

https://[www.aimspress.com](https://www.aimspress.com/journal/era)/journal/era

Research article

The normalizer problem for finite groups having normal 2-complements

Jidong Guo, Liang Zhang and Jinke Hai*

College of Mathematics and Statistics, Yili Normal University, Yining 835000, China

* Correspondence: Email: haijinke@aliyun.com.

Abstract: Assume that *H* is a finite group that has a normal 2-complement. Under some conditions, it is proven that the normalizer property holds for *H*. In particular, if there is a nilpotent subgroup of index 2 in *H*, then *H* has the normalizer property. The result of Li, Sehgal and Parmenter, stating that the normalizer property holds for finite groups that have an abelian subgroup of index 2 is generalized.

Keywords: the normalizer property; Coleman automorphisms; class-preserving automorphisms; normal 2-complements

1. Introduction

Throughout this paper, *H* denotes a finite group and *q* is a prime. Denote the integral group ring of *H* over \mathbb{Z} by $\mathbb{Z}H$. The unit group of $\mathbb{Z}H$ is denoted by $\mathcal{U}(\mathbb{Z}H)$ denote and $\mathcal{Z}(\mathcal{U}(\mathbb{Z}H))$ to denote the center of $U(\mathbb{Z}H)$. The normalizer problem asks whether $N_{U(\mathbb{Z}H)}(H) = H \mathcal{Z}(\mathcal{U}(\mathbb{Z}H))$, where $N_{U(\mathbb{Z}H)}(H)$ is the normalizer of *H* in $U(ZH)$ (see [\[1\]](#page-6-0), Problem 43). If the equation holds, then it is said that *H* has the normalizer property. Historically, it has been proven that the normalizer property holds for finite nilpotent groups in Coleman [\[2\]](#page-6-1). Jackowski and Marciniak [\[3\]](#page-6-2) proved that the finite group having a normal Sylow 2-subgroup has the normalizer property. In particular, groups of odd order have the normalizer property. A few years later, Mazur [\[4](#page-6-3)[–6\]](#page-6-4) found that the well-known isomorphism problem of the integral group ring and the normalizer problem are closely connected. Based on Mazur's observation, among other things, a first counterexample to the normalizer problem was found by Hertweck [\[7\]](#page-6-5), and later a first counterexample to the isomorphism problem. However, investigating which groups have the normalizer property is still an interesting problem. Recently, a number of related works on this subject were published, see [\[8](#page-6-6)[–12\]](#page-6-7).

To explain our results in detail, as in [\[10\]](#page-6-8), some kinds of automorphisms of finite groups are defined in the following:

Let $\theta \in \text{Aut}(H)$. We call θ a class-preserving automorphism if θ maps every element of *H* to its conjugate. Denote by $Aut_c(H)$ the class-preserving automorphism group of *H*.

Let $\theta \in \text{Aut}(H)$. We call θ a Coleman automorphism if, for any $P \in \text{Syl}(H)$, the restriction of θ to P coincides with that of some inner automorphism of H . Denote by $Aut_{Col}(H)$ the Coleman automorphism group of *H*.

 $\text{Aut}_{\mathbb{Z}}(H) = \{ \theta_u \in \text{Aut}(H) \mid x^{\theta_u} = u^{-1}xu, u \in \text{N}_{\mathcal{U}(\mathbb{Z}H)}(H), x \in H \} \leq \text{Aut}(H).$ Write $Q_{\text{u}t}(H) = \text{Aut}(H) / \text{Inn}(H)$

$$
Out_c(H) = Aut_c(H)/Inn(H),
$$

\n
$$
Out_{Col}(H) = Aut_{Col}(H)/Inn(H),
$$

\n
$$
Out_{\mathbb{Z}}(H) = Aut_{\mathbb{Z}}(H)/Inn(H).
$$

Jackowski and Marciniak [\[3\]](#page-6-2) showed that $N_{\mathcal{U}(\mathbb{Z}H)}(H) = H \mathcal{Z}(\mathcal{U}(\mathbb{Z}H))$ if and only if Out_{$\mathbb{Z}(H) = 1$.} In addition, $Out_{\mathbb{Z}}(H) \le Out_{\mathbb{C}}(H) \cap Out_{\mathbb{C}ol}(H)$, and $Out_{\mathbb{Z}}(H)$ is an elementary abelian 2-group (see [\[1\]](#page-6-0)). Thus, $Out_{\mathbb{Z}}(H) = 1$ is equivalent to the order of $Out_{\mathbb{C}}(H) \cap Out_{\mathbb{C}}(H)$ being an odd number, i.e., *H* has the normalizer property if and only if the order of $Out_c(H) \cap Out_{Col}(H)$ is an odd number.

In this paper, the normalizer problem of finite groups with normal 2-complements is checked. Mazur [\[5\]](#page-6-9) conjectured that finite groups having abelian Sylow 2-subgroups have the normalizer property. He proved that the conjecture holds if Sylow 2-subgroups have order 2. Later, this result was generalized by Hertweck [\[11\]](#page-6-10), who proved that *H* has the normalizer property, provided that *H* has a normal 2 complement and *H* has a cycli Sylow 2-subgroup or an abelian of exponent at most 4. Marciniak and Roggenkamp [\[13\]](#page-6-11) showed that the normalizer property holds for metabelian groups having abelian Sylow 2-subgroups. They also constructed a metabelian group $H = (C_2^4 \times C_3) \rtimes C_2^3$ $\frac{1}{2}$ such that the order of $Out_c(H) \cap Out_{Col}(H)$ is an even number. This example illustrates that if the Sylow 2-subgroup of *H* is not abelian, then in general it is not the case that the order of $Out_c(H) \cap Out_{Col}(H)$ is an odd number. Our main results are the following:

Theorem 1.1. Let *M* be a subgroup of *H* such that $|H : M| = 2$. If $M = O_2(M) \times O_{2'}(M)$, then $Out_{\mathbb{Z}}(H) = 1$, that is, *H* has the normalizer property.

Theorem 1.2. Let $H = O_{2}(H) \rtimes P$ be a semidirect product of a nilpotent normal 2-complement *O*₂^{\cdot}(*H*) by an abelian Sylow 2-subgroup *P*. Then the order of Out_c(*H*) ∩ Out_{Col}(*H*) is an odd number. In particular, *H* has the normalizer property.

Theorem 1.3. Let $H = O_{2'}(H) \rtimes Q$ be a semidirect product of a normal 2-complement $O_{2'}(H)$ by a Hamilton Sylow 2-subgroup *Q*. Then Out_{$\mathbb{Z}(H) = 1$.}

Let $M \leq H$ or $M \leq H$, and $\sigma \in Aut(H)$. If σ fixes *M* or H/M , which will be denoted by $\sigma|_M$ or $\sigma|_{H/M}$, respectively. For a $h \in H$, we use conj(h) to denote the inner automorphism induced by h. For any $p||H|$, denote by $O_p(H)$ the largest normal p-subgroup of H and $O_{p'}(H)$ the largest normal p'-subgroup of H. The other notation is standard; refer to [\[10,](#page-6-8) [14\]](#page-6-12).

2. Preliminaries

Lemma 2.1. [\[11\]](#page-6-10) Assume that *H* has cyclic Sylow 2-subgroups. Then the order of $Out_c(H) \cap Out_{Col}(H)$ is an odd number.

Lemma 2.2. [\[11\]](#page-6-10) Let *K* be a normal 2-complement of *H*. Suppose that $P \in \text{Syl}_2(H)$, and $D \leq P$ such that $\exp(P/D) \leq 4$. If P/D is abelian and $\theta \in Aut_{\mathbb{Z}}(H)$, then there is $\tau \in Inn(H)$ such that $\theta \tau|_{KD} \in \text{Aut}_{\text{Col}}(KD)$.

Lemma 2.3. [\[10\]](#page-6-8) Suppose that $M \trianglelefteq H$. Suppose that *q* does not divide $|H/M|$. Then we have the following: (1) If $\theta \in Aut_c(H)$ is a *q*-element, then $\theta|_M \in Aut_c(M)$;

- (2) If $\theta \in \text{Aut}_{\text{Col}}(H)$ is a *q*-element, then $\theta|_M \in \text{Aut}_{\text{Col}}(M)$;
- (3) If Out_c(*M*) or Out_{Col}(*M*) is a *q*'-group, then Out_c(*H*) or Out_{Col}(*H*) is also a *q*'-group.

Lemma 2.4. Let $M \leq H$, and let $\eta \in Aut(H)$ be a *q*-element. If $\eta|_M = \text{conj}(h)|_M$ for some $h \in H$, then there exists a $\delta \in \text{Inn}(H)$ with the property that $\eta \delta |_{M} = id |_{M}$ and $o(\eta \delta)$ is still a power of the prime q.

Proof. Set $o(\eta) = q^i$ for some positive integer *i*. Then $\eta \text{conj}(h^{-1})|_M = id|_M$. Let *j* be a positive integer said *t* satisfying $(\text{rconj}(h^{-1}))^j$ is the a-part of $\text{rconj}(h^{-1})$, where $(i, q) = 1$. Thus there are integers s satisfying $(\eta \text{conj}(h^{-1}))^j$ is the *q*-part of $\eta \text{conj}(h^{-1})$, where $(j, q) = 1$. Thus, there are integers *s* and *t* such that $s \neq t a^i - 1$. Obviously the order of $(\text{rconj}(h^{-1}))^{sj}$ is a power of *a* and $(\text{rconj}(h^{-1}))^{sj}|_{ss} =$ such that $s j + tq^i = 1$. Obviously, the order of $(\eta \text{conj}(h^{-1}))^{sj}$ is a power of *q*, and $(\eta \text{conj}(h^{-1}))^{sj}|_{M} = id|_{M}$.
Since $\text{Im}(H) \le \text{Aut}(H)$, then there is a $\delta \in \text{Im}(H)$ such that $(\text{rconj}(h^{-1}))^{sj} = n^{sj}\delta = n^{1-tq^i}\delta = n\delta$. We Since Inn(*H*) \leq Aut(*H*), then there is a $\delta \in \text{Inn}(H)$ such that $(\eta \text{conj}(h^{-1}))^{sj} = \eta^{sj}\delta = \eta^{1-tq^i}\delta = \eta\delta$. We are done.

Lemma 2.5. Let $\theta \in Aut(H)$ be a *q*-element. Suppose that $M \leq H$, such that θ fixes M. If $\theta|_M =$ conj $(h)|_M$ for some $h \in H$, then we may find a *q*-element $t \in H$ satisfying $\theta|_M = \text{conj}(t)|_M$.

Proof. Set $o(\theta) = q^i$, $o(h) = q^j t$, and $(q, t) = 1$, where *i*, *j*, and *t* are positive integers. Set *k* := $max\{i, j\}$.
Since $(a^k, t) = 1$, then there are integers *u* and *y* satisfying $u a^k + vt = 1$. Write $t = h^{vt}$. Cons Since $(q^k, t) = 1$, then there are integers *u* and *v* satisfying $uq^k + vt = 1$. Write $t = h^{vt}$. Consequently, *t* is a *q*-element. For any $m \in M$, we have $m = m^6$ $m^{h} = m^{h^{uq^k}}$, it follows that $m^{\theta} = m^h = m^{h^{uq^{k}+vt}} = (m^{h^{uq^k}})^{h^{vt}} =$ $m^{h^{vt}} = m^t$, i.e., $\theta|_M = \text{conj}(t)|_M$. We are done.

Lemma 2.6. [\[15\]](#page-7-0) Let $\eta \in Aut(H)$ be a *q*-element. Suppose that $M \trianglelefteq H$, such that $\eta|_M = id|_M$, and that $\eta|_{H/M} = id|_{H/M}$. Then $\eta|_{H/O_q(Z(M))} = id|_{H/O_q(Z(M))}$. Further, if $\eta|_R = id|_R$ for some $R \in Syl_q(H)$, then $\eta \in \text{Inn}(H)$.

Lemma 2.7. [\[12\]](#page-6-7) Assume that *Q* is a *q*-group and $\overline{Q} = Q/\Phi(Q)$, where $\Phi(Q)$ is the Frattini subgroup of *Q*. Suppose that *B* is an abelian *q*'-group such that *B* acts on *Q*. Then one can find some $x \in Q$ satisfying $C_B(Q) = C_B(x) = C_B(\overline{Q}) = C_B(\overline{x})$.

Lemma 2.8. [\[16\]](#page-7-1) Let $\pi(H)$ and $\pi(\text{Aut}_{\text{Col}}(H))$ be the sets of prime divisors of |*H*| and |Aut_{Col}(*H*)|, respectively. Then $\pi(\text{Aut}_{\text{Col}}(H)) \subseteq \pi(H)$.

Lemma 2.9. Let $\theta \in \text{Aut}(H)$, and $M \leq H$. Then we have the following:

(1) If $\theta \in Aut_c(H)$, then θ fixes *M*, and $\theta|_{H/M} \in Aut_c(H/M)$;

(2) If $\theta \in \text{Aut}_{\text{Col}}(H)$, then θ fixes M, and $\theta|_{H/M} \in \text{Aut}_{\text{Col}}(H/M)$.

Proof. These proofs are obvious, so we omit them.

Lemma 2.10. [\[8\]](#page-6-6) Let $v \in N_{\mathcal{U}(\mathbb{Z}H)}(H)$, $M \leq H$, and let *Q* be a *q*-subgroup of *H*. Assume that $v^{\eta} = Mh$ *H*/*M* for some $h \in H$, where $\eta : \mathbb{Z}H \to \mathbb{Z}(H/M)$ is the natural homomorphism. Then one can find some $m \in M$ such that $v^{-1}yv = (mh)^{-1}y(mh)$ for all $y \in Q$.

3. Proof of The Theorems

Theorem 3.1. Let *M* be a subgroup of *H* satisfying $|H : M| = 2$. If $M = O_2(M) \times O_{2'}(M)$, then $Out_{\mathbb{Z}}(H) = 1$, that is, *H* has the normalizer property.

Proof. Let $\rho \in Aut_{\mathbb{Z}}(H)$, and we will show that $\rho \in Inn(H)$. If $O_2(M) = 1$, then Sylow 2-subgroups of *H* are cyclic. By Mazur's result, then Out_{$\mathbb{Z}(H) = 1$. Hereafter, we suppose that $O_2(M) \neq 1$. Let} $Q \in \text{Syl}_2(H)$. Then $O_2(M) = Q \cap M$. Since by assumption $|H : M| = 2$, it follows that $O_{2}(M)$ is a normal 2-complement *Q* in *H*. By Lemma 2.2, then $\rho\gamma|_M \in Aut_{Col}(M)$ for some $\gamma \in Inn(H)$. Write $\beta = \rho \gamma$. Since Out_Z(*H*) is an elementary abelian 2-group, we may suppose that $o(\beta)$ is a power of 2. So is $\beta|_M$. Note that $M = O_2(M) \times O_{2'}(M)$, where $O_2(M) \in Syl_2(M)$, which implies that $\beta|_M \in \text{Inn}(M)$ by Lemma 2.3(3). Thus, $\beta|_M = \text{conj}(X)$, for some $X \in M$. By Lemma 2.4, we obtain that $\beta \delta|_M = id|_M$ for Lemma 2.3(3). Thus, $\beta|_M = \text{conj}(x)|_M$ for some $x \in M$. By Lemma 2.4, we obtain that $\beta \delta|_M = id|_M$ for some $\delta \in \text{Inn}(H)$, and $o(\beta \delta)$ is still a power of 2. By replacing β with $\beta \delta$, we may suppose that

$$
\beta|_M = id|_M. \tag{3.1}
$$

Since *^H*/*^M* is cyclic, we obtain that

$$
\beta|_{H/M} = id_{H/M}.\tag{3.2}
$$

It is clear that β acts on the set $Syl_2(H)$. Since $|Syl_2(H)|$ is an odd number and β is of 2-power order,
a can find an $R \subset Syl_2(H)$ such that $R^{\beta} = R$. Note that $\Delta vt_1(H) \subset \Delta ut_2(H)$, so $R_1 = \text{conj}(q)$. for one can find an $R \in \text{Syl}_2(H)$ such that $R^{\beta} = R$. Note that $\text{Aut}_{\mathbb{Z}}(H) \le \text{Aut}_{\text{Col}}(H)$, so $\beta|_R = \text{conj}(g)|_R$ for some $g \in H$. By Lemma 2.5, we may suppose that g is a 2-element. It follows that $R^{\beta} = R - Rg$ i.e. some $g \in H$. By Lemma 2.5, we may suppose that *g* is a 2-element. It follows that $R^{\beta} = R = R^g$, i.e., *g* ∈ *N_H*(*R*), which implies that *g* ∈ *R*. Note that *O*₂(*M*) = *M* ∩ *R*. Then we have $\beta|_{O_2(M)} = \text{conj}(g)|_{O_2(M)}$.
However, $\beta|_{O_2(M)} = id|_{O_2(M)} = \text{Consequently } x^g = x$ for all $x \in O_2(M)$ that is, $g \in C_2(O_2(M))$. However, $\beta|_{O_2(M)} = id|_{O_2(M)}$. Consequently, $x^g = x$ for all $x \in O_2(M)$, that is, $g \in C_R(O_2(M))$.

Case 1. Assume that *g* is not in $O_2(M)$. Since $|R/O_2(M)| = |R/M \cap R| = |MR/M| = |H/M| = 2$, we obtain that $O_2(M)$ is a maximal subgroup of *R*. Thus, $R = O_2(M), g >$. Since $g \in C_R(O_2(M))$, it implies that $g \in Z(R)$, and thus

$$
\beta|_{R} = \text{conj}(g)|_{R} = id|_{R}.
$$
\n(3.3)

Hence, by Lemma 2.6, Eqs (3.1)–(3.3) yield that $\beta \in \text{Inn}(H)$, i.e., $\rho \in \text{Inn}(H)$, as desired.

Case 2. Assume that $g \in O_2(M)$. Recall that $\beta|_R = \text{conj}(g)|_R$. Write $\tau = \beta \text{conj}(g^{-1})$. Then we have

$$
\tau|_{R} = id_{R}.\tag{3.4}
$$

Since $M = O_2(M) \times O_{2'}(M)$, $g \in C_R(O_2(M))$ and Eq (3.1), we have

$$
\tau|_M = id_M. \tag{3.5}
$$

In addition, by Eq (3.2) and $g \in O_2(M) \leq M$, we obtain that

$$
\tau|_{H/M} = id_{H/M}.\tag{3.6}
$$

Let *m* be the 2'-component of the order of τ . Then τ^m is of 2-power order and satisfies the following
relations: τ^m , $\tau^$ conditions: $\tau^m|_R = id|_R$, $\tau^m|_M = id_M$, $\tau^m|_{H/M} = id_{H/M}$. Thus, by Lemma 2.6, $\tau^m \in \text{Inn}(H)$. Since Out_Z(*H*) is an elementary abelian 2 group, this implies that $\tau \in \text{Inn}(H)$ i.e. $R_{\text{conj}}(q^{-1}) \subset \text{Inn}(H)$. Hence is an elementary abelian 2-group, this implies that $\tau \in \text{Inn}(H)$, i.e., $\beta \text{conj}(g^{-1}) \in \text{Inn}(H)$. Hence $\rho \in \text{Inn}(H)$. We are done.

The following results are immediate from Theorem 3.1, which generalizes the finite version of a result due to Li et al. ([\[17\]](#page-7-2), Theorem 2).

Corollary 3.2. Let $F(H)$ be the Fitting subgroup of *H* satisfying $|H : F(H)| = 2$. Then Out $_Z(H) = 1$, that is, *H* has the normalizer property.

Theorem 3.3. Let $H = O_{2}(H) \rtimes P$ be a semidirect product of a nilpotent normal 2-complement $O_{2}(H)$ by an abelian Sylow 2-subgroup *P*. Then the order of $Out_c(H) \cap Out_{Col}(H)$ is an odd number. In particular, *H* has the normalizer property.

Proof. Let $\rho \in Aut_c(H) \cap Aut_{Col}(H)$ be of 2-power order. Our goal is to prove that $\rho \in Inn(H)$. Since *H* = $O_{2'}(H) \rtimes P$ is a semidirect product. First, we show that $\rho \text{conj}(h^{-1})|_{O_{2'}(H)} \in \text{Aut}_{\text{Col}}(O_{2'}(H))$ for some $h \in H$, Let $\pi(O_{2'}(H)) = \{g, g_2, \ldots, g_n\}$ and let $O_{2'}(S_{2'}(H))$, where $i = 1, 2, \ldots, r$. Then some $h \in H$. Let $\pi(O_{2'}(H)) = \{q_1, q_2, \dots, q_r\}$ and let $Q_i \in \text{Syl}_{q_i}(O_{2'}(H))$, where $i = 1, 2, \dots, r$. Then $O_{2'}(H) = O_{2'}(O_{2'}(H)) \times O_{2'}(H)$. Since $o \in \text{Aut}_{2'}(H)$, we obtain that $o|_{2'} = \text{conj}(t_1)|_{2'}$ for some $t \in H$. $O_{2'}(H) = Q_1 \times Q_2 \times \cdots \times Q_r$. Since $\rho \in \text{Aut}_{\text{Col}}(H)$, we obtain that $\rho|_{Q_i} = \text{conj}(t_i)|_{Q_i}$ for some $t_i \in H$, where $i = 1, 2, \dots, r$. In Lemma 2.5, we have

$$
\rho|_{Q_i} = \text{conj}(h_i)|_{Q_i},\tag{3.7}
$$

where $h_i \in H$ is a 2-element. Since $Q_i \trianglelefteq H$, thus *P* acts on Q_i . By Lemma 2.7, $C_P(Q_i) = C_P(b_i)$ $C_P(\bar{b}_i) = C_P(\bar{Q}_i)$ for some $b_i \in Q_i$. Set $b = b_1b_2 \cdots b_r$. Since $\rho \in \text{Aut}_c(H)$, then there is a $h \in H$ such that $b^{\rho} = b^h$ i.e. $(h^{-1}b, h) \dots (h^{-1}b, h) = (b^{-1}b, h) \dots (b^{-1}b, h)$. From this, we obtain $h^{-1}b, h = h^{-1}b, h$. that $b^{\rho} = b^h$, i.e., $(h^{-1}b_1h) \cdots (h^{-1}b_rh) = (h_1^{-1})$ $h_1^{-1}b_1h_1$ · · · $(h_r^{-1}b_rh_r)$. From this, we obtain $h^{-1}b_ih = h_i^{-1}b_ih_i$. It follows that

$$
[h_i h^{-1}, b_i] = 1.
$$
 (3.8)

Since $H = O_{2'}(H) \rtimes P$, let $h_i h^{-1} = mk$, where $m \in O_{2'}(H)$ and $k \in P$. Next, we will show that $k \in C_P(Q_i)$. Since *H* acts on \overline{Q}_i , by Eq (3.8), we obtain that

$$
[h_i h^{-1}, \bar{b}_i] = 1. \tag{3.9}
$$

On the other hand,

$$
[h_i h^{-1}, \bar{b}_i] = [mk, \bar{b}_i] = [m, \bar{b}_i]^k [k, \bar{b}_i].
$$
\n(3.10)

Since \overline{Q}_i is abelian and $O_{2'}(H)$ is nilpotent, it follows that $[m, \overline{b}_i] = 1$. By (3.9) and (3.10), we obtain the \overline{b}_i - 1 that is $k \in C_{-}(\overline{b}_i) - C_{-}(\overline{Q})$. Thus by (3.7) we imply that $cosh(b^{-1})|_{-} - comin(m)|_{$ that $[k, \bar{b}_i] = 1$, that is, $k \in C_P(\bar{b}_i) = C_P(Q_i)$. Thus, by (3.7), we imply that $\rho \text{conj}(h^{-1})|_{Q_i} = \text{conj}(m)|_{Q_i}$.
This shows that $\rho \text{conj}(h^{-1})|_{Q_i} = \text{Aut}_{\mathbb{R}^d}(Q_{\mathbb{R}^d}(H))$. Since $Q_{\mathbb{R}^d}(H)$ is of odd order by Le This shows that $\rho \text{conj}(h^{-1})|_{O_{2'}(H)} \in \text{Aut}_{\text{Col}}(O_{2'}(H))$. Since $O_{2'}(H)$ is of odd order, by Lemma 2.8, $\text{proj}(h^{-1})|_{\text{Cov}} = \text{adj}_{\text{Cov}}(h)$ is $\text{proj}(h)$ and $\text{proj}(h)$ is of odd order, by Lemma 2.8, $\rho \text{conj}(h^{-1})|_{O_{2'}(H)} = id|_{O_{2'}(H)}$, that is, $\rho|_{O_{2'}(H)} = \text{conj}(h)|_{O_{2'}(H)}$. In Lemma 2.4, let us set

$$
\rho|_{O_{2'}(H)} = id|_{O_{2'}(H)}.
$$
\n(3.11)

Since $H/O_{2'}(H)$ is an abelian 2-group. Then

$$
\rho|_{H/O_{2'}(H)} = id|_{H/O_{2'}(H)}.
$$
\n(3.12)

By Lemma 2.6, Eqs (3.11) and (3.12) yield that $\rho|_{H/O_2(Z(O_{2'}(H)))} = id|_{H/O_2(Z(O_{2'}(H)))}$. Note that $|O_{2'}(H)|$
in odd number. We obtain that $O_{2}(Z(O_{2'}(H))) = 1$ i.e., $\rho = id$. Hence $\rho \in \text{Inn}(H)$. We are done is an odd number. We obtain that $O_2(Z(O_{2'}(H))) = 1$, i.e., $\rho = id$. Hence $\rho \in \text{Inn}(H)$. We are done.

A group *Q* is called a Hamilton 2-group if $Q = Q_8 \times E$, where Q_8 is a quaternion group of order 8 and *E* is an elementary abelian 2-group. Higman ($\lceil 1 \rceil$, Theorem 2.7) proved that the units of $\mathbb{Z}Q$ are trivial.

Theorem 3.4. Let $H = O_{2'}(H) \rtimes Q$ be a semidirect product of a normal 2-complement $O_{2'}(H)$ by a Hamilton Sylow 2-subgroup *Q*. Then $Out_{\mathbb{Z}}(H) = 1$.

Proof. Let $\rho \in Aut_{\mathbb{Z}}(H)$, and we will show that $\rho \in Inn(H)$. By the definition of $Aut_{\mathbb{Z}}(H)$, then there is a $v \in N_{\mathcal{U}(\mathbb{Z}H)}(H)$ such that $h^{\rho} = v^{-1} h v$ for all $h \in H$. Let $\epsilon : \mathbb{Z}H \to \mathbb{Z}(\sum_{h \in H} r_h h \mapsto \sum_{h \in H} r_h)$ be the suggestation map for $\mathbb{Z}H$ to \mathbb{Z} where $r_{\epsilon} \in \mathbb{Z}$ for each $h \in H$. Then we hav augmentation map for $\mathbb{Z}H$ to \mathbb{Z} , where $r_h \in \mathbb{Z}$ for each $h \in H$. Then we have $\epsilon(v) = 1$ or -1 since v is a unit of $\mathbb{Z}H$. Note that $\rho = \text{conj}(v) = \text{conj}(-v)$. Thus, we may suppose that $\epsilon(v) = 1$.

Consider the quotient $H/O_{2}(H)$. We set $\bar{h} := hO_{2}(H)$ for any $h \in H$ and set $\bar{H} := H/O_{2}(H)$. Denote by

$$
\theta: \mathbb{Z}H \to \mathbb{Z}\bar{H} \quad (\sum_{g \in H} r_g g \mapsto \sum_{g \in H} r_g \bar{g}), \tag{3.13}
$$

the natural homomorphism for $\mathbb{Z}H$ to $\mathbb{Z}\overline{H}$.

Since $v \in N_{\mathcal{U}(\mathbb{Z}H)}(H)$, then $v^{\theta} \in N_{\mathcal{U}(\mathbb{Z}H)}(\overline{H})$. By Lemma 2.9, ρ fixes $O_{2'}(H)$ and ρ induces an opportunity of $H/O_{\phi}(H)$. Since $h^{\rho} = v^{-1}h v$ for any $h \in H$ then automorphism of $H/O_{2'}(H)$. Since $h^{\rho} = v^{-1}hv$ for any $h \in H$, then

$$
(hO_{2'}(H))^{\rho|_{H/O_{2'}(H)}} = \overline{v^{-1}hv} = (v^{-1}hv)^{\theta} = (v^{\theta})^{-1}\overline{h}v^{\theta}.
$$
\n(3.14)

Thus, $\rho|_{H/O_{2'}(H)} \in \text{Aut}_{\mathbb{Z}}(H/O_{2'}(H))$. Since $H/O_{2'}(H)$ is a Hamilton 2-group, by Higman's result, $H/O_{2'}(H)$ has only trivial units. Hence one can find an element $\bar{a} = gO_{2'}(H) \subset H/O_{2'}(H)$ satisfying $\mathbb{Z}(H/O_{2'}(H))$ has only trivial units. Hence, one can find an element $\bar{g} = gO_{2'}(H) \in H/O_{2'}(H)$ satisfying $v^{\theta} = \bar{g}$. By Eq. (3.14), we obtain that $v^{\theta} = \bar{g}$. By Eq (3.14), we obtain that

$$
\rho|_{H/O_{2'}(H)} = \text{conj}(g)|_{H/O_{2'}(H)}.
$$
\n(3.15)

Since ρ conj(g^{-1}) ∈ Aut_Z(*H*) ⊆ Out_c(*H*)∩Out_{Col}(*H*). By Lemma 2.9, ρ conj(g^{-1})|_{O2'}(*H*) ∈ Aut(*O_{2'}*(*H*)).
st. we show that ρ conj(g^{-1})|₀ cm ∈ Aut π (*O₂*(*H*)). Let $p \in \pi$ (*O₂*(*H*)) a Next, we show that $\rho \text{conj}(g^{-1})|_{O_2(I)} \in \text{Aut}_{\text{Col}}(O_{2'}(H))$. Let $p \in \pi(O_{2'}(H))$ and $P \in \text{Syl}_p(O_{2'}(H))$. By Lemma 2.10, then $\rho \text{conj}(g^{-1})|_P = \text{conj}(n)|_P$ for some $n \in O_{2'}(H)$. Consequently, this shows that $\rho \text{conj}(g^{-1})|_{P} = \text{Aut}_{\mathbb{R}'}(O_{\mathbb{R}'}(H))$. Write $\alpha := \rho \text{conj}((nq)^{-1})$. By Eq. (3.15), we obtain that $\rho \text{conj}(g^{-1})|_{O_{2'}(H)} \in \text{Aut}_{\text{Col}}(O_{2'}(H))$. Write $\gamma := \rho \text{conj}((ng)^{-1})$. By Eq (3.15), we obtain that

$$
\gamma|_{H/O_{2'}(H)} = id|_{H/O_{2'}(H)}.\tag{3.16}
$$

Since Out_Z(*H*) is an elementary abelian 2-group, we may suppose that $o(\gamma)$ is a power of 2. So is $\gamma|_{O_{2'}(H)}$. Note that $\gamma|_{O_{2'}(H)} = \rho \text{conj}(g^{-1})\text{conj}(n^{-1})|_{O_{2'}(H)} \in \text{Aut}_{\text{Col}}(O_{2'}(H))$. By Lemma 2.8 and the fact that the order of $\gamma|_{O_{2'}(H)}$ is a power of 2, we deduce that

$$
\gamma|_{O_{2'}(H)} = id|_{O_{2'}(H)}.\tag{3.17}
$$

Now, by Lemma 2.6, Eqs (3.16) and (3.17) one can see that $\gamma|_{H/O_2(Z(O_{2'}(H)))} = id|_{H/O_2(Z(O_{2'}(H)))}$. Since (H) has odd order we have $\gamma = id$. Thus, $cosh((na)^{-1}) = id$. Hence $\alpha \in Inn(H)$. We are done $O_{2'}(H)$ has odd order, we have $\gamma = id$. Thus, $\rho conj((ng)^{-1}) = id$. Hence $\rho \in Inn(H)$. We are done.

4. Conclusions

In conclusion, we investigate the normalizer problem of finite groups with normal 2-complements. We have proven that *H* has the normalizer property, if *H* is a semidirect product of a nilpotent normal 2complement by an abelian Sylow 2-subgroup or *H* is a semidirect product of a normal 2-complement by a Hamilton Sylow 2-subgroup. Additionally, we have proven that the normalizer property holds for finite groups with a nilpotent subgroup of index 2.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Supported by the National Natural Science Foundation of China (11871292).

Conflict of interest

The authors declare there is no conflict of interest.

References

- 1. S. K. Sehgal, *Units in Integral Group Rings*, Longman Scientific and Technical Press, London, 1993.
- 2. D. B. Coleman, On the modular group ring of a *p*-group, *Proc. Am. Math. Soc.*, 5 (1964), 511–514. https://doi.org/10.2307/[2034735](https://dx.doi.org/https://doi.org/10.2307/2034735)
- 3. S. Jackowski, Z. S. Marciniak, Group automorphisms inducing the identity map on cohomology, *J. Pure Appl. Algebra*, 44 (1987), 241–250. https://doi.org/10.1016/[0022-4049\(87\)90028-4](https://dx.doi.org/https://doi.org/10.1016/0022-4049(87)90028-4)
- 4. M. Mazur, The normalizer of a group in the unit group of its group ring, *J. Algebra*, 212 (1999), 175–189. https://doi.org/10.1006/[jabr.1998.7629](https://dx.doi.org/https://doi.org/10.1006/jabr.1998.7629)
- 5. M. Mazur, Automorphisms of finite groups, *Commun. Algebra*, 22 (1994), 6259–6271. https://doi.org/10.1080/[00927879408825187](https://dx.doi.org/https://doi.org/10.1080/00927879408825187)
- 6. M. Mazur, On the isomorphism problem for infinite group rings, *Expositiones Math.*, 13 (1995), 433–445. https://doi.org/0723-0869/95/[050433-445](https://dx.doi.org/https://doi.org/0723-0869/95/050433-445)
- 7. M. Hertweck, A counterexample to the isomorphism problem for integral group rings, *Ann. Math.*, 154 (2001), 115–138. https://doi.org/10.2307/[3062112](https://dx.doi.org/https://doi.org/10.2307/3062112)
- 8. J. K. Hai, J. D. Guo, The normalizer property for the integral group ring of the wreath product of two symmetric groups S_k and S_n , *Commun. Algebra*, **45** (2017), 1278–1283. https://doi.org/10.1080/[00927872.2016.1175613](https://dx.doi.org/https://doi.org/10.1080/00927872.2016.1175613)
- 9. A. van Antwerpen, Coleman automorphisms of finite groups and their minimal normal subgroups, *J. Pure Appl. Algebra*, 222 (2018), 3379–3394. https://doi.org/10.1016/[j.jpaa.2017.12.013](https://dx.doi.org/https://doi.org/10.1016/j.jpaa.2017.12.013)
- 10. M. Hertweck, Class-preserving Coleman automorphisms of finite groups, *Monatsh. Math.*, 136 (2002), 1–7. https://doi.org/10.1007/[s006050200029](https://dx.doi.org/https://doi.org/10.1007/s006050200029)
- 11. M. Hertweck, Local analysis of the normalizer problem, *J. Pure Appl. Algebra*, 163 (2001), 259–276. https://doi.org/10.1016/[S0022-4049\(00\)00167-5](https://dx.doi.org/https://doi.org/10.1016/S0022-4049(00)00167-5)
- 12. M. Hertweck, E. Jespers, Class-preserving automorphisms and the normalizer property for Blackburn groups, *J. Group Theory*, 12 (2009), 157–169. https://doi.org/10.1515/[JGT.2008.068](https://dx.doi.org/https://doi.org/10.1515/JGT.2008.068)
- 13. Z. S. Marciniak, K. W. Roggenkamp, The normalizer of a finite group in its integral group ring and Čech cohomology, *Algebra Representation Theory*, **28** (2001), 159–188.
- 14. H. Kurzweil, B. Stellmacher, *The Theory of Finite Groups: An Introduction*, Springer-Verlag, New York, 2004.
- 15. M. Hertweck, Class-preserving automorphisms of finite groups, *J. Algebra*, 241 (2001), 1–26. https://doi.org/10.1006/[jabr.2001.8760](https://dx.doi.org/https://doi.org/10.1006/jabr.2001.8760)
- 16. M. Hertweck, W. Kimmerle, Coleman automorphisms of finite groups, *Math. Z.*, 242 (2002), 203–215. https://doi.org/10.1007/[s002090100318](https://dx.doi.org/https://doi.org/10.1007/s002090100318)
- 17. Y. Li, S. K. Sehgal, M. M. Parmenter, On the normalizer property for integral group rings, *Commun. Algebra*, 27 (1999), 4217–4223. https://doi.org/10.1080/[00927879908826692](https://dx.doi.org/https://doi.org/10.1080/00927879908826692)

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)