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Abstract: Assume that H is a finite group that has a normal 2-complement. Under some conditions,
it is proven that the normalizer property holds for H. In particular, if there is a nilpotent subgroup of
index 2 in H, then H has the normalizer property. The result of Li, Sehgal and Parmenter, stating that
the normalizer property holds for finite groups that have an abelian subgroup of index 2 is generalized.
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1. Introduction

Throughout this paper, H denotes a finite group and q is a prime. Denote the integral group ring
of H over Z by ZH. The unit group of ZH is denoted byU(ZH) denote andZ(U(ZH)) to denote the
center ofU(ZH). The normalizer problem asks whether NU(ZH)(H) = HZ(U(ZH)), where NU(ZH)(H)
is the normalizer of H in U(ZH) (see [1], Problem 43). If the equation holds, then it is said that H
has the normalizer property. Historically, it has been proven that the normalizer property holds for
finite nilpotent groups in Coleman [2]. Jackowski and Marciniak [3] proved that the finite group having
a normal Sylow 2-subgroup has the normalizer property. In particular, groups of odd order have the
normalizer property. A few years later, Mazur [4–6] found that the well-known isomorphism problem of
the integral group ring and the normalizer problem are closely connected. Based on Mazur’s observation,
among other things, a first counterexample to the normalizer problem was found by Hertweck [7], and
later a first counterexample to the isomorphism problem. However, investigating which groups have the
normalizer property is still an interesting problem. Recently, a number of related works on this subject
were published, see [8–12].

To explain our results in detail, as in [10], some kinds of automorphisms of finite groups are defined
in the following:

Let θ ∈ Aut(H). We call θ a class-preserving automorphism if θ maps every element of H to its
conjugate. Denote by Autc(H) the class-preserving automorphism group of H.
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Let θ ∈ Aut(H). We call θ a Coleman automorphism if, for any P ∈ Syl(H), the restriction of θ to P
coincides with that of some inner automorphism of H. Denote by AutCol(H) the Coleman automorphism
group of H.

AutZ(H) = {θu ∈ Aut(H) | xθu = u−1xu, u ∈ NU(ZH)(H), x ∈ H} ≤ Aut(H).
Write

Outc(H) = Autc(H)/Inn(H),

OutCol(H) = AutCol(H)/Inn(H),

OutZ(H) = AutZ(H)/Inn(H).

Jackowski and Marciniak [3] showed that NU(ZH)(H) = HZ(U(ZH)) if and only if OutZ(H) = 1.
In addition, OutZ(H) ≤ Outc(H) ∩ OutCol(H), and OutZ(H) is an elementary abelian 2-group (see [1]).
Thus, OutZ(H) = 1 is equivalent to the order of Outc(H) ∩ OutCol(H) being an odd number, i.e., H has
the normalizer property if and only if the order of Outc(H) ∩ OutCol(H) is an odd number.

In this paper, the normalizer problem of finite groups with normal 2-complements is checked.
Mazur [5] conjectured that finite groups having abelian Sylow 2-subgroups have the normalizer property.
He proved that the conjecture holds if Sylow 2-subgroups have order 2. Later, this result was generalized
by Hertweck [11], who proved that H has the normalizer property, provided that H has a normal 2-
complement and H has a cycli Sylow 2-subgroup or an abelian of exponent at most 4. Marciniak and
Roggenkamp [13] showed that the normalizer property holds for metabelian groups having abelian
Sylow 2-subgroups. They also constructed a metabelian group H = (C4

2 × C3) ⋊ C3
2 such that the order

of Outc(H) ∩ OutCol(H) is an even number. This example illustrates that if the Sylow 2-subgroup of H
is not abelian, then in general it is not the case that the order of Outc(H) ∩ OutCol(H) is an odd number.
Our main results are the following:

Theorem 1.1. Let M be a subgroup of H such that |H : M| = 2. If M = O2(M) × O2′(M), then
OutZ(H) = 1, that is, H has the normalizer property.

Theorem 1.2. Let H = O2′(H) ⋊ P be a semidirect product of a nilpotent normal 2-complement
O2′(H) by an abelian Sylow 2-subgroup P. Then the order of Outc(H) ∩OutCol(H) is an odd number. In
particular, H has the normalizer property.

Theorem 1.3. Let H = O2′(H) ⋊ Q be a semidirect product of a normal 2-complement O2′(H) by a
Hamilton Sylow 2-subgroup Q. Then OutZ(H) = 1.

Let M ≤ H or M⊴H, and σ ∈ Aut(H). If σ fixes M or H/M, which will be denoted by σ|M or σ|H/M,
respectively. For a h ∈ H, we use conj(h) to denote the inner automorphism induced by h. For any p||H|,
denote by Op(H) the largest normal p-subgroup of H and Op′(H) the largest normal p′-subgroup of H.
The other notation is standard; refer to [10, 14].

2. Preliminaries

Lemma 2.1. [11] Assume that H has cyclic Sylow 2-subgroups. Then the order of Outc(H)∩OutCol(H)
is an odd number.

Lemma 2.2. [11] Let K be a normal 2-complement of H. Suppose that P ∈ Syl2(H), and D ⊴ P
such that exp(P/D) ⩽ 4. If P/D is abelian and θ ∈ AutZ(H), then there is τ ∈ Inn(H) such that
θτ|KD ∈ AutCol(KD).
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Lemma 2.3. [10] Suppose that M⊴H. Suppose that q does not divide |H/M|. Then we have the following:
(1) If θ ∈ Autc(H) is a q-element, then θ|M ∈ Autc(M);
(2) If θ ∈ AutCol(H) is a q-element, then θ|M ∈ AutCol(M);
(3) If Outc(M) or OutCol(M) is a q′-group, then Outc(H) or OutCol(H) is also a q′-group.

Lemma 2.4. Let M ≤ H, and let η ∈ Aut(H) be a q-element. If η|M = conj(h)|M for some h ∈ H, then
there exists a δ ∈ Inn(H) with the property that ηδ|M = id|M and o(ηδ) is still a power of the prime q.

Proof. Set o(η) = qi for some positive integer i. Then ηconj(h−1)|M = id|M. Let j be a positive integer
satisfying (ηconj(h−1)) j is the q-part of ηconj(h−1), where ( j, q) = 1. Thus, there are integers s and t
such that s j+ tqi = 1. Obviously, the order of (ηconj(h−1))s j is a power of q, and (ηconj(h−1))s j|M = id|M.
Since Inn(H) ⊴ Aut(H), then there is a δ ∈ Inn(H) such that (ηconj(h−1))s j = ηs jδ = η1−tqi

δ = ηδ. We
are done.

Lemma 2.5. Let θ ∈ Aut(H) be a q-element. Suppose that M ≤ H, such that θ fixes M. If θ|M =
conj(h)|M for some h ∈ H, then we may find a q-element t ∈ H satisfying θ|M = conj(t)|M.

Proof. Set o(θ) = qi, o(h) = q jt, and (q, t) = 1, where i, j, and t are positive integers. Set k := max{i, j}.
Since (qk, t) = 1, then there are integers u and v satisfying uqk + vt = 1. Write t = hvt. Consequently, t is
a q-element. For any m ∈ M, we have m = mθ

uqk

= mhuqk

, it follows that mθ = mh = mhuqk+vt
= (mhuqk

)hvt
=

mhvt
= mt, i.e., θ|M = conj(t)|M. We are done.

Lemma 2.6. [15] Let η ∈ Aut(H) be a q-element. Suppose that M ⊴ H, such that η|M = id|M, and
that η|H/M = id|H/M. Then η|H/Oq(Z(M)) = id|H/Oq(Z(M)). Further, if η|R = id|R for some R ∈ Sylq(H) , then
η ∈ Inn(H).

Lemma 2.7. [12] Assume that Q is a q-group and Q̄ = Q/Φ(Q), where Φ(Q) is the Frattini subgroup
of Q. Suppose that B is an abelian q′-group such that B acts on Q. Then one can find some x ∈ Q
satisfying CB(Q) = CB(x) = CB(Q̄) = CB(x̄).

Lemma 2.8. [16] Let π(H) and π(AutCol(H)) be the sets of prime divisors of |H| and |AutCol(H)|,
respectively. Then π(AutCol(H)) ⊆ π(H).

Lemma 2.9. Let θ ∈ Aut(H), and M ⊴ H. Then we have the following:
(1) If θ ∈ Autc(H), then θ fixes M, and θ|H/M ∈ Autc(H/M);
(2) If θ ∈ AutCol(H), then θ fixes M, and θ|H/M ∈ AutCol(H/M).

Proof. These proofs are obvious, so we omit them.

Lemma 2.10. [8] Let v ∈ NU(ZH)(H), M ⊴ H, and let Q be a q-subgroup of H. Assume that vη = Mh ∈
H/M for some h ∈ H, where η : ZH → Z(H/M) is the natural homomorphism. Then one can find some
m ∈ M such that v−1yv = (mh)−1y(mh) for all y ∈ Q.

3. Proof of The Theorems

Theorem 3.1. Let M be a subgroup of H satisfying |H : M| = 2. If M = O2(M) × O2′(M), then
OutZ(H) = 1, that is, H has the normalizer property.
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Proof. Let ρ ∈ AutZ(H), and we will show that ρ ∈ Inn(H). If O2(M) = 1, then Sylow 2-subgroups
of H are cyclic. By Mazur’s result, then OutZ(H) = 1. Hereafter, we suppose that O2(M) , 1. Let
Q ∈ Syl2(H). Then O2(M) = Q ∩ M. Since by assumption |H : M| = 2, it follows that O2′(M) is a
normal 2-complement Q in H. By Lemma 2.2, then ργ|M ∈ AutCol(M) for some γ ∈ Inn(H). Write
β = ργ. Since OutZ(H) is an elementary abelian 2-group, we may suppose that o(β) is a power of 2. So
is β|M. Note that M = O2(M) × O2′(M), where O2(M) ∈ Syl2(M), which implies that β|M ∈ Inn(M) by
Lemma 2.3(3). Thus, β|M = conj(x)|M for some x ∈ M. By Lemma 2.4, we obtain that βδ|M = id|M for
some δ ∈ Inn(H), and o(βδ) is still a power of 2. By replacing β with βδ, we may suppose that

β|M = id|M. (3.1)

Since H/M is cyclic, we obtain that
β|H/M = idH/M. (3.2)

It is clear that β acts on the set Syl2(H). Since |Syl2(H)| is an odd number and β is of 2-power order,
one can find an R ∈ Syl2(H) such that Rβ = R. Note that AutZ(H) ≤ AutCol(H), so β|R = conj(g)|R for
some g ∈ H. By Lemma 2.5, we may suppose that g is a 2-element. It follows that Rβ = R = Rg, i.e.,
g ∈ NH(R), which implies that g ∈ R. Note that O2(M) = M ∩ R. Then we have β|O2(M) = conj(g)|O2(M).
However, β|O2(M) = id|O2(M). Consequently, xg = x for all x ∈ O2(M), that is, g ∈ CR(O2(M)).

Case 1. Assume that g is not in O2(M). Since |R/O2(M)| = |R/M ∩ R| = |MR/M| = |H/M| = 2,
we obtain that O2(M) is a maximal subgroup of R. Thus, R =< O2(M), g >. Since g ∈ CR(O2(M)), it
implies that g ∈ Z(R), and thus

β|R = conj(g)|R = id|R. (3.3)

Hence, by Lemma 2.6, Eqs (3.1)–(3.3) yield that β ∈ Inn(H), i.e., ρ ∈ Inn(H), as desired.

Case 2. Assume that g ∈ O2(M). Recall that β|R = conj(g)|R. Write τ = βconj(g−1). Then we have

τ|R = idR. (3.4)

Since M = O2(M) × O2′(M), g ∈ CR(O2(M)) and Eq (3.1), we have

τ|M = idM. (3.5)

In addition, by Eq (3.2) and g ∈ O2(M) ≤ M, we obtain that

τ|H/M = idH/M. (3.6)

Let m be the 2′-component of the order of τ. Then τm is of 2-power order and satisfies the following
conditions: τm|R = id|R, τm|M = idM, τ

m|H/M = idH/M. Thus, by Lemma 2.6, τm ∈ Inn(H). Since OutZ(H)
is an elementary abelian 2-group, this implies that τ ∈ Inn(H), i.e., βconj(g−1) ∈ Inn(H). Hence
ρ ∈ Inn(H). We are done.

The following results are immediate from Theorem 3.1, which generalizes the finite version of a
result due to Li et al. ( [17], Theorem 2).

Corollary 3.2. Let F(H) be the Fitting subgroup of H satisfying |H : F(H)| = 2. Then OutZ(H) = 1,
that is, H has the normalizer property.
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Theorem 3.3. Let H = O2′(H) ⋊ P be a semidirect product of a nilpotent normal 2-complement O2′(H)
by an abelian Sylow 2-subgroup P. Then the order of Outc(H) ∩ OutCol(H) is an odd number. In
particular, H has the normalizer property.

Proof. Let ρ ∈ Autc(H) ∩ AutCol(H) be of 2-power order. Our goal is to prove that ρ ∈ Inn(H). Since
H = O2′(H) ⋊ P is a semidirect product. First, we show that ρconj(h−1)|O2′ (H) ∈ AutCol(O2′(H)) for
some h ∈ H. Let π(O2′(H)) = {q1, q2, · · · , qr} and let Qi ∈ Sylqi

(O2′(H)), where i = 1, 2, · · · , r. Then
O2′(H) = Q1 × Q2 × · · · × Qr. Since ρ ∈ AutCol(H), we obtain that ρ|Qi = conj(ti)|Qi for some ti ∈ H,
where i = 1, 2, · · · , r. In Lemma 2.5, we have

ρ|Qi = conj(hi)|Qi , (3.7)

where hi ∈ H is a 2-element. Since Qi ⊴ H, thus P acts on Qi. By Lemma 2.7, CP(Qi) = CP(bi) =
CP(b̄i) = CP(Q̄i) for some bi ∈ Qi. Set b = b1b2 · · · br. Since ρ ∈ Autc(H), then there is a h ∈ H such
that bρ = bh, i.e., (h−1b1h) · · · (h−1brh) = (h−1

1 b1h1) · · · (h−1
r brhr). From this, we obtain h−1bih = h−1

i bihi.
It follows that

[hih−1, bi] = 1. (3.8)

Since H = O2′(H) ⋊ P, let hih−1 = mk, where m ∈ O2′(H) and k ∈ P. Next, we will show that
k ∈ CP(Qi). Since H acts on Q̄i, by Eq (3.8), we obtain that

[hih−1, b̄i] = 1. (3.9)

On the other hand,
[hih−1, b̄i] = [mk, b̄i] = [m, b̄i]k[k, b̄i]. (3.10)

Since Q̄i is abelian and O2′(H) is nilpotent, it follows that [m, b̄i] = 1. By (3.9) and (3.10), we obtain
that [k, b̄i] = 1, that is, k ∈ CP(b̄i) = CP(Qi). Thus, by (3.7), we imply that ρconj(h−1)|Qi = conj(m)|Qi .
This shows that ρconj(h−1)|O2′ (H) ∈ AutCol(O2′(H)). Since O2′(H) is of odd order, by Lemma 2.8,
ρconj(h−1)|O2′ (H) = id|O2′ (H), that is, ρ|O2′ (H) = conj(h)|O2′ (H). In Lemma 2.4, let us set

ρ|O2′ (H) = id|O2′ (H). (3.11)

Since H/O2′(H) is an abelian 2-group. Then

ρ|H/O2′ (H) = id|H/O2′ (H). (3.12)

By Lemma 2.6, Eqs (3.11) and (3.12) yield that ρ|H/O2(Z(O2′ (H))) = id|H/O2(Z(O2′ (H))). Note that |O2′(H)|
is an odd number. We obtain that O2(Z(O2′(H))) = 1, i.e., ρ = id. Hence ρ ∈ Inn(H). We are done.

A group Q is called a Hamilton 2-group if Q = Q8 × E, where Q8 is a quaternion group of order 8
and E is an elementary abelian 2-group. Higman ( [1], Theorem 2.7) proved that the units of ZQ
are trivial.

Theorem 3.4. Let H = O2′(H) ⋊ Q be a semidirect product of a normal 2-complement O2′(H) by a
Hamilton Sylow 2-subgroup Q. Then OutZ(H) = 1.
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Proof. Let ρ ∈ AutZ(H), and we will show that ρ ∈ Inn(H). By the definition of AutZ(H), then there
is a v ∈ NU(ZH)(H) such that hρ = v−1hv for all h ∈ H. Let ϵ : ZH → Z (

∑
h∈H rhh 7→

∑
h∈H rh) be the

augmentation map for ZH to Z, where rh ∈ Z for each h ∈ H. Then we have ϵ(v) = 1 or −1 since v is a
unit of ZH. Note that ρ = conj(v) = conj(−v). Thus, we may suppose that ϵ(v) = 1.

Consider the quotient H/O2′(H). We set h̄ := hO2′(H) for any h ∈ H and set H̄ := H/O2′(H).
Denote by

θ : ZH → ZH̄ (
∑
g∈H

rgg 7→
∑
g∈H

rgḡ), (3.13)

the natural homomorphism for ZH to ZH̄.
Since v ∈ NU(ZH)(H), then vθ ∈ NU(ZH̄)(H̄). By Lemma 2.9, ρ fixes O2′(H) and ρ induces an

automorphism of H/O2′(H). Since hρ = v−1hv for any h ∈ H, then

(hO2′(H))ρ|H/O2′ (H) = v−1hv = (v−1hv)θ = (vθ)−1h̄vθ. (3.14)

Thus, ρ|H/O2′ (H) ∈ AutZ(H/O2′(H)). Since H/O2′(H) is a Hamilton 2-group, by Higman’s result,
Z(H/O2′(H)) has only trivial units. Hence, one can find an element ḡ = gO2′(H) ∈ H/O2′(H) satisfying
vθ = ḡ. By Eq (3.14), we obtain that

ρ|H/O2′ (H) = conj(g)|H/O2′ (H). (3.15)

Since ρconj(g−1) ∈ AutZ(H) ⊆ Outc(H)∩OutCol(H). By Lemma 2.9, ρconj(g−1)|O2′ (H) ∈ Aut(O2′(H)).
Next, we show that ρconj(g−1)|O2′ (H) ∈ AutCol(O2′(H)). Let p ∈ π(O2′(H)) and P ∈ Sylp(O2′(H)). By
Lemma 2.10, then ρconj(g−1)|P = conj(n)|P for some n ∈ O2′(H). Consequently, this shows that
ρconj(g−1)|O2′ (H) ∈ AutCol(O2′(H)). Write γ := ρconj((ng)−1). By Eq (3.15), we obtain that

γ|H/O2′ (H) = id|H/O2′ (H). (3.16)

Since OutZ(H) is an elementary abelian 2-group, we may suppose that o(γ) is a power of 2. So is
γ|O2′ (H). Note that γ|O2′ (H) = ρconj(g−1)conj(n−1)|O2′ (H) ∈ AutCol(O2′(H)). By Lemma 2.8 and the fact
that the order of γ|O2′ (H) is a power of 2, we deduce that

γ|O2′ (H) = id|O2′ (H). (3.17)

Now, by Lemma 2.6, Eqs (3.16) and (3.17) one can see that γ|H/O2(Z(O2′ (H))) = id|H/O2(Z(O2′ (H))). Since
O2′(H) has odd order, we have γ = id. Thus, ρconj((ng)−1) = id. Hence ρ ∈ Inn(H). We are done.

4. Conclusions

In conclusion, we investigate the normalizer problem of finite groups with normal 2-complements.
We have proven that H has the normalizer property, if H is a semidirect product of a nilpotent normal 2-
complement by an abelian Sylow 2-subgroup or H is a semidirect product of a normal 2-complement
by a Hamilton Sylow 2-subgroup. Additionally, we have proven that the normalizer property holds for
finite groups with a nilpotent subgroup of index 2.
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