∥u∥2H2 + ∥

√
ρut∥

2
L2 + ∥P∥2H1)

)
+

∫ T

0
eC−1t∥(∇u, ut)∥2H1dt ≤ C, (3.58)

sup
0≤t≤T

(
eC−1t(∥θ −

1
ρ0|Ω|

E0∥
2
H2 + ∥

√
ρθt∥

2
L2)
)
+

∫ T

0
eC−1t∥(∇θ, θt)∥2H1dt ≤ C, (3.59)

where the positive constants ρ0 and E0 are defined in Theorem 1.1.

Proof. The proof is divided into the following two steps.
Step 1. The proof of (3.58).

It follows from the Poincaré inequality that∫
ρ|u|2dx ≤ C

∫
|∇u|2dx ≤ C

∫
θα|D(u)|2dx. (3.60)

Substituting (3.60) into (3.4) yields

d
dt

∫
ρ|u|2dx +C−1

∫
ρ|u|2dx +

∫
θα|D(u)|2dx ≤ 0. (3.61)

Then multiplying (3.61) by eC−1t and integrating it over [0, t], we arrive at

sup
0≤t≤T

(eC−1t∥
√
ρu∥2L2) +

∫ T

0
eC−1t∥∇u∥2L2dt ≤ C. (3.62)

Next, substitute (3.46) into (3.11), then (3.11) becomes

d
dt

∫
θα|D(u)|2dx +

1
2
∥
√
ρut∥

2
L2

≤ C∥(
√
ρθt,∇θt)∥L2∥∇u∥

3
2
L2∥∇u∥

1
2
H1 +C∥

√
ρu∥L2∥∇u∥L2∥∇u∥2H1

≤ C∥(
√
ρθt,∇θt)∥L2∥∇u∥

3
2
L2(∥
√
ρut∥

1
2
L2 + ∥∇u∥

3
2
L2) +C∥

√
ρu∥L2∥∇u∥L2(∥

√
ρut∥

2
L2 + ∥∇u∥6L2)
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≤ (
1
8
+Cϵ1)∥(

√
ρut,∇u)∥2L2 +C∥(

√
ρθt,∇θt)∥

4
3

L2∥∇u∥2L2 ,

owing to Young’s inequality, Lemma 3.1 and Corollary 3.1. Multiply the last inequality by eC−1t, using
Grönwall’s inequality, Lemma 3.4, (3.36), (3.62) and∫ T

0
∥(
√
ρθt,∇θt)∥

4
3

L2dt ≤
( ∫ T

0
(1 + t)∥(

√
ρθt,∇θt)∥2L2dt

) 2
3
( ∫ T

0
(1 + t)−2dt

) 1
3 ≤ C,

imply

sup
0≤t≤T

(eC−1t∥∇u∥2L2) +
∫ T

0
eC−1t∥

√
ρut∥

2
L2dt ≤ CeC

∫ T
0 ∥(
√
ρθt ,∇θt)∥

4
3
L2 dt
≤ C. (3.63)

Similarly, in view of the proof of Lemma 3.3, (3.48) and∫
|θt||∇u||∇ut|dx ≤ ∥θt∥L6∥∇u∥L3∥∇ut∥L2

≤ C∥(
√
ρθt,∇θt)∥L2∥(

√
ρut,∇u)∥L2∥∇ut∥L2 , (3.64)

we thereby obtain

d
dt
∥
√
ρut∥

2
L2 +

∫
θα|D(ut)|2dx ≤ C

(
1 + ∥(

√
ρθt,∇θt)∥2L2

)
∥(
√
ρut,∇u)∥2L2 .

Multiplying the last inequality by eC−1t, applying (3.62), (3.63), Grönwall’s inequality, and Corollary
3.1, we deduce

sup
0≤t≤T

(eC−1t∥
√
ρut∥

2
L2) +

∫ T

0
eC−1t∥∇ut∥

2
L2dt ≤ CeC

∫ T
0 ∥(
√
ρθt ,∇θt)∥2L2 dt

≤ C. (3.65)

Thus, collecting (3.62)–(3.65), we get (3.58) immediately.
Step 2. The proof of (3.59).

The method in [34] is used in this process. Integrating (1.1)3 over Ω, we arrive at

d
dt

∫
ρθdx − 2

∫
θα|D(u)|2dx = 0. (3.66)

Combining (3.4) and (3.66), it can be inferred that

1
2

d
dt

∫
ρ|u|2dx +

d
dt

∫
ρθdx = 0

Hence

1
2

∫
ρ|u|2dx +

∫
ρθdx =

1
2

∫
ρ0|u0|

2dx +
∫
ρ0θ0dx ≜ E0. (3.67)

Multiplying (1.1)3 by θ − 1
ρ0 |Ω|

E0 and integrating it over Ω, one obtains

1
2

d
dt

∫
ρ(θ −

1
ρ0|Ω|

E0)2dx +
∫
θβ|∇θ|2dx = 2

∫
(θ −

1
ρ0|Ω|

E0)θα|D(u)|2dx ≤ C
∫
|∇u|2dx.
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It follows from Poincaré’s inequality that∫
ρ(θ −

1
ρ0|Ω|

E0)2dx

≤ C
∫ (
|θ − θ̄|2 + |θ̄ −

1
ρ̄0|Ω|

∫
ρθdx|2 + |

1
ρ̄0|Ω|

∫
ρθdx −

1
ρ̄0|Ω|

E0|
2
)
dx

≤ C
( ∫
|∇θ|2dx +

∫
|

∫
ρ(θ − θ̄)dx|2dx +

∫
|

∫
ρ|u|2dx|2dx

)
≤ C
( ∫
|∇θ|2dx + (

∫
|∇u|2dx)2

)
≤ C
( ∫
θβ|∇θ|2dx +

∫
|∇u|2dx

)
,

where θ̄ = 1
|Ω|

∫
θdx. Thus, we have

d
dt

∫
ρ(θ −

1
ρ0|Ω|

E0)2dx +C−1
∫
ρ(θ −

1
ρ0|Ω|

E0)2dx +
∫
θβ|∇θ|2dx ≤ C

∫
|∇u|2dx,

and this combined with (3.62) gives

sup
0≤t≤T

(
eC−1t∥

√
ρ(θ −

1
ρ0|Ω|

E0)∥2L2

)
+

∫ T

0
eC−1t∥∇θ∥2L2dt ≤ C. (3.68)

Now, we re-estimate (3.27) as follows:

d
dt
∥∇θβ+1∥2L2 + ∥

√
ρθ

β
2 θt∥

2
L2

≤ C∥∇u∥2L2∥∇
2θ∥2L2 +

4
α + β + 1

d
dt

∫
θα+β+1|D(u)|2dx +C∥∇u∥L2∥∇ut∥L2 . (3.69)

Multiplying it by eC−1t, according to (3.58), and Corollary 3.1, we have

d
dt

(eC−1t∥∇θβ+1∥2L2) + eC−1t∥
√
ρθ

β
2 θt∥

2
L2

≤ CeC−1t∥(∇θ,∇u,∇ut)∥2L2 +C∥∇2θ∥2L2 +
4

α + β + 1
d
dt
(
eC−1t
∫
θα+β+1|D(u)|2dx

)
.

Consequently,

sup
0≤t≤T

(
eC−1t∥∇θ∥2L2

)
+

∫ T

0
eC−1t∥

√
ρθt∥

2
L2dt ≤ C. (3.70)

Recalling (3.31), (3.64) and Corollary 3.1 leads to

d
dt
∥
√
ρθt∥

2
L2 + ∥θ

β
2∇θt∥

2
L2 ≤ C∥(

√
ρθt,∇ut)∥2L2 +C∥u∥4H2 +C(∥∇u∥2L∞ + ∥∇θ∥

2
L2)∥
√
ρθt∥

2
L2 .
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Then, multiplying the last inequality by eC−1t, combining the result with Grönwall’s inequality, (3.58),
(3.70) and Corollary 3.1 gives

sup
0≤t≤T

(
eC−1t∥

√
ρθt∥

2
L2

)
+

∫ T

0
eC−1t∥∇θt∥

2
L2dt ≤ C. (3.71)

Therefore, we complete the proof of (3.59) by (3.68), (3.70), (3.71), and the following estimate

∥∇2θ∥L2 ≤ C∥∇2θβ+1∥L2 ≤ C∥∇u∥
1
2
L2∥∇u∥

3
2
H1 +C∥(

√
ρθt,∇θ)∥L2 .

The proof of Proposition 3.1 is finished. □
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