Research article

Reaction-diffusion model of HIV infection of two target cells under optimal control strategy

  • † These authors contributed equally to the work
  • Received: 26 February 2024 Revised: 31 May 2024 Accepted: 12 June 2024 Published: 26 June 2024
  • In order to study the effects of reverse transcriptase inhibitors, protease inhibitors and flavonoids on two target cells infected by HIV in a heterogeneous environment, an HIV mathematical model at the cellular level was established. Research shows that infected cells can be categorized into immature infected cells, latent infected cells, and mature infected cells based on the infection process. The basic reproduction number $ R_{0} $ was established, and it is proved that $ R_{0} $ serves as a threshold parameter: When $ R_{0} < 1 $, the disease-free steady state is globally asymptotically stable, and the disease is extinct; when $ R_{0} > 1 $, the solution of the system is uniformly persistent, and the virus exists. Considering the huge advantages of drug intervention in controlling HIV infection, the optimal control problem was proposed under the condition that the constant diffusion coefficient is positive, so as to minimize the total number of HIV-infected cells and the cost of drug treatment. To illustrate our theoretical results, we performed numerical simulations in which the model parameters were obtained with reference to some medical studies. The results showed that: (1) as $ R_{0} $ increases, the risk of HIV transmission increases; (2) pharmacological interventions are important in early treatment of HIV spread and control of viral load in the body; (3) the treatment process must consider the heterogeneity of medication, otherwise it will not be conducive to suppressing the spread of the virus and will increase costs.

    Citation: Ziang Chen, Chunguang Dai, Lei Shi, Gaofang Chen, Peng Wu, Liping Wang. Reaction-diffusion model of HIV infection of two target cells under optimal control strategy[J]. Electronic Research Archive, 2024, 32(6): 4129-4163. doi: 10.3934/era.2024186

    Related Papers:

  • In order to study the effects of reverse transcriptase inhibitors, protease inhibitors and flavonoids on two target cells infected by HIV in a heterogeneous environment, an HIV mathematical model at the cellular level was established. Research shows that infected cells can be categorized into immature infected cells, latent infected cells, and mature infected cells based on the infection process. The basic reproduction number $ R_{0} $ was established, and it is proved that $ R_{0} $ serves as a threshold parameter: When $ R_{0} < 1 $, the disease-free steady state is globally asymptotically stable, and the disease is extinct; when $ R_{0} > 1 $, the solution of the system is uniformly persistent, and the virus exists. Considering the huge advantages of drug intervention in controlling HIV infection, the optimal control problem was proposed under the condition that the constant diffusion coefficient is positive, so as to minimize the total number of HIV-infected cells and the cost of drug treatment. To illustrate our theoretical results, we performed numerical simulations in which the model parameters were obtained with reference to some medical studies. The results showed that: (1) as $ R_{0} $ increases, the risk of HIV transmission increases; (2) pharmacological interventions are important in early treatment of HIV spread and control of viral load in the body; (3) the treatment process must consider the heterogeneity of medication, otherwise it will not be conducive to suppressing the spread of the virus and will increase costs.


    加载中


    [1] X. Tian, J. Chen, X. Wang, Y. Xie, X. Zhang, D. Han, et al., Global, regional, and national HIV/AIDS disease burden levels and trends in 1990–2019: A systematic analysis for the global burden of disease 2019 study, Front. Public Health, 11 (2023), 1068664. https://doi.org/10.3389/fpubh.2023.1068664 doi: 10.3389/fpubh.2023.1068664
    [2] D. Jahagirdar, M. K. Walters, A. Novotney, E. D. Brewer, T. D. Frank, A. Carter, et al., Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories: the Global Burden of Diseases Study 2019, Lancet HIV, 8 (2021), e633–e651. https://doi.org/10.1016/S2352-3018(21)00152-1 doi: 10.1016/S2352-3018(21)00152-1
    [3] S. K. Cribbs, K. Crothers, A. Morris, Pathogenesis of HIV-related lung disease: Immunity, infection, and inflammation, Physiol. Rev., 100 (2020), 603–632. https://doi.org/10.1152/physrev.00039.2018 doi: 10.1152/physrev.00039.2018
    [4] A. S. Fauci, G. Pantaleo, S. Stanley, D. Weissman, Immunopathogenic mechanisms of HIV infection, Ann. Int. Med., 124 (1996), 654–663. https://doi.org/10.7326/0003-4819-124-7-199604010-00006 doi: 10.7326/0003-4819-124-7-199604010-00006
    [5] R. F. Siliciano, W. C. Greene, HIV latency, Cold Spring Harbor Perspect. Med., 1 (2011), a007096. https://doi.org/10.1101/cshperspect.a007096 doi: 10.1101/cshperspect.a007096
    [6] N. H. Alshamrani, Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread, Chaos Solitons Fractals, 150 (2021), 110422. https://doi.org/10.1016/j.chaos.2020.110422 doi: 10.1016/j.chaos.2020.110422
    [7] Y. Yang, R. Xu, Mathematical analysis of a delayed HIV infection model with saturated CTL immune response and immune impairment, J. Appl. Math. Comput., 68 (2022), 2365–2380. https://doi.org/10.1007/s12190-021-01621-x doi: 10.1007/s12190-021-01621-x
    [8] Y. Tian, X. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate, Nonlinear Anal. Real World Appl., 16 (2014), 17–26. https://doi.org/10.1016/j.nonrwa.2013.09.002 doi: 10.1016/j.nonrwa.2013.09.002
    [9] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001 doi: 10.1016/j.bulm.2004.02.001
    [10] X. Wang, Q. Ge, Y. Chen, Threshold dynamics of an HIV infection model with two distinct cell subsets, Appl. Math. Lett., 103 (2020), 106242. https://doi.org/10.1016/j.aml.2020.106242 doi: 10.1016/j.aml.2020.106242
    [11] P. W. Nelson, A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73–94. https://doi.org/10.1016/S0025-5564(02)00099-8 doi: 10.1016/S0025-5564(02)00099-8
    [12] W. Zuo, M. Shao, Stationary distribution, extinction and density function for a stochastic HIV model with a Hill-type infection rate and distributed delay, Electron. Res. Arch., 30 (2022), 4066–4085. https://doi.org/10.3934/era.2022206 doi: 10.3934/era.2022206
    [13] R. Zhang, J. Wang, On the global attractivity for a reaction–diffusion malaria model with incubation period in the vector population, J. Math. Biol., 84 (2022), 53. https://doi.org/10.1007/s00285-022-01751-1 doi: 10.1007/s00285-022-01751-1
    [14] M. Cao, J. Zhao, J. Wang, R. Zhang, Dynamical analysis of a reaction-diffusion vector-borne disease model incorporating age-space structure and multiple transmission routes, Commun. Nonlinear. Sci., 127 (2023), 107550. https://doi.org/10.1016/j.cnsns.2023.107550 doi: 10.1016/j.cnsns.2023.107550
    [15] A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-A doi: 10.1016/0025-5564(93)90043-A
    [16] V. Müller, J. F. Vigueras-Gómez, S. Bonhoeffer, Decelerating decay of latently infected cells during prolonged therapy for human immunodeficiency virus type 1 infection, J. Virol., 76 (2002), 8963–8965. https://doi.org/10.1128/jvi.76.17.8963-8965.2002 doi: 10.1128/jvi.76.17.8963-8965.2002
    [17] H. Wang, R. Xu, Z. Wang, H. Chen, Global dynamics of a class of HIV-1 infection models with latently infected cells, Nonlinear Anal. Model., 20 (2015), 21–37. https://doi.org/10.15388/NA.2015.1.2 doi: 10.15388/NA.2015.1.2
    [18] X. Wang, J. Yang, X. Luo, Asymptotical profiles of a viral infection model with multi-target cells and spatial diffusion, Comput. Math. Appl., 77 (2019), 389–406. https://doi.org/10.1016/j.camwa.2018.09.043 doi: 10.1016/j.camwa.2018.09.043
    [19] K. Wang, W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78–95. https://doi.org/10.1016/j.mbs.2007.05.004 doi: 10.1016/j.mbs.2007.05.004
    [20] D. S. Green, D. M. Center, W. W. Cruikshank, Human immunodeficiency virus type 1 gp120 reprogramming of CD4+ T-cell migration provides a mechanism for lymphadenopathy, J. Virol., 83 (2009), 5765–5772. https://doi.org/10.1128/jvi.00130-09 doi: 10.1128/jvi.00130-09
    [21] H. Ewers, V. Jacobsen, E. Klotzsch, A. E. Smith, A. Helenius, V. Sandoghdar, Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers, Nano Lett., 7 (2007), 2263–2266. https://doi.org/10.1021/nl070766y doi: 10.1021/nl070766y
    [22] H. Boukari, B. Brichacek, P. Stratton, S. F. Mahoney, J. D. Lifson, L. Margolis, et.al., Movements of HIV-virions in human cervical mucus, Biomacromolecules, 10 (2009), 2482–2488. https://doi.org/10.1021/bm900344q doi: 10.1021/bm900344q
    [23] M. C. Strain, D. D. Richman, J. K. Wong, H. Levine, Spatiotemporal dynamics of HIV propagation, J. Theoret. Biol., 218 (2002), 85–96. https://doi.org/10.1006/jtbi.2002.3055 doi: 10.1006/jtbi.2002.3055
    [24] P. Wu, H. Zhao, Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity, J. Franklin Inst., 358 (2021), 5552–5587. https://doi.org/10.1016/j.jfranklin.2021.05.014 doi: 10.1016/j.jfranklin.2021.05.014
    [25] F. B. Wang, Y. Huang, X. Zou, Global dynamics of a PDE in-host viral model, Appl. Anal., 93 (2014), 2312–2329. https://doi.org/10.1080/00036811.2014.955797 doi: 10.1080/00036811.2014.955797
    [26] D. Baleanu, M. Hasanabadi, A. M. Vaziri, A. Jajarmi, A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach, Chaos Solitons Fractals, 167 (2023), 113078. https://doi.org/10.1016/j.chaos.2022.113078 doi: 10.1016/j.chaos.2022.113078
    [27] E. F. Arruda, C. M. Dias, C. V. de Magalhã, D. H. Pastore, R. C. Thomé, H. M. Yang, An optimal control approach to HIV immunology, Appl. Math., 6 (2015), 1115–1130. https://doi.org/10.4236/am.2015.66102 doi: 10.4236/am.2015.66102
    [28] K. O. Okosun, O. D. Makinde, I. Takaidza, Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives, Appl. Math. Model., 37 (2013), 3802–3820. https://doi.org/10.1016/j.apm.2012.08.004 doi: 10.1016/j.apm.2012.08.004
    [29] T. T. Yusuf, F. Benyah, Optimal strategy for controlling the spread of HIV/AIDS disease: A case study of South Africa, J. Biol. Dyn., 6 (2012), 475–494. https://doi.org/10.1080/17513758.2011.628700 doi: 10.1080/17513758.2011.628700
    [30] A. L. Hill, D. I. Rosenbloom, M. A. Nowak, R. F. Siliciano, Insight into treatment of HIV infection from viral dynamics models, Immunol. Rev., 285 (2018), 9–25. https://doi.org/10.1111/imr.12698 doi: 10.1111/imr.12698
    [31] M. Markowitz, M. Louie, A. Hurley, E. Sun, M. Di Mascio, A. S. Perelson, et al., A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol., 77 (2003), 5037–5038. https://doi.org/10.1128/jvi.77.8.5037-5038.2003 doi: 10.1128/jvi.77.8.5037-5038.2003
    [32] A. Andrade, S. L. Rosenkranz, A. R. Cillo, D. Lu, E. S. Daar, J. M. Jacobson, et al., Three distinct phases of HIV-1 RNA decay in treatment-naive patients receiving raltegravir-based antiretroviral therapy: ACTG A5248, J. Infect. Dis., 208 (2013), 884–891. https://doi.org/10.1093/infdis/jit272 doi: 10.1093/infdis/jit272
    [33] E. F. Cardozo, A. Andrade, J. W. Mellors, D. R. Kuritzkes, A. S. Perelson, R. M. Ribeiro, Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration, PLoS Pathog., 13 (2017), e1006478. https://doi.org/10.1371/journal.ppat.1006478 doi: 10.1371/journal.ppat.1006478
    [34] Y. Lou, X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543–568. https://doi.org/10.1007/s00285-010-0346-8 doi: 10.1007/s00285-010-0346-8
    [35] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Soc., 1995.
    [36] R. H. Martin, H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Am. Math. Soc., 321 (1990), 1–44. https://doi.org/10.2307/2001590 doi: 10.2307/2001590
    [37] R. B. Guenther, J. W. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations, Dover Publications Inc., Mineola, 1996.
    [38] M. Wang, Nonlinear Elliptic Equations, Science Public.
    [39] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer Science & Business Media, New York, 2012.
    [40] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Soc., Providence, 2010.
    [41] W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652–1673. https://doi.org/10.1137/120872942 doi: 10.1137/120872942
    [42] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. https://doi.org/10.1007/bf00173267 doi: 10.1007/bf00173267
    [43] H. Smith, X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. Theor., 47 (2001), 6169–6179. https://doi.org/10.1016/s0362-546x(01)00678-2 doi: 10.1016/s0362-546x(01)00678-2
    [44] P. Magal, X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. https://doi.org/10.1137/S0036141003439173 doi: 10.1137/S0036141003439173
    [45] D. Kirschner, S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775–792. https://doi.org/10.1007/s002850050076 doi: 10.1007/s002850050076
    [46] M. Zhou, H. Xiang, Z. Li, Optimal control strategies for a reaction-diffusion epidemic system, Nonlinear Anal. Real World Appl., 46 (2019), 446–464. https://doi.org/10.1016/j.nonrwa.2018.09.023 doi: 10.1016/j.nonrwa.2018.09.023
    [47] J. P. Raymond, F. Tröltzsch, Second Order Sufficient Optimality Conditions For Nonlinear Parabolic Control Problems With State Constraints, Techn. Univ. Chemnitz, Fakultät Für Mathematik, 1998.
    [48] S. Zheng, Nonlinear Evolution Equations, Chapman and Hall/CRC, 2004.
    [49] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.
    [50] S. Nakaoka, S. Iwami, K. Sato, Dynamics of HIV infection in lymphoid tissue network, J. Math. Biol., 72 (2016), 909–938. https://doi.org/10.1007/s00285-015-0940-x doi: 10.1007/s00285-015-0940-x
    [51] G. A. Funk, V. A. Jansen, S. Bonhoeffer, T. Killingback, Spatial models of virus-immune dynamics, J. Theor. Biol., 233 (2005), 221–236. https://doi.org/10.1016/j.jtbi.2004.10.004 doi: 10.1016/j.jtbi.2004.10.004
    [52] P. W. Nelson, J. D. Murray, A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201–215. https://doi.org/10.1016/S0025-5564(99)00055-3 doi: 10.1016/S0025-5564(99)00055-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(416) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog