Assume that $ H $ is a finite group that has a normal $ 2 $-complement. Under some conditions, it is proven that the normalizer property holds for $ H $. In particular, if there is a nilpotent subgroup of index $ 2 $ in $ H $, then $ H $ has the normalizer property. The result of Li, Sehgal and Parmenter, stating that the normalizer property holds for finite groups that have an abelian subgroup of index $ 2 $ is generalized.
Citation: Jidong Guo, Liang Zhang, Jinke Hai. The normalizer problem for finite groups having normal $ 2 $-complements[J]. Electronic Research Archive, 2024, 32(8): 4905-4912. doi: 10.3934/era.2024225
Assume that $ H $ is a finite group that has a normal $ 2 $-complement. Under some conditions, it is proven that the normalizer property holds for $ H $. In particular, if there is a nilpotent subgroup of index $ 2 $ in $ H $, then $ H $ has the normalizer property. The result of Li, Sehgal and Parmenter, stating that the normalizer property holds for finite groups that have an abelian subgroup of index $ 2 $ is generalized.
[1] | S. K. Sehgal, Units in Integral Group Rings, Longman Scientific and Technical Press, London, 1993. |
[2] | D. B. Coleman, On the modular group ring of a $p$-group, Proc. Am. Math. Soc., 5 (1964), 511–514. https://doi.org/10.2307/2034735 doi: 10.2307/2034735 |
[3] | S. Jackowski, Z. S. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Algebra, 44 (1987), 241–250. https://doi.org/10.1016/0022-4049(87)90028-4 doi: 10.1016/0022-4049(87)90028-4 |
[4] | M. Mazur, The normalizer of a group in the unit group of its group ring, J. Algebra, 212 (1999), 175–189. https://doi.org/10.1006/jabr.1998.7629 doi: 10.1006/jabr.1998.7629 |
[5] | M. Mazur, Automorphisms of finite groups, Commun. Algebra, 22 (1994), 6259–6271. https://doi.org/10.1080/00927879408825187 doi: 10.1080/00927879408825187 |
[6] | M. Mazur, On the isomorphism problem for infinite group rings, Expositiones Math., 13 (1995), 433–445. https://doi.org/0723-0869/95/050433-445 |
[7] | M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. Math., 154 (2001), 115–138. https://doi.org/10.2307/3062112 doi: 10.2307/3062112 |
[8] | J. K. Hai, J. D. Guo, The normalizer property for the integral group ring of the wreath product of two symmetric groups $S_{k}$ and $S_{n}$, Commun. Algebra, 45 (2017), 1278–1283. https://doi.org/10.1080/00927872.2016.1175613 doi: 10.1080/00927872.2016.1175613 |
[9] | A. van Antwerpen, Coleman automorphisms of finite groups and their minimal normal subgroups, J. Pure Appl. Algebra, 222 (2018), 3379–3394. https://doi.org/10.1016/j.jpaa.2017.12.013 doi: 10.1016/j.jpaa.2017.12.013 |
[10] | M. Hertweck, Class-preserving Coleman automorphisms of finite groups, Monatsh. Math., 136 (2002), 1–7. https://doi.org/10.1007/s006050200029 doi: 10.1007/s006050200029 |
[11] | M. Hertweck, Local analysis of the normalizer problem, J. Pure Appl. Algebra, 163 (2001), 259–276. https://doi.org/10.1016/S0022-4049(00)00167-5 doi: 10.1016/S0022-4049(00)00167-5 |
[12] | M. Hertweck, E. Jespers, Class-preserving automorphisms and the normalizer property for Blackburn groups, J. Group Theory, 12 (2009), 157–169. https://doi.org/10.1515/JGT.2008.068 doi: 10.1515/JGT.2008.068 |
[13] | Z. S. Marciniak, K. W. Roggenkamp, The normalizer of a finite group in its integral group ring and $\check{C}$ech cohomology, Algebra Representation Theory, 28 (2001), 159–188. |
[14] | H. Kurzweil, B. Stellmacher, The Theory of Finite Groups: An Introduction, Springer-Verlag, New York, 2004. |
[15] | M. Hertweck, Class-preserving automorphisms of finite groups, J. Algebra, 241 (2001), 1–26. https://doi.org/10.1006/jabr.2001.8760 doi: 10.1006/jabr.2001.8760 |
[16] | M. Hertweck, W. Kimmerle, Coleman automorphisms of finite groups, Math. Z., 242 (2002), 203–215. https://doi.org/10.1007/s002090100318 doi: 10.1007/s002090100318 |
[17] | Y. Li, S. K. Sehgal, M. M. Parmenter, On the normalizer property for integral group rings, Commun. Algebra, 27 (1999), 4217–4223. https://doi.org/10.1080/00927879908826692 doi: 10.1080/00927879908826692 |