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Abstract: In order to study the effects of reverse transcriptase inhibitors, protease inhibitors and
flavonoids on two target cells infected by HIV in a heterogeneous environment, an HIV mathematical
model at the cellular level was established. Research shows that infected cells can be categorized
into immature infected cells, latent infected cells, and mature infected cells based on the infection
process. The basic reproduction number R0 was established, and it is proved that R0 serves as a
threshold parameter: When R0 < 1, the disease-free steady state is globally asymptotically stable,
and the disease is extinct; when R0 > 1, the solution of the system is uniformly persistent, and the virus
exists. Considering the huge advantages of drug intervention in controlling HIV infection, the optimal
control problem was proposed under the condition that the constant diffusion coefficient is positive, so
as to minimize the total number of HIV-infected cells and the cost of drug treatment. To illustrate our
theoretical results, we performed numerical simulations in which the model parameters were obtained
with reference to some medical studies. The results showed that: (1) as R0 increases, the risk of
HIV transmission increases; (2) pharmacological interventions are important in early treatment of HIV
spread and control of viral load in the body; (3) the treatment process must consider the heterogeneity
of medication, otherwise it will not be conducive to suppressing the spread of the virus and will increase
costs.
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1. Introduction

HIV (Human immunodeficiency Virus), the causative agent of AIDS (acquired immune deficiency
syndrome), infects nearly 40 million people worldwide [1] and represents one of the highest overall
global burdens of disease [2]. HIV is a virus that attacks the immune system. Over time, HIV can lead
to a weakened immune systems, making individuals more susceptible to opportunistic infections and
certain cancers [3].

HIV predominantly infects immune system cells, specifically targeting CD4+T cellls (a type of
white blood cell) that play pivotal roles in orchestrating and executing the body’s defense mechanisms
against infections. Once the virus enters immune system cells, the viral RNA is reversely transcribed
into DNA by the enzyme reverse transcriptase. When the host cell becomes activated, it begins to
transcribe and translate the proviral DNA, producing new viral RNA and proteins. These viral
components are assembled into new virus particles. The newly formed virus particles bud from the
host cell’s membrane, acquiring an outer envelope derived from the host cell membrane [4]. After
HIV infects host cells, in addition to immediately starting to replicate and destroy CD4+T
lymphocytes of the immune system, it can also enter the latent state of the cells. This latent state
allows the virus to hide within host cells and avoid detection by the immune system, making HIV
infection a chronic, sustainable disease [5]. Given the intricate nature of HIV transmission within the
human body, experimental study of the entire process poses significant challenges. In contrast, the
development of viral dynamics models stands as a valuable and rigorous approach for investigating
the virus’s transmission processes and pathogenic mechanisms within the host.

Numerous studies based on virus models have been conducted to investigate the interactions
between virus and host [6–8]. With the development of modern medicine and scientific research,
researchers have completed the model from adding the virus, infected cells and susceptible
cells [9, 10], to gradually put more infection patterns processes into consideration [11–14], so that the
model can accurately describe the dynamic process of HIV transmission in the body. The diversity of
these models, as well as the corresponding theories and experiments, have made significant progress.
Perelson et al. [15] proposed an ODE model of cell-free viral spread of human immunodeficiency
virus in a well-mixed compartment. Using this model, they explain the characteristics of virus spread
under different steady states. Müller et al. [16] also proposed a model incorporating the activation of
latently infected cells. They concluded through model predictions that the residual virus after
long-term suppressive treatment is likely to originate from latently infected cells. Wang et al. [17]
investigated a class of HIV-1 infection models with different infection rates and latently infected cells,
and obtained sufficient conditions for the global stability of both the infection-free and
chronic-infection equilibria of the model.

These investigations are based on a system of ordinary differential equations and intuitively
describe the trend of viral infection. However, the activities of viruses and cells within the human
body are subject to changes over both time and space. Further consideration of spatial factors in
modeling can provide further insight into the viral pathogenesis. Based on the spatial model, Wang et
al. [18] proposed a virus infection model with multiple target cells and discussed the threshold
dynamics through semigroup theory. Wang et al. [19] introduced a mathematical model to simulate
hepatitis B virus infection, incorporating spatial dependence. Considering the free movement of
viruses, they introduce the random mobility for viruses.
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In addition, we note that the virus infection model in [19] is investigated under conditions of a
well-mixed or homogeneous environment. These studies ignore the heterogeneous mobility of
cells [20] and the differences in the diffusion ability of virus particle in different
environments [21–23]. Under the assumption of homogeneity, there is a possibility of either
underestimating or overestimating critical factors in viral pathogenesis. Wu et al. [24] argued that the
use of the spatially averaged parameters may underestimate HIV infection, and explored the effect of
two time delays (latency caused by latently infected cells) on the HIV infection process in a
heterogeneous environment. Based on the research of [19], Wang et al. [25] further considered an
virus dynamics model with spatial heterogeneity under homogeneous boundary conditions. This
extension involved allowing all parameters to exhibit spatial dependence, except for the diffusion
coefficient. We note that few previous models have simultaneously considered spatial heterogeneity
and infection modes of both target cells. There is a lack of theoretical justification for the dynamic
behavior of the model when considering susceptible and infected cell mobility.

The purpose of HIV modeling research is to inhibit the transmission and diffusion of HIV within the
human body, and optimal control strategy is an effective method to explore and simulate the changes
in the transmission of the virus under certain control. This method is often used to explore the optimal
action time of drugs and prevent the spread of diseases. In fact, optimal control theory has been
used to study HIV treatment both at the cellular level [26, 27] and at the level of individual patients
[28, 29]. However, existing mathematical models have not been used to study the effects of multiple
drug combination treatments and optimal control on HIV infection.

Based on the considerations mentioned above, we established an HIV model incorporating spatial
heterogeneity and conducted optimization control studies. In the next section (Section 2), we will
propose a spatially heterogeneous model and explain the parameters in the model. Given that the
dynamical behavior of the model is crucial for investigating optimal control, we first conducted a viral
dynamics analysis of the proposed model in Section 3. We discuss the threshold dynamics of the
basic reproduction number R0 and demonstrate the uniform persistence of the solution in Section 4. In
Section 5, We further understand the impact of pharmacological interventions on the dynamics of HIV
infection and investigate key strategies for controlling infection. In the final section (Section 6), we
obtained the optimal solution of the control system through numerical simulations and presented the
spatiotemporal variations of the control. Some conclusions and discussions are presented.

2. Model formulation

Mathematical models are useful to interpret the different profiles, providing quantitative information
about the kinetics of virus replication. In a recent survey, Hill et al. [30] summarized the contributions
that viral dynamic models have made to understand the pathophysiology of HIV infection and to design
effective therapies and proposing basic viral dynamics model:

dT (t)
dt
= λ − µT T (t) − βT (t)V(t),

dI(t)
dt
= βT (t)V(t) − µI I(t),

dV(t)
dt
= kI(t) − cV(t),

(2.1)
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which tracks levels of the virus V and the CD4+T cells that it infects. Uninfected target cells T are
assumed to enter the system at a constant rate λ, and die with rate constant µT (equivalent to an average
lifespan of 1/µT ). Infected cells I are produced with a rate proportion to levels of both virus and target
cells and the infectivity parameter β. Infected cells produce free virus at a rate k and die with rate µI .
Free virus is cleared at rate c.

With further research on the pathogenesis of HIV, more complicated facets of infection can be
inferred from looking at viral load decay curves under different types of treatments. This decay can
be explained using mathematical models, and in general the multiple phases are believed to reflect
distinct populations of infected cells [31,32]. Cardozo et al. [33] modeled proviral integration in short-
and long-lived infected cells, which suggests that “HIV infects two different cell subsets, one of which
has a fast rate and the other a slow fusion rate”. Based on the work of Hill [30] and Cardozo [33],
Wang [10] considered the more general situation when the infectivity parameters of two target cells
are different and then proposed the following equations to describe an HIV infection model containing
two different cell subsets:

dT1(t)
dt

= λ1 − µT1T1(t) − β1T1(t)V(t),

dI1(t)
dt
= β1T1(t)V(t) − µI1 I1(t) − n1I1(t),

dT2(t)
dt

= λ2 − µT2T2(t) − β2T2(t)V(t),

dI2(t)
dt
= β2T2(t)V(t) − µI2 I2(t) − n2I2(t),

dL(t)
dt
= f n2I2(t) − aL(t) − µLL(t),

dM(t)
dt
= n1I1(t) + (1 − f )n2I2(t) − µM M(t) + aL(t),

dV(t)
dt
= kM(t) − cV(t),

(2.2)

Two separate populations of target cells are hypothesized to exist, with the second type T2, I2 being
longer lived and proceeding to integrate virus more slowly. Infected cells of either type can be divided
up into those who have not yet completed the phase of the viral lifecycle where integration occurs Ii

, and those mature infected cells M, which allows investigation of different dynamics in the presence
and absence of integrase inhibitor drugs.

Despite our meticulous consideration in the modeling process, the speed of virus propagation within
the human body varies significantly depending on its environment. Concurrently, studies have revealed
that the virus spreads at different rates within the body, and the spatial movement plays a crucial role
in the dissemination of the pathogenic agent. In light of these considerations, we incorporate spatial
reactivity diffusion into the model to simulate the diverse spread rates of the virus among different
tissues. This enhancement renders the model more practical and provides greater reference value for
guiding realistic treatment plans. In addition, since what we really care about is the effect of HIV virus
on the sum of two target cell concentrations, we build the model based on the following considerations:

(1) The infection process of T1 can be regarded as a special form of the infection process of T2.
When f = 0, the cell subsets with a slow fusion rate will not enter the latency period, and we can
regard them as the cell subsets with a fast fusion rate.
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(2) From a virological perspective, when the sum of the concentrations of two types of target cells is
considered, the variables and parameters of each compartment in the model can be considered together,
which is beneficial to simplifying the proof of the properties of the model.

(3) If target cells are not considered together, there will be two susceptible compartments, making
it challenging to analyze the global existence of a system solution.

(4) The amalgamation of two cell types has simplified the objective function for optimum control,
resulting in a reduction of computational workload for numerical simulations.

Table 1. Interpretation of variables in the model.

Variables Description
T (x, t) Concentrations of susceptible CD4+T cells
I(x, t) Concentrations of immature infected cells
L(x, t) Concentrations of latently infected cells
M(x, t) Concentrations of mature infected cells
V(x, t) Concentrations of free virus particles

Table 2. Descriptions of parameters in model.

Para. Biological significance
λ The production rate of CD4+T cells
β Virus infection rate
n The proportion of immature infected cells transformed
f The proportion of immature infected cells that transform into latently infected cells
a The proportion of latently infected cells that transform into mature infected cells
k Virus production rate
c Death rate of virions
µT Natural death rate of CD4+T cells
µI Natural death rate of immature infected cells
µL Natural death rate of latently infected cells
µM Natural death rate mature infected cells
θ0 Diffusion rate of T (x, t)
θ1 Diffusion rate of I(x, t)
θ2 Diffusion rate of L(x, t)
θ3 Diffusion rate of M(x, t)
θ4 Diffusion rate of V(x, t)

Finally, we establish the following spatially heterogeneous reaction-diffusion model of HIV in
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human body:

∂T (x, t)
∂t

= ∇(θ0(x)∇T (x, t)) + λ(x) − µT (x)T (x, t) − β(x)T (x, t)V(x, t),

∂I(x, t)
∂t

= ∇(θ1(x)∇I(x, t)) + β(x)T (x, t)V(x, t) − µI(x)I(x, t) − n(x)I(x, t),

∂L(x, t)
∂t

= ∇(θ2(x)∇L(x, t)) + f (x)n(x)I(x, t) − a(x)L(x, t) − µL(x)L(x, t),

∂M(x, t)
∂t

= ∇(θ3(x)∇M(x, t)) + (1 − f (x))n(x)I(x, t) − µM(x)M(x, t) + a(x)L(x, t),

∂V(x, t)
∂t

= ∇(θ4(x)∇V(x, t)) + k(x)M(x, t) − c(x)V(x, t)

(2.3)

with (x, t) ∈ ΩΓ = Ω × (0,Γ). Moreover, as a complement to the system (2.3), we introduce the no-flux
condition:

∂T (x, t)
∂ν

=
∂I(x, t)
∂ν

=
∂L(x, t)
∂ν

=
∂M(x, t)
∂ν

=
∂V(x, t)
∂ν

= 0 (2.4)

with the positive initial conditions:

T (x, 0) = T0(x), I(x, 0) = I0(x), L(x, 0) = L0(x), M(x, 0) = M0(x), V(x, 0) = V0(x), x ∈ Ω, (2.5)

The outward normal vector to ∂Ω is denoted by ∂v. Given the complexity of describing the architecture,
composition of target tissues, and the diversity of the human internal environment, the domain Ω is
considered as the target tissues. The interpretation of the variables are listed in Table 1. Moreover, all
parameters and their respective meanings can be found in Table 2, where θi(i = 0, 1, 2, 3, 4) represents
the diffusion rate of each compartment, indicating that the local diffusion rate vary across different
compartments. Under the condition of x ∈ Ω, we suppose that position-dependent parameters are
functions that are continuous, strictly positive, and uniformly bounded.

3. Some basic properties for system

In this section, we encompasse an exploration of the well-posedness of the solutions as well as an
analysis of dynamic behavior of the model. Similar to Zhao’s method [34] in the article, we consider
the following scalar reaction-diffusion equation:

∂w
∂t
= ∇ (θ0(x)∇w(x, t)) + λ(x) − µT (x)w(x, t), x ∈ Ω, t > 0,

∂w
∂ν
= 0, x ∈ ∂Ω.

(3.1)

According to the method of Lemma 1 in [34], similarly, we have the following lemma:

Lemma 3.1. System (3.1) admits a unique positive steady state w∗(x), which is globally asymptotically
stable in the function space C

(
Ω̄,R
)
. Furthermore, w∗ = λ

µT
if λ and µT are positive constants.

Let D = C
(
Ω̄,R5

)
equip with the uniform norm denoted by || · ||D, D+ = C

(
Ω̄,R5

+

)
. Then we will

obtain an Banach space which is denoted as (D,D+). We set a mapping relation Ti(t) : C(Ω̄,R) →
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C(Ω̄,R)(i = 1, 2, 3, 4, 5) to represent the C0 semigroups. C0 semigroups is associated with ∇ (θi(x)∇)−
mi(·), where m0(·) = µT (·), m1(·) = µI(·) + n(·), m2(·) = µL(·) + a(·), m3(·) = µM(·),m4(·) = c(·). Thus, it
comes that:

(Ti(t)ϕ) (x) =
∫
Ω

Gi(t, x, y)ϕ(y)dy, ϕ ∈ C
(
Ω̄,R
)
, t > 0,

The function Gi(t, x, y) denotes the Green function corresponding to the operator ∇ (θi(x)∇) − mi(·)
under the Neumann boundary conditions. Building upon the theorem presented in Smith’s work (1995,
Corollary 7.2.3) [35], the operator Ti(t) (i = 1, 2, 3, 4, 5) is compact and strictly positive for all t > 0.
Obviously, we can find a positive constant M > 0 that when αi ⩽ 0 and t ⩾ 0 satisfies ||Ti(t)|| ⩽ Meαit.
Here, αi represents the main eigenvalue of ∇ (θi(x)∇)−mi(·). Define operator F = (F1, F2, F3, F4, F5)T :
D+ → D by

F1(ψ)(x) =λ(x) − β(x)ψ1(x)ψ5(x),
F2(ψ)(x) =β(x)ψ1(x)ψ5(x),
F3(ψ)(x) = f (x)n(x)ψ2(x),
F4(ψ)(x) =(1 − f (x))n(x)ψ2(x) + a(x)ψ3(x),
F5(ψ)(x) =k(x)ψ4(x),

where ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)T ∈ D+. Subsequently, we rewrite the system (2.3):

E(t) = E∗(t)ψ +
∫ t

0
E∗(t − s)F(E(s))ds, (3.2)

where E(t) = (T (t), I(t), L(t),M(t),V(t))T , E∗(t) = diag(T1(t),T2(t),T3(t),T4(t),T5(t)).
According to the conclusion of Martin and Smith (1990, Corollary 4) [36], the subtangential

conditions are satisfied, and then, the following lemma is applicable:

Lemma 3.2. For system (2.3)–(2.5) with initial condition ψ ∈ D+, when the maximum interval
[0, τ∞), τ∞ ⩽ +∞ is provided, the solution u(t, ψ) ∈ D+ is mild and also unique. Furthermore, this
solution to the system (2.3) is classical.

Next we give proofs for the dynamical behavior and the existence of the global attractor.

Theorem 3.3. There exist unique and mild solution u(x, t, ψ) ∈ D+ on [0,∞) to the system (2.3)–(2.5),
when it fits the initial condition ψ ∈ D+. In addition, we can find the solution semiflowΨ(t) = u(t, ·, ψ) :
D+ → D+, t ⩾ 0 exist a global compact attractor.

Proof. For the sake of later discussion, we first set g = minx∈Ω̄g(·) and ḡ = maxx∈Ω̄g(·), where g(·) =
λ(·), β(·), n(·), f (·)
, a(·), k(·), c(·), µT (·), µI(·), µL(·), µM(·). According to the theory of Lemma 3.2, we can easily find the
solution to the system (2.3) exists and is also unique and positive. Next, we can obtain the following
conclusion: ||u(x, t, ψ)|| → +∞ for τ∞ < +∞ refer to Martin and Smith (1990, Theorem 2) [36]. It
follows from the system (2.3) that

∂T (x, t)
∂t

⩽ ∇ (θ0(x)∇T (x, t)) + λ̄ − µ
T
T (x, t), x ∈ Ω, t ∈ [0, τ∞). (3.3)

By the comparison principle and Lemma 3.1, we obtain that there admits M1 > 0 such that

T (x, t) ⩽ M1, x ∈ Ω̄, t ∈ [0, τ∞).
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Then, a series of equations can be established:

∂I(x, t)
∂t

⩽ ∇ (θ1(x)∇I(x, t)) + β̄M1V(x, t) − (µ
I
+ n)I(x, t), x ∈ Ω, t ∈ [0, τ∞),

∂L(x, t)
∂t

⩽ ∇ (θ2(x)∇L(x, t)) + f̄ n̄I(x, t) − (µ
L
+ a)L(x, t), x ∈ Ω, t ∈ [0, τ∞),

∂M(x, t)
∂t

⩽ ∇ (θ3(x)∇M(x, t)) + (1 − f )n̄I(x, t) − µ
M
+ āL(x, t), x ∈ Ω, t ∈ [0, τ∞),

∂V(x, t)
∂t

⩽ ∇ (θ4(x)∇V(x, t)) + k̄M(x, t) − cV(x, t), x ∈ Ω, t ∈ [0, τ∞).

Consider the following problem:

∂v1

∂t
= ∇ (θ1(x)∇v1) + β̄M1V − (µ

I
+ n)I, x ∈ Ω, t > 0,

∂v2

∂t
= ∇ (θ2(x)∇v2) + f̄ n̄I − (µ

L
+ a)L, x ∈ Ω, t > 0,

∂v3

∂t
= ∇ (θ3(x)∇v3) + (1 − f )n̄I − µ

M
+ āL, x ∈ Ω, t > 0,

∂v4

∂t
= ∇ (θ4(x)∇v4) + k̄M − cV, x ∈ Ω, t > 0,

∂v1(x, t)
∂ν

=
∂v2(x, t)
∂ν

=
∂v3(x, t)
∂ν

=
∂v4(x, t)
∂ν

= 0, x ∈ ∂Ω.

(3.4)

We can find that the strictly positive eigenfunction ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) correspond to A which is
principal eigenvalue to the system (3.4) based on the standard Krein-Rutman theorem. Hence, if
t ⩾ 0, systems (3.4) has a solution σeAtϕ(x), where
σϕ = (v1(x, 0), v2(x, 0), v3(x, 0), v4(x, 0) ⩾ (I(x, 0), L(x, 0),M(x, 0),V(x, 0)) for x ∈ Ω̄. Then we will
get by referring the comparison principle:

(I(x, t), L(x, t),M(x, t),V(x, t)) ⩽ σeAtϕ(x), x ∈ Ω̄, t ∈ [0, τ∞),

Then, there exists M2 > 0 that satisfies the following inequality:

I(x, t) ⩽ M2, L(x, t) ⩽ M2,M(x, t) ⩽ M2,V(x, t) ⩽ M2, x ∈ Ω̄, t ∈ [0, τ∞),

When the τ∞ < +∞ is given, we find that it contradicts the previous conclusion (||u(x, t, ψ)|| → +∞
when τ∞ < +∞). Therefore, we have proved the solution is globally existed. Furthermore, we can
prove that the semiflow of solution is dissipative. Refer to the comparison principle and Lemma 3.1,
there exist N1 > 0 and t1 > 0 satisfies

T (x, t) ⩽ N1, x ∈ Ω̄, t ∈ [0, τ∞).

Denote S (t) =
∫
Ω

(T (x, t) + I(x, t) + L(x, t) + M(x, t) + µM(x)
k(x) V(x, t))dx, then we have that

dS
dt
=

∫
Ω

(λ(x) − µT (x)T (x, t) − µI(x)I(x, t) − µL(x)L(x, t) −
µM(x)c(x)

k(x)
V(x, t))dx

⩽

∫
Ω

λ(x)dx − min
Ω̄
{µT (x), µI(x), µL(x), c(x)} S .
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Thus there exist N2 > 0 and t2 > 0 such that S (t) ⩽ N2 for all t ⩾ t2.

It follows from Guenther and Lee [37] that G2(t, x, y) =
∑

n⩾1 eτntφn(x)φn(y), where φn(x) means the
eigenfunction and the eigenvalue of ∇ · (θ1(x)∇) − µI(x) − n(x) is τi. Moreover, τi satisfies τ1 > τ2 ⩾
τ3 ⩾ · · · ⩾ τn ⩾ · · · . Then

G2(t, x, y) ⩽ ω1

∑
n⩾1

eτnt t > 0

for some ω1 > 0 since φn is uniformly bounded. Let νn(n = 1, 2 . . .) be the eigenvalue of ∇ · (θ1∇) −
µI(x) − n(x) and satisfy ν1 = −µI − n > ν2 ⩾ ν3 ⩾ · · · ⩾ νn ⩾ · · · . According to the Theorem 2.4.7 in
Wang [38], we can obtain that νi ⩾ τi for any i ∈ N+. Considering the trend of νn is similar to −n2, we
can obtain that

G2(t, x, y) ⩽ ω1

∑
n⩾1

eνnt ⩽ ωeν1t = ωe−(µI+n)t

for t > 0 some ω > 0.

Here we set t3 = max {t1, t2}. If t ⩾ t3, we can also have refer to the comparison principle:

I(x, t) = T2(t)I(x, t3) +
∫ t

t3
T2(t − s)β(x)T (x, s)V(x, s)ds

⩽ Meα2(t−t3)||I(x, t3)|| +
∫ t

t3

∫
Ω

G2(t − s, x, y)β(y)T (y, s)V(y, s)dyds

⩽ Meα2(t−t3)||I(x, t3)|| +
∫ t

t3
ωe−(µI+n)(t−s)

∫
Ω

β̄N1V(y, s)dyds

⩽ Meα2(t−t3)||I(x, t3)|| + ωN1N2 ·
β̄ · k̄
µM

∫ t

t3
e−(µI+n)(t−s)ds

⩽ Meα2(t−t3)||I(x, t3)|| +
ωN1N2 · β̄ · k̄
µM(µI + n)

.

Thus, lim supt→∞ ||I(x, t)|| ⩽ ωN1N2 · β̄ · k̄/µM(µI + n). Moreover, follow the same method, there admits
N3 > 0 such that lim supt→∞ ||L(x, t)|| ⩽ N3. Therefore, we can show that the system is point dissipative.
Furthermore, in the condition of t > 0, the solution semiflowΨ(t) is compact and also globally attracted
based on Wu (Theorem 2.2.6) [39] and Hale (Theorem 3.4.8) [40]. □

4. Threshold dynamics behavior

In this section, we delve into the fundamental concept of the reproduction number. Based on
Lemma 3.1, it can be concluded that system (2.3) amdits a unique infection-free equilibrium state
E0 = (T 0(x), 0, 0, 0, 0), where T 0 = ω∗(x). At the infection-free equilibrium state E0, we can derive a
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set of linearized equations:

∂P2(x, t)
∂t

= ∇ (θ1(x)∇P2) + β(x)T 0P5 − µI(x)P2 + n(x)P2, x ∈ Ω, t > 0,

∂P3(x, t)
∂t

= ∇ (θ2(x)∇P3) + f (x)n(x)P2 − a(x)P3 − µL(x)P3, x ∈ Ω, t > 0,

∂P4(x, t)
∂t

= ∇ (θ3(x)∇P4) + (1 − f (x))n(x)P2 − µM(x)P4 + a(x)P3, x ∈ Ω, t > 0,

∂P5(x, t)
∂t

= ∇ (θ4(x)∇P5) + k(x)P4 − c(x)P5, x ∈ Ω, t > 0,

∂P2

∂ν
=
∂P3

∂ν
=
∂P4

∂ν
=
∂P5

∂ν
= 0, x ∈ ∂Ω, t > 0.

Letting (P2, P3, P4, P5) = eAt(ψ2(t), ψ3(t), ψ4(t), ψ5(t)), the above system can be rewritten as:

Aψ2 = ∇ (θ1(x)∇ψ2) + β(x)T 0ψ5 − µI(x)ψ2 + n(x)ψ2, x ∈ Ω, t > 0,
Aψ3 = ∇ (θ2(x)∇ψ3) + f (x)n(x)ψ2 − a(x)ψ3 − µL(x)ψ3, x ∈ Ω, t > 0,
Aψ4 = ∇ (θ3(x)∇ψ4) + (1 − f (x))n(x)ψ2 − µM(x)ψ4 + a(x)ψ3, x ∈ Ω, t > 0,
Aψ5 = ∇ (θ4(x)∇ψ5) + k(x)ψ4 − c(x)ψ5, x ∈ Ω, t > 0,
∂ψ2

∂ν
=
∂ψ3

∂ν
=
∂ψ4

∂ν
=
∂ψ5

∂ν
= 0, x ∈ ∂Ω, t > 0.

(4.1)

From the above equations we know the system is cooperative. According to the Krein-Rutman theorem,
we find the strictly positive eigenfunction (φ2(x), φ3(x), φ4(x), φ5(x)) and its unique principal eigenvalue
A0(T 0). Suppose the solution semigroup Φ(t) : C(Ω̄,R4) → C(Ω̄,R4) associated with the following
system: 

∂P2(x, t)
∂t

= ∇ (θ1(x)∇P2) − µI(x)P2 + n(x)P2, x ∈ Ω, t > 0,

∂P3(x, t)
∂t

= ∇ (θ2(x)∇P3) + f (x)n(x)P2 − a(x)P3 − µL(x)P3, x ∈ Ω, t > 0,

∂P4(x, t)
∂t

= ∇ (θ3(x)∇P4) + (1 − f (x))n(x)P2 − µM(x)P4 + a(x)P3, x ∈ Ω, t > 0,

∂P5(x, t)
∂t

= ∇ (θ4(x)∇P5) + k(x)P4 − c(x)P5, x ∈ Ω, t > 0,

∂P2

∂ν
=
∂P3

∂ν
=
∂P4

∂ν
=
∂P5

∂ν
= 0, x ∈ ∂Ω, t > 0.

We set that:

F(x) =


0 0 0 β(x)T 0

0 0 0 0
0 0 0 0
0 0 0 0

 .
We define the distribution of the infected with starting conditions ψ = (ψ2, ψ3, ψ4, ψ5). With time goes
by, the distribution of infection is denoted by Φ(t)ψ. Then, the total number of cells infected and the
number of viruses is:

L (ψ)(x) =
∫ ∞

0
F(x)Φ(t)ψdt.
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According to the method in next generation matrix theory, we get the basic reproduction number:

R0 = κ(L ).

where we use κ(L ) to denote the spectral radius of L .
According to the proof of Theorem 3.1 in Wang and Zhao [41], we use a similar method to establish

the following lemma:

Lemma 4.1. R0 − 1 and A0 have the same sign. When R0 < 1, the state E0 is asymptoticallyis stable,
or not when R0 > 1.

The basic reproduction number serves as a critical threshold, determining whether the virus can
persist or not.

Theorem 4.2. When R0 < 1, E0 exhibits further globally asymptotic stability.

Proof. There admits a δ > 0 such that A0(T 0 + δ) < 0. Consider the first equation in the system (2.3):

∂T
∂t
⩽ ∇(θ0(x)∇T ) + λ(x) − µT (x)T (x, t), t > 0, x ∈ Ω,

Refer to the principle of the comparison, given t1 is positive, we know that T (x, t) ⩽ T 0 + δ when t ⩾ t1

and x ∈ Ω. Then,

∂I
∂t
⩽ ∇ (θ1(x)∇I) + β(x)(T 0 + δ)V − (µI(x) + n(x))I, x ∈ Ω, t ⩾ t1,

∂L
∂t
⩽ ∇ (θ2(x)∇L) + f (x)n(x)I − (µL(x) + a(x))L, x ∈ Ω, t ⩾ t1,

∂M
∂t
⩽ ∇ (θ3(x)∇M) + (1 − f (x))n(x)I − µM(x) + a(x)L, x ∈ Ω, t ⩾ t1,

∂V
∂t
⩽ ∇ (θ4(x)∇V) + k(x)M − c(x)V, x ∈ Ω, t ⩾ t1.

Suppose that α(ϕ̄2(x), ϕ̄3(x), ϕ̄4(x), ϕ̄5(x)) ⩾ (I(x, t), L(x, t),M(x, t),V(x, t)). A0(T 0+δ) is negative and is
the principal eigenvalue of the eigenfunction (ϕ̄2(x), ϕ̄3(x), ϕ̄4(x), ϕ̄5(x)). Thenthe comparison principle
implies that:

(I(x, t), L(x, t), M(x, t), V(x, t)) ⩽ α(ϕ̄2(x), ϕ̄3(x), ϕ̄4(x), ϕ̄5(x)), t ⩾ t1.

Therefore, limt→∞(I(x, t), L(x, t),M(x, t),V(x, t)) = 0. According to the theory in (Corollary 4.3 in
Thieme [42]), we know that limt→∞ T (x, t) = T 0. These findings are all available by Lemma 4.1. □

Theorem 4.3. When R0 is greater than 1, there admits a positive number η such that any solution
(T (x, t), I(x, t), L(x, t),
M(x, t),V(x, t)) with T (x, 0) . 0, I(x, 0) . 0, L(x, 0) . 0,M(x, 0) . 0 and V(x, 0) . 0 satisfies

lim inf
t→∞

T (x, t) ⩾ η, lim inf
t→∞

I(x, t) ⩾ η, lim inf
t→∞

L(x, t) ⩾ η, lim inf
t→∞

M(x, t) ⩾ η, lim inf
t→∞

V(x, t) ⩾ η

uniformly for all x ∈ Ω̄. Moreover, it is obvious that there at least exists one stable state which is also
positive.
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Proof. Set D0 = {ψ = (T, I, L,M,V) ∈ D+ : I(·) . 0, L(·) . 0,M(·) . 0,V(·) . 0}. Obviously,

∂D0 =
{
(T, I, L,M,V) ∈ D+ : I(·) ≡ 0 or L(·) ≡ 0 or M(·) ≡ 0 or V(·) ≡ 0

}
.

D0 is fixed and positive for the semiflow of solution Ψ(t) based on the theory of Hopf boundary and
the maximum eigenvalue. We suppose the set of forward orbit γ+(ϕ) = {Ψ(t)(ϕ) : t ⩾ 0} where its limit
set is denoted by ω(ϕ), and set N∂ = {ϕ ∈ ∂D0 : Ψ(t) ∈ ∂D0}.

Claim 1.
⋃

ϕ∈N∂
ω(ϕ) = E0.

Given that ϕ belongs to N∂, it implies that either I(x, t, ϕ) ≡ 0, L(x, t, ϕ) ≡ 0, M(x, t, ϕ) ≡ 0 or
V(x, t, ϕ) ≡ 0. Assuming V(x, t, ϕ) ≡ 0, from the fifth equation in (2.3), we deduce that M(x, t, ϕ) ≡ 0.
Moreover, the fourth equation implies I(x, t, ϕ) ≡ 0 and L(x, t, ϕ) ≡ 0. Hence, as t → ∞, T (x, t, ϕ)
converges to T 0. If there exists a t0 ⩾ 0 that satisfies V(x, t0, ϕ) . 0, then we can prove that V(x, t, ϕ) > 0
for all t > t0 using the Hopf bifurcation theory and the maximum principle. Thus, we know that
M(x, t, ϕ) ≡ 0, L(x, t, ϕ) ≡ 0, I(x, t, ϕ) ≡ 0 for all t ⩾ t0. From the fifth equation of (2.3), as t → ∞, it
can be inferred that V(x, t0, ϕ) converges to 0. Consequently, Then T (x, t, ϕ) asymptotically approaches
the solution given by Eq (3.1). Utilizing the Corollary 4.3 in [42], it follows that T (x, t) converges to
T 0 uniformly for x ∈ Ω̄ as t → ∞. Given that R0 > 1, there exists a ς > 0 such that A0(T 0 − ς) > 0.

Claim 2. E0 is a uniform weak repeller in the sense that lim supt→∞ ||Ψ(t)(ϕ) − E0|| ⩾ ς where ϕ ∈ D0.

While, there comes a contradiction, there exist a ϕ0 ∈ D0 such that lim supt→∞ ||Ψ(t)(ϕ) − E0|| < ς.
Then, for t1 > 0:

T (x, t, ϕ0) > T 0 − ς,∀t ⩾ t1.

Therefore, we can deduce that:

∂I
∂t
⩾ ∇(θ1∇I) + β(x)(T 0 − ς)V − µI(x)I − n(x)I, t > t1, x ∈ Ω,

∂L
∂t
⩾ ∇(θ2∇L) + f (x)n(x)I − a(x)L − µL(x)L, t > t1, x ∈ Ω,

∂M
∂t
⩾ ∇(θ3∇M) + (1 − f (x))n(x)I − µM(x)M + a(x)L, t > t1, x ∈ Ω,

∂V
∂t
⩾ ∇(θ4∇V) + k(x)M − c(x)V, t > t1, x ∈ Ω.

The eigenfunction is supposed to be (ϕ̄2(x), ϕ̄3(x), ϕ̄4(x), ϕ̄5(x)) and the principal eigenvalue is
A0(T 0 − ς) > 0. Assume that α > 0 and fulfills the condition α(ϕ̄2(x), ϕ̄3(x), ϕ̄4(x),
ϕ̄5(x)) ⩽ (I(x, t), L(x, t),M(x, t),V(x, t)). Then,

(I(x, t), L(x, t),M(x, t),V(x, t)) ⩾ α(ϕ̄2(x), ϕ̄3(x), ϕ̄4(x), ϕ̄5(x))eA0(T 0−ς)(t−t1), t ⩾ t1,

This is contradictory to limt→∞(I(x, t), L(x, t),M(x, t),V(x, t)) = (+∞,+∞,+∞,+∞).
Given a function K : D+ → [0,+∞]:

K(ϕ) = min
{

min
x∈Ω̄

ϕ2(x), min
x∈Ω̄

ϕ3(x), min
x∈Ω̄

ϕ4(x), min
x∈Ω̄

ϕ5(x)
}
, ϕ ∈ D+.
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It is evident that K−1(0,∞) ⊆ D0. Moreover, we obtain K(Ψ(t)ϕ) > 0 when K satisfies the condition:
K(ϕ) = 0 and ϕ ∈ D0 or K(ϕ) > 0. Therefore, we obtain the function K to the semiflowΨ(t) : D+ → D+

(Smith and Zhao 2001) [43]. So it comes a conclusion that any forward orbit of Ψ(t) in M∂ converges
to E0. The intersection of the stable subset W s(E0) with D0 is empty. Moreover, E0 is an isolated
invariant set in D+ and the set of ∂D0 only contains the disease-free equilibrium E0. According to
Smith and Zhao (Theorem 3), it follows that there exist a ς1 > 0 satisfies: min {p(ψ) : ψ ∈ ω(ϕ)} > ς1

for any ϕ ∈ D0. This implies that

lim inf
t→∞

I(x, t, ϕ) ⩾ ς1, lim inf
t→∞

L(x, t, ϕ) ⩾ ς1, lim inf
t→∞

M(x, t, ϕ) ⩾ ς1, lim inf
t→∞

V(x, t, ϕ) ⩾ ς1,∀ϕ ∈ D0.

According to the method in the Theorem 3.3, it can be established that there exist M > 0 and t2 > 0
satisfies the following inequality:

I(x, t, ϕ) ⩽ M, L(x, t, ϕ) ⩽ M, M(x, t, ϕ) ⩽ M, V(x, t, ϕ) ⩽ M, t ⩾ t2, f or all x ∈ Ω̄.

For T (x, t):
∂T (x, t)
∂t

⩾ ∇ · (θ0(x)∇T ) + A − (µ̄T + β̄M)T, t ⩾ t2, x ∈ Ω.

Thus, we can get lim inft→∞ T (x, t, ϕ) ⩾ ς2 := A/(µ̄T + β̄M). Then, set ς3 := min {ς1, ς2}. we know that
the uniform persistence.

According to Magal and Zhao [44], it follows that system (2.3) has at least one equilibrium in D0.
Now, we demonstrate that these equilibrium are positive. Let (ψ1.ψ2, ψ3, ψ4, ψ5) be a equilibrium in D0.
Then ψ2 . 0, ψ3 . 0, ψ4 . 0, ψ5 . 0, implying ψ2 > 0, ψ3 > 0, ψ4 > 0, ψ5 > 0. Through the maximum
principle we can get ψ1 > 0 or ψ1 ≡ 0. Suppose ψ1 ≡ 0. Then ψ2 ≡ 0, contradicting the second equation
of the steady state system (2.3) and the maximum principle. We final know that(ψ1.ψ2, ψ3, ψ4, ψ5) is a
positive equilibrium. □

5. Optimal control of model

In addition to analyzing the global nature of the equation of HIV kinematics with spatial
heterogeneity, we would like to further understand how the dynamic process of HIV transmission in
the human body is affected by the action of antiviral drugs. Next, when the mathematical modeling of
AIDS dynamic behavior has been completed, the role of optimal disease control can be fully
exploited. Combined with optimal control theory, the help of viral infection modeling enables one to
find key strategies and methods for controlling infection or enhancing prevention.

The investigation conducted by Kirschner et al. [45] delved into optimal chemotherapy strategies
for a specific category of HIV models, employing methodologies rooted in optimal control theories. To
reduce the number of infected people and minimize the cost of pharmacological interventions, Zhou et
al. [46] considered an optimal control problem of partial differential equations based on the SIR model.
Combining the above research and the purpose of this paper to establish optimal control, we want to
investigate the optimal effect of drug administration while minimizing the cost and side effects of drug
administration. Therefore, we introduce w1,w2,w3 in the following system. The w1(x, t) represents
the role of reverse transcriptase inhibitors, which are used to prevent HIV particles from transcribing
RNA through susceptible cells, which means that susceptible cells will be less likely to transform into
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infected cells. The w2(x, t) denotes the action of a protease inhibitor that primarily disables the process
involved in the integration of proteins within the virus. This allows a portion of the free virus to be
removed from the matured infected cells. The w3(x, t) represents the role of Flavonoid Compounds,
which can inhibit HIV activation in latently infected cells. Then, the controlled system is as follows.

∂T (x, t)
∂t

= θ0∆T (x, t) + λ − µT (x)T (x, t) − β(x)T (x, t)V(x, t),

∂I(x, t)
∂t

= θ1∆I(x, t) + β(x)T (x, t)V(x, t) − µI(x)I(x, t) − n(x)(1 − w1(x, t))I(x, t),

∂L(x, t)
∂t

= θ2∆L(x, t) + f n(1 − w1(x, t))I(x, t) − a(1 − w3(x, t))L(x, t) − µL(x)L(x, t),

∂M(x, t)
∂t

= θ3∆M(x, t) + (1 − f )n(1 − w1(x, t))I(x, t) − µM(x)M(x, t) + a(1 − w3(x, t))L(x, t),

∂V(x, t)
∂t

= θ4∆V(x, t) + k(1 − w2(x, t))M(x, t) − c(x)V(x, t),

(5.1)

The system (5.1) exists only under the condition (x,t)∈ ΩΓ = Ω× (0,Γ). Moreover, as a complement to
the system, we introduce the no-flux condition and initial conditions:

∂T (x, t)
∂ν

=
∂I(x, t)
∂ν

=
∂L(x, t)
∂ν

=
∂M(x, t)
∂ν

=
∂V(x, t)
∂ν

= 0, (x, t) ∈ ΩΓ = Ω × (0,Γ),

T (x, 0) = T0(x), I(x, 0) = I0(x), L(x, 0) = L0(x),M(x, 0) = M0(x),V(x, 0) = V0(x). x ∈ Ω,

The control variable can be obtained:

W =
{
w = (w1,w2,w3) ∈ (L2(ΩΓ))3, 0 ⩽ wi ⩽ 1, a.e. on ΩΓ, i = 1, 2, 3

}
. (5.2)

The aim of the system with control is to reduce the HIV virus concentration and the cost of taking
medication as much as possible. To achieve this goal, the cost function was set by us to:

C (T, I, L,M,V, u) =
∫
ΩΓ

[
ϱ1(x, t)T (x, t) + · · · + ϱ5(x, t)V(x, t) +

3∑
k=1

lk(x, t)wk(x, t)
]
dxdt

+

∫
Ω

[
ε1(x)T (x,Γ) + · · · + ε5(x)V(x,Γ) +

3∑
k=1

pk(x)wk(x,Γ)
]
dx,

(5.3)

where the weight functions are denoted by ϱi(x, t) ∈ L∞(ΩΓ) and εi(x) ∈ L∞(ΩΓ), i = 1, 2, 3, 4, 5;
lk ∈ L∞(ΩΓ) and pk ∈ L∞(ΩΓ), k = 1, 2, 3 represent the cost of pharmacological interventions. To solve
the optimal control problem, we are supposed to determine an optimal control u∗ ∈ U that minimizes
the control cost function (5.3).

C (T, I, L,M,V,w∗) = in f
w∈W

C (T, I, L,M,V,w). (5.4)

In this part of this article, we establish the uniqueness and existence of the solution. Additionally,
we prove that the optimal control problem can be established under the system (5.1) and give the
first-order necessary conditions.
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5.1. Preliminaries and basic assumptions

We use the H = (L2(Ω))3 as Hilbert space and set a linear operator A : D(A ) ⊆H →H where
A is:

A =


θ0∆ 0 0 0 0
0 θ1∆ 0 0 0
0 0 θ2∆ 0 0
0 0 0 θ3∆ 0
0 0 0 0 θ4∆


,

with

D(A ) ≜
{

(T, I, L,M,V) ∈ (H 2(Ω))5,
∂T
∂ν
=
∂I
∂ν
=
∂L
∂ν
=
∂M
∂ν
=
∂V
∂ν
= 0
}
.

Denote by Q = (T, I, L,M,V),Θ(t,Q) = (Θ1(t,Q),Θ2(t,Q),Θ3(t,Q),Θ4(t,Q),Θ5(t,Q)) with

Θ1(t,Q) = λ − µT (x)T (x, t) − β(x)T (x, t)V(x, t),
Θ2(t,Q) = β(x)T (x, t)V(x, t) − µI(x)I(x, t) − n(x)(1 − w1(x, t))I(x, t),
Θ3(t,Q) = f n(1 − w1(x, t))I(x, t) − a(1 − w3(x, t))L(x, t) − µL(x)L(x, t),
Θ4(t,Q) = (1 − f )n(1 − w1(x, t))I(x, t) − µM(x)M(x, t) + a(1 − w3(x, t))L(x, t),
Θ5(t,Q) = k(1 − w2(x, t))M(x, t) − c(x)V(x, t),

(5.5)

where Q = (T, I, L,M,V) ∈ D(Q) ≜ {Q ∈H : Θ(t,Q) ∈H ,∀t ∈ [0,Γ]}. Then systems (5.1) with
(5.2) can be reformulated as: 

∂Q
∂t
= A Q + Θ(t,Q), t ∈ [0,Γ],

Q(0) = Q0.
(5.6)

To give the proof of the uniqueness and the existence of the solutions to the system, we present some
conclusions next.

Theorem 5.1. We define the infinitesimal generator of C0-semigroup as A : D(A ) ⊆ B → B, where
B represent the Banach space. Consequently, it can be deduced the uniqueness of the solution Q ∈
C([0,Γ]; B) when Q0 ∈ B of Cauchy problem (5.5):

Q(t) = T̃ (t)Q0 +

∫ t

0
T̃ (t − s)Θ(s,Q(s))ds, t ∈ [0,Γ].

Furthermore, if A is dissipative on the Hilbert space H and also self-adjoint, then the mild solution
meet the conditions Q ∈ W1,2(0,Γ; B) ∩ L2(0,Γ; D(A )).

Assumption 5.1. Assume that the functionsT0(x), I0(x), L0(x),M0(x),V0(x) ∈ H 2(Ω),
T0(x) > 0,T0(x) > 0, I0(x) > 0, L0(x) > 0,M0(x) > 0,V0(x) > 0 and
∂T0(x)
∂ν
=

∂I0(x)
∂ν
=

∂L0(x)
∂ν
=

∂M0(x)
∂ν
=

∂V0(x)
∂ν
= 0, x ∈ ∂Ω.

We can deduce the uniqueness of the solution in the system (5.1) based on the similar arguments
provided in Zhou et al. [46].
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Theorem 5.2. In Rk, k ⩽ 5, we first set a bounded domain which is denoted as Ω. Meanwhile, class
C2+ϵ , ϵ > 0 is the boundary of Ω. It is assumed that Assumption 5.1 holds, and for a optimal control
pairs w = (w1,w2,w3) ∈ W , we can obtain that the solution Q of the system (5.1) is globally positive
and unique with Q = (T, I, L,M,V) ∈ W1,2(0,T ; H ).

T (x, t) ∈ L∞(ΩΓ) ∩ L2(0,Γ; H 2(Ω)) ∩ L∞(0,T ; H 1(Ω)),
I(x, t) ∈ L∞(ΩΓ) ∩ L2(0,Γ; H 2(Ω)) ∩ L∞(0,T ; H 1(Ω)),
L(x, t) ∈ L∞(ΩΓ) ∩ L2(0,Γ; H 2(Ω)) ∩ L∞(0,T ; H 1(Ω)),

M(x, t) ∈ L∞(ΩΓ) ∩ L2(0,Γ; H 2(Ω)) ∩ L∞(0,T ; H 1(Ω)),
V(x, t) ∈ L∞(ΩΓ) ∩ L2(0,Γ; H 2(Ω)) ∩ L∞(0,T ; H 1(Ω)).

Furthermore, there exists a C > 0 such that:∣∣∣∣∣∣∣∣∣∣∂T
∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

+
∣∣∣∣∣∣T ∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+
∣∣∣∣∣∣T ∣∣∣∣∣∣

L∞(ΩΓ)
⩽ C,∣∣∣∣∣∣∣∣∣∣∂I

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

+
∣∣∣∣∣∣I∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+
∣∣∣∣∣∣I∣∣∣∣∣∣

L∞(ΩΓ)
⩽ C,∣∣∣∣∣∣∣∣∣∣∂T

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

+
∣∣∣∣∣∣L∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+
∣∣∣∣∣∣L∣∣∣∣∣∣

L∞(ΩΓ)
⩽ C,∣∣∣∣∣∣∣∣∣∣∂T

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

+
∣∣∣∣∣∣M∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+
∣∣∣∣∣∣M∣∣∣∣∣∣

L∞(ΩΓ)
⩽ C,∣∣∣∣∣∣∣∣∣∣∂T

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

+
∣∣∣∣∣∣V ∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+
∣∣∣∣∣∣V ∣∣∣∣∣∣

L∞(ΩΓ)
⩽ C,

(5.7)

and ∣∣∣∣∣∣T ∣∣∣∣∣∣
H 1(Ω)

⩽ C,
∣∣∣∣∣∣I∣∣∣∣∣∣

H 1(Ω)
⩽ C,
∣∣∣∣∣∣L∣∣∣∣∣∣

H 1(Ω)
⩽ C,
∣∣∣∣∣∣M∣∣∣∣∣∣

H 1(Ω)
⩽ C,
∣∣∣∣∣∣V ∣∣∣∣∣∣

H 1(Ω)
⩽ C,∀t ∈ [0,Γ]. (5.8)

5.2. The existence of optimal solution

Theorem 5.3. If Assumption 5.1 is valid, in that case, system (5.1) exists an optimal control
(T ∗, I∗, L∗,M∗,V∗,w∗1,w

∗
2,w

∗
3).

Proof. Set

G (T, I, L,M,V,w)(x, t) = ϱ1(x, t)T (x, t) + · · · + ϱ5(x, t)V(x, t) +
3∑

k=1

lk(x, t)wk(x, t),

K (T, I, L,M,V,w)(x,Γ) = ε1(x)T (x,Γ) + · · · + ε5(x)V(x,Γ) +
3∑

k=1

pk(x)wk(x,Γ).

Then

C (T, I, L,M,V,w) =
∫ Γ

0

∫
Ω

G (T, I, L,M,V,w)(x, t)dxdt +
∫
Ω

K (T, I, L,M,V,w)(x,Γ)dx.
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It can be referred from (5.7) that C (T, I, L,M,V,w) is proved to be bounded. Thus, there exist a
minimizing sequence

{
wm

1 ,w
m
2 ,w

m
3

}
m⩾1

and a positive constant η = in f
w∈W

C (T, I, L,M,V,w) such that

η = lim
m→∞

C (T m, Im, Lm,Mm,Vm,wm) = in f
w∈W

C (T, I, L,M,V,w),

Here, (T m, Im, Lm,Mm,Vm,wm) represents the solution of the system given by



∂T m(x, t)
∂t

= θ0∆T m(x, t) + λ − µT (x)T m(x, t) − β(x)T m(x, t)Vm(x, t),

∂Im(x, t)
∂t

= θ1∆Im(x, t) + β(x)T m(x, t)Vm(x, t) − µI(x)Im(x, t) − n(x)(1 − wm
1 (x, t))Im(x, t),

∂Lm(x, t)
∂t

= θ2∆Lm(x, t) + f n(1 − wm
1 (x, t))Im(x, t) − a(1 − wm

3 (x, t))Lm(x, t) − µL(x)Lm(x, t),

∂Mm(x, t)
∂t

= θ3∆Mm(x, t) + (1 − f )n(1 − um
1 (x, t))Im(x, t) − µM(x)Mm(x, t) + a(1 − wm

3 (x, t))Lm(x, t),

∂Vm(x, t)
∂t

= θ4∆Vm(x, t) + k(1 − wm
2 (x, t))Mm(x, t) − c(x)Vm(x, t),

∂T m(x, t)
∂ν

=
∂Im(x, t)
∂ν

=
∂Lm(x, t)

∂ν
=
∂Mm(x, t)

∂ν
=
∂Vm(x, t)

∂ν
= 0,

T m(x, 0) = T m
0 (x), Im(x, 0) = Im

0 (x), Lm(x, 0) = Lm
0 (x),Mm(x, 0) = Mm

0 (x),Vm(x, 0) = Vm
0 (x).

(5.9)
Utilizing the results of Theorem 5.2, we can verify that T m, Im, Lm,Mm,Vm ∈ W1,2(0,Γ; H ), which
implies that T m, Im, Lm,Mm,Vm ∈ C([0,Γ]; L2(Ω)). Furthermore, from (5.7)–(5.8), the uniformly
boundedness of T m, Im, Lm,Mm,Vm follows; T m, Im, Lm,Mm,Vm are both proved to be uniformly
bounded. Then given C > 0 and is not dependent on m satisfies that:

∣∣∣∣∣∣T m
∣∣∣∣∣∣

H 1(Ω)
+
∣∣∣∣∣∣T m
∣∣∣∣∣∣

L∞(ΩΓ)
+
∣∣∣∣∣∣T m
∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+

∣∣∣∣∣∣∣∣∣∣∂T m

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

⩽ C,∀t ∈ [0,Γ],∣∣∣∣∣∣Im
∣∣∣∣∣∣

H 1(Ω)
+
∣∣∣∣∣∣Im
∣∣∣∣∣∣

L∞(ΩΓ)
+
∣∣∣∣∣∣Im
∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+

∣∣∣∣∣∣∣∣∣∣∂Im

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

⩽ C,∀t ∈ [0,Γ],∣∣∣∣∣∣Lm
∣∣∣∣∣∣

H 1(Ω)
+
∣∣∣∣∣∣Lm
∣∣∣∣∣∣

L∞(ΩΓ)
+
∣∣∣∣∣∣Lm
∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+

∣∣∣∣∣∣∣∣∣∣∂Lm

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

⩽ C,∀t ∈ [0,Γ],∣∣∣∣∣∣Mm
∣∣∣∣∣∣

H 1(Ω)
+
∣∣∣∣∣∣Mm
∣∣∣∣∣∣

L∞(ΩΓ)
+
∣∣∣∣∣∣Mm
∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+

∣∣∣∣∣∣∣∣∣∣∂Mm

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

⩽ C,∀t ∈ [0,Γ],∣∣∣∣∣∣Vm
∣∣∣∣∣∣

H 1(Ω)
+
∣∣∣∣∣∣Vm
∣∣∣∣∣∣

L∞(ΩΓ)
+
∣∣∣∣∣∣Vm
∣∣∣∣∣∣

L2(0,Γ;H 2(Ω))
+

∣∣∣∣∣∣∣∣∣∣∂Vm

∂t

∣∣∣∣∣∣∣∣∣∣
L2(ΩΓ)

⩽ C,∀t ∈ [0,Γ].

(5.10)

From the above Eq (5.8), we know that {(T m(t), Im(t), Lm(t),Mm(t),Vm(t))} is the family of
equicontinuous functions. Considering H 1(Ω) is compactly embedded into L2(Ω), we get
{(T m(t), Im(t), Lm(t),Mm(t),Vm(t))}m⩾1 is relatively compact in (L2(Ω))5 and
||T m||L2(Ω) ⩽ C, ||Im||L2(Ω) ⩽ C, ||Lm||L2(Ω) ⩽ C, ||Mm||L2(Ω) ⩽ C, ||Vm||L2(Ω) ⩽ C,∀t ∈ [0,Γ]. From
Ascoli-Arzela Theorem [47], we obtain there exists (T ∗, I∗, L∗,M∗,V∗) ∈ (C([0,Γ] : L2(Ω)))5 and
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{(T m(t), Im(t), Lm(t),Mm(t),Vm(t))}m⩾1, such that

lim
m→∞

sup
t∈[0,Γ]

∣∣∣∣∣∣T m(t) − T ∗(t)
∣∣∣∣∣∣

L2(Ω)
= 0,

lim
m→∞

sup
t∈[0,Γ]

∣∣∣∣∣∣Im(t) − I∗(t)
∣∣∣∣∣∣

L2(Ω)
= 0,

lim
m→∞

sup
t∈[0,Γ]

∣∣∣∣∣∣Lm(t) − L∗(t)
∣∣∣∣∣∣

L2(Ω)
= 0,

lim
m→∞

sup
t∈[0,Γ]

∣∣∣∣∣∣Mm(t) − M∗(t)
∣∣∣∣∣∣

L2(Ω)
= 0,

lim
m→∞

sup
t∈[0,Γ]

∣∣∣∣∣∣Vm(t) − V∗(t)
∣∣∣∣∣∣

L2(Ω)
= 0.

Therefore, under the condition m → ∞ the optimal control problem (5.1)–(5.4) admits a optimal
control variable (T ∗, I∗, L∗,M∗,V∗). From the estimate (5.10), there admits a{
(T m(t), Im(t), Lm(t),Mm(t),Vm(t))

}
such that

∂T m

∂t
⇀

∂T ∗

∂t
, in L2(0,Γ; L2(Ω)),

∂Im

∂t
⇀

∂I∗

∂t
, in L2(0,Γ; L2(Ω)),

∂Lm

∂t
⇀

∂L∗

∂t
, in L2(0,Γ; L2(Ω)),

∂Mm

∂t
⇀

∂M∗

∂t
, in L2(0,Γ; L2(Ω)),

∂Vm

∂t
⇀

∂V∗

∂t
, in L2(0,Γ; L2(Ω)),

(5.11)



∆T m ⇀ ∆T ∗, in L2(0,Γ; L2(Ω)),
∆Im ⇀ ∆I∗, in L2(0,Γ; L2(Ω)),
∆Lm ⇀ ∆L∗, in L2(0,Γ; L2(Ω)),
∆Mm ⇀ ∆M∗, in L2(0,Γ; L2(Ω)),
∆Vm ⇀ ∆V∗, in L2(0,Γ; L2(Ω)),

(5.12)



T m ⇀ T ∗, in L2(0,Γ; L2(Ω)),
Im ⇀ I∗, in L2(0,Γ; L2(Ω)),
Lm ⇀ L∗, in L2(0,Γ; L2(Ω)),
Mm ⇀ M∗, in L2(0,Γ; L2(Ω)),
Vm ⇀ V∗, in L2(0,Γ; L2(Ω)).

(5.13)

Furthermore, since wm
i , i = 1, 2, 3 are all bounded in L2(ΩΓ), we can get an optimal control pairs{

wm
i ; m ⩾ 1, i = 1, 2, 3

}
which fit:

wm
i ⇀ w∗i , in L2(ΩΓ), i = 1, 2, 3. (5.14)
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At the same time, we find W is a weak closed set since W is a convex closed set in L2(ΩΓ). Hence,
based on w∗i ∈ W (5.14), we can further prove that


T mIm → T ∗I∗, in L2(0,Γ; L2(Ω)),
T mLm → T ∗L∗, in L2(0,Γ; L2(Ω)),
T mMm → T ∗M∗, in L2(0,Γ; L2(Ω)),
T mVm → T ∗V∗, in L2(0,Γ; L2(Ω)).

(5.15)

and

T mum
1 ⇀ T ∗w∗1, T mum

2 ⇀ T ∗w∗2, T mum
3 ⇀ T ∗w∗3, in L2(0,Γ; L2(Ω)). (5.16)

Then, we know that: T mIm−T ∗I∗ = T m(Im− I∗)+ I∗(T m−T ∗),T mLm−T ∗L∗ = T m(Lm−L∗)+L∗(T m−T ∗),
T mMm − T ∗M∗ = T m(Mm − M∗) + M∗(T m − T ∗), T mVm − T ∗V∗ = T m(Vm − V∗) + V∗(T m − T ∗)
and wm

1 T m − w∗1T ∗ = wm
1 (T m − T ∗) + T ∗(wm

1 − w∗1), wm
2 T m − w∗2T ∗ = wm

2 (T m − T ∗) + T ∗(wm
2 − w∗2),

wm
3 T m − w∗3T ∗ = wm

3 (T m − T ∗) + T ∗(wm
3 − w∗3). We can deduce that T m strictly converge to T ∗ in

L2(ΩΓ) based on formula (5.11), (5.13) and the Theorem 3.1.1 in Zheng [48]. Furthermore, consider
the uniformly boundedness of T m, Im, Lm,Mm,Vm,wm

1 ,w
m
2 ,w

m
3 in L∞(ΩΓ), we have (5.15) and (5.16).

As m→ ∞, then we obtain an optimal control variable (T ∗, I∗, L∗,M∗,V∗) of the system (5.9). □

5.3. First-order necessary conditions of HIV intervention therapy with optimal control

We will introduce the adjoint equations of state variables at the beginning of this section. Let
(T̂ , Î, L̂, M̂, V̂) denote the adjoint variable:



∂T̂
∂t
= −θ0∆T̂ + (µT + βV∗)T̂ − βV∗ Î + ϱ1,

∂Î
∂t
= −θ1∆Î + (µI + n(1 − w∗1))Î − ( f n(1 − w∗1))L̂ − (n(1 − f )(1 − w∗1))M̂ + ϱ2,

∂L̂
∂t
= −θ2∆L̂ + a(1 − w∗3)L̂ + µLL̂ − a(1 − w∗3)M̂ + ϱ3,

∂M̂
∂t
= −θ3∆M̂ + µM M̂ − k(1 − w∗2)V̂ + ϱ4,

∂V̂
∂t
= −θ4∆V̂ + cV̂ + ϱ5,

∂T̂
∂ν
=
∂Î
∂ν
=
∂L̂
∂ν
=
∂M̂
∂ν
=
∂V̂
∂ν
= 0, on (0,Γ) × ∂Ω,

T̂ (x,Γ) = −ε1, Î(x,Γ) = −ε2, L̂(x,Γ) = −ε3, M̂(x,Γ) = −ε4, V̂(x,Γ) = −ε5, in Ω,

(5.17)

We get an optimal control pair (T ∗, I∗, L∗,M∗,V∗). Make a transformation: substituting the variable
t with Γ − t and letting ζ1(x, t) = T̂ (x,Γ − t), ζ2(x, t) = Î(x,Γ − t), ζ3(x, t) = L̂(x,Γ − t)ζ4(x, t) =
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M̂(x,Γ − t), ζ5(x, t) = V̂(x,Γ − t), (x, t) ∈ ΩΓ, system (5.17) then becomes

∂ξ1

∂t
= −θ0∆ξ1 + (µT + βV∗)ξ1 − βV∗ξ1 + ϱ1,

∂ξ2

∂t
= −θ1∆ξ2 + (µI + n(1 − w∗1))ξ2 − ( f n(1 − w∗1))ξ3 − (n(1 − f )(1 − w∗1))ξ4 + ϱ2,

∂ξ3

∂t
= −θ2∆ξ3 + a(1 − w∗3)ξ3 + µLξ3 − a(1 − w∗3)ξ4 + ϱ3,

∂ξ4

∂t
= −θ3∆ξ4 + µMξ4 − k(1 − w∗2)ξ5 + ϱ4,

∂ξ5

∂t
= −θ4∆ξ5 + cξ5 + ϱ5,

∂T̂
∂ν
=
∂Î
∂ν
=
∂L̂
∂ν
=
∂M̂
∂ν
=
∂V̂
∂ν
= 0, on (0,Γ) × ∂Ω,

T̂ (x,Γ) = −ε1, Î(x,Γ) = −ε2, L̂(x,Γ) = −ε3, M̂(x,Γ) = −ε4, V̂(x,Γ) = −ε5, in Ω.

(5.18)

Refer to a similar process in Theorem 5.2, the solution to the system (5.18), is proved to be existed and
strictly positive, and its dynamical behavior and the well-posedness of system (5.17) is also analyzed.
Consequently, we will have these conclusions based on Theorem 5.2.

Lemma 5.4. Remain all the conditions which make Theorem 5.2 valid the same, then get a control
variable combination (T ∗, I∗, L∗,M∗,V∗). Then we can get that the solution (T̂ , Î, L̂, M̂, V̂) to the system
(5.17) such that T̂ , Î, L̂, M̂, V̂ ∈ W1,2(0,Γ; H ). Further, T̂ , Î, L̂, M̂, V̂ ∈ L∞(ΩΓ) ∩ L2(0,Γ; H 2(Ω) ∩
L∞(0,Γ; H 1(Ω))

Lemma 5.5. Remain all the conditions which make Theorem 5.2 valid the same. For w̃1, w̃2, w̃3 ∈

L2(ΩΓ) and a positive κ, suppose that wκ
1 = w∗1 + κw̃1,wκ

2 = w∗1 + κw̃2,wκ
3 = w∗3 + κw̃3 ∈ W . Then the

problem (5.1) with w = wκ = (wκ
1,w

κ
2,w

κ
3) has a unique solution Qκ = (T κ, Iκ, Lκ,Mκ,Vκ). Furthermore,

it can be proved that the uniformly boundedness of ||Qκ||L∞(Ω).

Proof. The positive strong solution’s existence and uniqueness can be established using methods
similar to those employed in Theorem 5.2. To demonstrate the uniform boundedness of ||Qκ||L∞(Ω),
consider the following equations.

∂W(x, t)
∂t

= θ0∆W(x, t) + λ, in ΩΓ,

∂W(x, t)
∂ν

= 0, on (0,Γ) × ∂Ω,

W(x, 0) = T0(x), in Ω.

(5.19)

Consider the system (5.19) and system (5.1) with w = wκ, along with the use of the comparison
principle and Gronwall’s inequality, we find that

0 ⩽ ||Qκ(x, t)||L∞(Ω) ⩽ ||W(x, t)||L∞(Ω) ⩽ ϖ1 + λΓ, (x, t) ∈ ΩΓ.

Here, ϖ1 represent positive constants and is not related to κ. Therefore, we will get the uniformly
boundedness of ||T κ||L∞(Ω). Using similar methods, we know that
||Iκ||L∞(Ω), ||Lκ||L∞(Ω), ||Mκ||L∞(Ω), ||Vκ||L∞(Ω) are all bounded in regard to κ in ΩΓ. □
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Next, we assume that (T ∗, I∗, L∗,M∗,V∗,w∗1,w
∗
2,w

∗
3) is an optimal pair and Qκ = (T κ, Iκ, Lκ,Mκ,Vκ)

is the solution to the problem (5.1) with wκ = (wκ
1,w

κ
2,w

κ
3) written in Lemma 5.5. If we let Zκ

T =
T κ−T ∗
κ
,Zκ

I =
Iκ−I∗
κ
,Zκ

L =
Lκ−L∗
κ
,Zκ

M =
Mκ−M∗

κ
,Zκ

V =
Vκ−V∗
κ

, then we have

∂Zκ
T

∂t
= θ0∆Zκ

T − β(VκZκ
T + T ∗Zκ

V),

∂Zκ
I

∂t
= θ1∆Zκ

I + β(VκZκ
T + T ∗Zκ

V) + n(w∗1Zκ
I + Iκw̃1) − (µI + n)Zκ

I ,

∂Zκ
L

∂t
= θ2∆Zκ

L + f nZκ
I + a(w∗3Zκ

L + Lκw̃3) − f n(w∗1Zκ
I + Iκw̃1) − aZκ

L − µLZκ
L,

∂Zκ
M

∂t
= θ3∆Zκ

M + n(1 − f )Zκ
I + aZκ

L − n(1 − f )(w∗1Zκ
I + Iκw̃1) − µ∗MZκ

M − a(w∗3Zκ
L + Lκw̃3),

∂Zκ
V

∂t
= θ4∆Zκ

V + kZκ
M − k(w∗2Zκ

M + Mκw̃2) − cZκ
V ,

∂Zκ
T

∂ν
=
∂Zκ

I

∂ν
=
∂Zκ

L

∂ν
=
∂Zκ

M

∂ν
=
∂Zκ

V

∂ν
= 0, on (0,Γ) × ∂Ω,

Zκ
T (x, 0) = Zκ

I (x, 0) = Zκ
L(x, 0) = Zκ

M(x, 0) = Zκ
V(x, 0) = 0, in Ω.

(5.20)

Lemma 5.6. Remain all the conditions which make Theorem 5.2 valid the same. Then the uniqueness
of strong solution Zκ of control system problem (5.20), which satisfying Zκ = (Zκ

T ,Z
κ
I ,Z

κ
L,Z

κ
M,Z

κ
V)T ∈

W1,2(0,Γ; H ) and Zκ
T ,Z

κ
I ,Z

κ
L,Z

κ
M,Z

κ
V ∈ L2(0,Γ; H 2(Ω)) ∩ L∞(0,Γ; H 1(Ω)) can be proved. Moreover,

we can prove that T κ → T ∗, Iκ → I∗, Lκ → L∗Mκ → M∗,Vκ → V∗, in L2(ΩΓ) and Zκ → Z as κ → 0.
Here, Z = (ZT ,ZI ,ZL,ZM,ZV)T is the solution to this problem:

∂ZT

∂t
= θ0∆ZT − β(V∗ZT + T ∗ZV),

∂ZI

∂t
= θ1∆ZI + β(V∗ZT + T ∗ZV) + n(w∗1ZI + I∗w̃1) − (µI + n)ZI ,

∂ZL

∂t
= θ2∆ZL + f nZI + a(w∗3ZL + L∗w̃3) − f n(w∗1ZI + I∗w̃1) − aZL − µLZL,

∂ZM

∂t
= θ3∆ZM + n(1 − f )ZI + aZL − n(1 − f )(w∗1ZI + I∗w̃1) − µ∗MZM − a(w∗3ZL + L∗w̃3),

∂ZV

∂t
= θ4∆ZV + kZM − k(w∗2ZM + M∗w̃2) − cZV ,

∂ZT

∂ν
=
∂ZI

∂ν
=
∂ZL

∂ν
=
∂ZM

∂ν
=
∂ZV

∂ν
= 0, on (0,Γ) × ∂Ω,

ZT (x, 0) = ZI(x, 0) = ZL(x, 0) = ZM(x, 0) = ZV(x, 0) = 0, in Ω.

(5.21)

Proof. According to the method in Theorem 5.2, we can prove that there admits a strong solution.
Next, we need to prove that Zκ

T ,Z
κ
I ,Z

κ
L,Z

κ
M,Z

κ
V are all bounded in L2(ΩΓ) uniformly with regard to κ and

limκ→0||T κ − T ∗||L2(ΩΓ) = 0, limκ→0||Iκ − I∗||L2(ΩΓ) = 0, limκ→0||Lκ − L∗||L2(ΩΓ) = 0, limκ→0||Mκ −M∗||L2(ΩΓ) =

0, limκ→0||Vκ − V∗||L2(ΩΓ) = 0. For this purpose, let

Wκ(t) = (0, nIκw̃1, aLκũ3 − f nIκw̃1,−n(1 − f )Iκw̃1 − aLκw̃3,−kMκw̃2)T ,

W∗(t) = (0, nI∗w̃1, aL∗w̃3 − f nI∗w̃1,−n(1 − f )I∗w̃1 − aL∗w̃3,−kM∗w̃2)T .
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and

T κ(t) =


−βVκ 0 0 0 −βT ∗

βVκ n(w∗1 − 1) − µI 0 0 βT ∗

0 n f (1 − w∗1) a(w∗3 − 1) − µL 0 0
0 n(1 − f )(1 − w∗1) a(1 − w∗3) −µM 0
0 0 0 k(1 − w∗2) −c


,

T ∗(t) =


−βV∗ 0 0 0 −βT ∗

βV∗ n(w∗1 − 1) − µI 0 0 βT ∗

0 n f (1 − w∗1) a(w∗3 − 1) − µL 0 0
0 n(1 − f )(1 − w∗1) a(1 − w∗3) −µM 0
0 0 0 k(1 − w∗2) −c


.

Then system (5.20) can be rewritten as
∂Zκ

∂t
= A Zκ(t) +T κ(t)Zκ(t) +Wκ(t), in ΩΓ,

Zκ(0) = 0, in Ω.
(5.22)

Assuming A has semigroup {T (t) : t ⩾ 0}, it can be deduced from Lions [49] that the solution of (5.22)
can be formulated as

Zκ(t) =
∫ t

0
T (t − s)T κ(s)Zκ(s)ds +

∫ t

0
T (t − s)Wκ(s)ds, t ∈ [0,Γ]. (5.23)

Moreover, considering Lemma 5.4, 5.5 and Theorem 5.2, we will obtain the uniformly boundedness
of T and U. Hence, there admits B1 > 0 and B2 > 0 such that

||Zκ(t)||L2(Ω) ⩽ B1 + B2

∫ t

0
||Zκ(s)||L2(Ω)ds, t ∈ [0,Γ].

According to inequality of Gronwall that is Zκ bounded in L2(ΩΓ). Thus we have

||Zκ − Z||L2(ΩΓ) = κ||Z
κ||L2(ΩΓ) → 0, as κ → 0,

||Iκ − I||L2(ΩΓ) = κ||I
κ||L2(ΩΓ) → 0, as κ → 0,

||Lκ − L||L2(ΩΓ) = κ||L
κ||L2(ΩΓ) → 0, as κ → 0,

||Mκ − M||L2(ΩΓ) = κ||M
κ||L2(ΩΓ) → 0, as κ → 0,

||Vκ − V ||L2(ΩΓ) = κ||V
κ||L2(ΩΓ) → 0, as κ → 0.

We next further show Zκ → Z, in L2(ΩΓ). System (5.21)can be expressed as
∂Z
∂t
= A Z(t) +T ∗(t)Z(t) +W∗(t), in ΩΓ,

Z(0) = 0, in Ω.
(5.24)

Next, the solution of system (5.24):

Z(t) =
∫ t

0
T (t − s)T ∗(s)Z(s)ds +

∫ t

0
T (t − s)W∗(s)ds, t ∈ [0,Γ]. (5.25)
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Consider both the (5.23) and (5.25):

Zκ(t) − Z(t) =
∫ t

0
T (t − s)(T κZκ − T ∗Z)(s)ds, t ∈ [0,Γ].

In addition, The elements of matrix T κ(t) tend to the corresponding elements of matrix T ∗(t) in L2(ΩΓ),
and it is also bounded. We can speculate that Zκ → Z in L2(ΩΓ) by the inequality of Gronwall. □

Theorem 5.7. Remain all the conditions which make Theorem 5.2 valid the same. If
(T ∗, I∗, L∗,M∗,V∗,w∗1,w

∗
2,w

∗
3) is an control combination of problem (5.1)–(5.4) and (T̂ , Î, L̂, M̂, V̂) is

the solution to the adjoint system, then we have∫
ΩΓ

n(1 − f )I∗w̃1M̂dxdt +
∫
ΩΓ

aL∗w̃3M̂dxdt +
∫
ΩΓ

kM∗w̃2V̂dxdt −
∫
ΩΓ

nI∗w̃1 Îdxdt

−

∫
ΩΓ

(aL∗w̃3 − f nI∗w̃1)L̂dxdt ⩾ −
∫
ΩΓ

3∑
i=1

liw̃i(x, t)dxdt −
∫
Ω

3∑
i=1

piw̃i(x,Γ)dx.
(5.26)

Furthermore, if p1(x) = p2(x) = p3(x) ≡ 0 in Ω, we can choose the following strategy:

u∗1 =

1, in
{
(x, t) ∈ Ω : (I∗ Î + l1)(x, t) ⩽ 0

}
,

0, in
{
(x, t) ∈ Ω : (I∗ Î + l1)(x, t) > 0

}
.

u∗2 =

1, in
{
(x, t) ∈ Ω : (V∗V̂ + l2)(x, t) ⩽ 0

}
,

0, in
{
(x, t) ∈ Ω : (V∗V̂ + l2)(x, t) > 0

}
.

and

u∗3 =

1, in
{
(x, t) ∈ Ω : (L∗L̂ + l3)(x, t) ⩽ 0

}
,

0, in
{
(x, t) ∈ Ω : (L∗L̂ + l3)(x, t) > 0

}
.

Proof. Assume that the optimal control pair(T ∗, I∗, L∗,M∗,V∗,w∗1,w
∗
2,w

∗
3) and the control cost function

C (T, I, L,M,V,w), which is given by (5.3). Hence,

C (T ∗, I∗, L∗,M∗,V∗,w∗) ⩽ C (T κ, Iκ, Lκ,Mκ,Vκ,wκ),∀κ > 0.

That is∫
ΩΓ

(ϱ1(T κ − T ∗) + ϱ2(Iκ − I∗) + ϱ3(Lκ − L∗) + ϱ4(Mκ − M∗) + ϱ5(Vκ − V∗) +
3∑

i=1

κliw̃i)(x, t)dxdt

+

∫
Ω

(ε1(T κ − T ∗) + ε2(Iκ − I∗) + ε3(Lκ − L∗) + ε4(Mκ − M∗) + ε5(Vκ − V∗) +
3∑

i=1

κpiw̃i)(x,Γ)dx ⩾ 0.

Multiply both sides of the inequality by 1/κ:∫
ΩΓ

(ϱ1Zκ
T + ϱ2Zκ

I + ϱ3Zκ
L + ϱ4Zκ

M + ϱ5Zκ
V +

3∑
i=1

liw̃i)(x, t)dxdt

+

∫
Ω

(ε1Zκ
T + ε2Zκ

I + ε3Zκ
L + ε4Zκ

M + ε5Zκ
V +

3∑
i=1

piw̃i)(x,Γ)dx ⩾ 0.
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Moreover, refer to Lemma 5.6, it holds that

Zκ
T → ZT ,Zκ

I → ZI ,Zκ
L → ZL,Zκ

M → ZM,Zκ
V → ZV in L2(ΩΓ), as κ → 0.

Hence, it holds that

Zκ
T → ZT ,Zκ

I → ZI ,Zκ
L → ZL,Zκ

M → ZM,Zκ
V → ZV in L1(ΩΓ), as κ → 0.

Similarly,we can prove that

Zκ
T (Γ)→ ZT (Γ),Zκ

I (Γ)→ ZI(Γ),Zκ
L(Γ)→ ZL(Γ),Zκ

M(Γ)→ ZM(Γ),Zκ
V(Γ)→ ZV(Γ) in L1(ΩΓ), as κ → 0.

Then, sending κ → 0:∫
ΩΓ

(ϱ1ZT + ϱ2ZI + ϱ3ZL + ϱ4ZM + ϱ5ZV +

3∑
i=1

liw̃i)(x, t)dxdt

+

∫
Ω

(ε1ZT + ε2ZI + ε3ZL + ε4ZM + ε5ZV +

3∑
i=1

piw̃i)(x,Γ)dx ⩾ 0

(5.27)

From system (5.17) and (5.21), we can obtain that

∂T̂
∂t

ZT +
∂Î
∂t

ZI +
∂L̂
∂t

ZL +
∂M̂
∂t

ZM +
∂V̂
∂t

ZV +
∂ZT

∂t
T̂ +

∂ZI

∂t
Î +

∂ZL

∂t
L̂ +

∂ZM

∂t
M̂ +

∂ZV

∂t
V̂

= −θ0∆T̂ZT − θ1∆ÎZI − θ2∆L̂ZL − θ3∆M̂ZM − θ4∆V̂ZV + θ0∆ZT T̂ + θ1∆ZI Î + θ2∆ZLL̂ + θ3∆ZM M̂

+θ4∆ZV V̂ + ϱ1ZT + ϱ2ZI + ϱ3ZL + ϱ4ZM + ϱ5ZV + nI∗w̃1 Î + (aL∗w̃3 − f nI∗w̃1)L̂ − n(1 − f )I∗w̃1M̂

−aL∗w̃3M̂ − kM∗w̃2V̂ .
(5.28)

Let the expression (5.28) be integrated over ΩΓ. Then, considering the initial boundary conditions of
T̂ , Î, L̂, M̂, V̂ ,ZT ,ZI ,ZL,ZM,ZV , we can get:∫

Ω

(ZT T̂ + ZI Î + ZLL̂ + ZM M̂ + ZV V̂)(x,Γ)dx

=

∫
ΩΓ

(ϱ1ZT + ϱ2ZI + ϱ3ZL + ϱ4ZM + ϱ5ZV)(x, t)dxdt +
∫
ΩΓ

nI∗w̃1 Îdxdt +
∫
ΩΓ

(aL∗w̃3 − f nI∗w̃1)L̂dxdt

−

∫
ΩΓ

n(1 − f )I∗w̃1M̂dxdt −
∫
ΩΓ

aL∗w̃3M̂dxdt −
∫
ΩΓ

kM∗w̃2V̂dxdt.

From the last equation of (5.17), we can get∫
Ω

(ZTε1 + ZIε2 + ZLε3 + ZMε4 + ZVε5)(x,Γ)dx

=

∫
ΩΓ

n(1 − f )I∗ũ1M̂dxdt +
∫
ΩΓ

aL∗ũ3M̂dxdt +
∫
ΩΓ

kM∗ũ2V̂dxdt −
∫
ΩΓ

(aL∗ũ3 − f nI∗ũ1)L̂dxdt

−

∫
ΩΓ

(ϱ1ZT + ϱ2ZI + ϱ3ZL + ϱ4ZM + ϱ5ZV)(x, t)dxdt −
∫
ΩΓ

nI∗ũ1 Îdxdt.
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Then, by (5.27), one has∫
ΩΓ

n(1 − f )I∗w̃1M̂dxdt +
∫
ΩΓ

aL∗w̃3M̂dxdt +
∫
ΩΓ

kM∗w̃2V̂dxdt −
∫
ΩΓ

nI∗w̃1 Îdxdt

−

∫
ΩΓ

(aL∗w̃3 − f nI∗w̃1)L̂dxdt ⩾ −
∫
ΩΓ

3∑
i=1

liw̃i(x, t)dxdt −
∫
Ω

3∑
i=1

piw̃i(x,Γ)dx.

Given that w̃ = (w̃1, w̃2, w̃3) ∈ L2(ΩΓ) is arbitrary, make equality transformation such as ŵi = w̃i −

w̃∗i ,∀w̃∗i ∈ W , i = 1, 2, 3. We can get the formula (5.26) from the Theorem 5.7. □

6. Numerical simulations

6.1. Model parameters and its initial values

In this section, our focus is on the concentration dynamics of each compartment under the optimal
control strategy. In numerous studies and experiments, the estimated parameter values are invariant
and independent of the spatial dimension, and these values can reflect the mean level of these factors.
Hence, it is reasonable to use mean values to estimate parameters. The parameter values for model
(2.3) are chosen from Table 3, and the mean value of b(x) over Ω̄ is set to b̃, where
b = λ, β, n, f , a, k, c, µT , µI , µL, µM. Moreover, the mean values of these parameters refer to the
literature listed in Table 3. We assume that the one-dimensional bounded space area ΩΓ can be
regarded as an abstract projection of the two-dimensional space.

Considering that the basic reproduction number of HIV transmission in the human body is generally
between 8 and 10, we assume that β̃ = 3.2 × 10−10, which implies that R0 = 8.4492. The diffusion
coefficient of the uninfected cells can be set to θ̃0 = 0.006 mm2 day−1. Given that infected cells
exhibit slower movement compared to uninfected cells, we hypothesized that θ̃1 = 0.005 mm2 day−1,
θ̃2 = 0.005 mm2 day−1, θ̃3 = 0.003 mm2 day−1, θ̃4 = 0.006 mm2 day−1.

Table 3. Mean values of model parameters and their sources.

Parameter Mean value Source
λ(x) 5.0 × 105 cells/(day mL) Nakaoka et al. [50]
β(x) 3.2 × 10−10 mL/(virions cells day) Variable
n(x) 2.6 day−1 Hill et al. [30]
f (x) 0.1 day−1 Hill et al. [30]
a(x) 0.4 day−1 Hill et al. [30]
k(x) 1000 virions/(cell day) Funk et al. [51]
c(x) 3 day−1 Nelson et al. [52]
µT (x) 0.01 day−1 Nakaoka et al. [50]
µI(x) 0.5 day−1 Nelson et al. [52]
µL(x) 0.5 day−1 Nelson et al. [52]
µM(x) 0.5 day−1 Nelson et al. [52]
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6.2. Numerical simulation of dynamic behavior

(a) (b)

Figure 1. Time variation of V(x, t) for different R0. (a) R0 ≈ 2.1123 > 1. (b) R0 ≈ 0.5281 <
1.

In Section 5, we explain that the reverse transcriptase inhibitors, protease inhibitor, and Flavonoid
Compounds treatments are likely effective to prevent virus-to-cell transmission. Therefore, we assume
that when these interventions are taken, the production rate of virus in infected cells and the speed
of virus infection will be reduced, that is, k(x) and β(x) will be reduced. Now, set β(x) = 0.25β̃,
the remaining parameters are set according to Table 3. Then we can calculate R0 ≈ 2.1123 and the
virus is persistent (Figure 1(a) with T0(x) = 5.0 × 107, I0(x) = 0, L0(x) = 0, M0(x) = 0,V0(x) =
25 × (1 + x(1 − x)2(2 − x)3) for x ∈ (0, 1]). Set β(x) = 0.125β̃, k(x) = 0.5k̃ for x ∈ (0, 1] and
The remaining parameters remain consistent with those illustrated in Figure 1(a). Then use the same
method to calculate, we calculate R0 ≈ 0.5281 and observe that the virions are becoming extinct
(Figure 1(b)). By comparison we find that the increase in R0 is clearly associated with an elevated risk
of HIV transmission.

To study the effect of spatial heterogeneity, we assume that parameter β is spatial dependent. Under
the condition that the mean value of parameter β(x) is equal to 0.25β̃ (x ∈ (0, 1]), we assume that β(x) =
8 × 10−11(1 + sin(2πx)). The remaining parameters are consistent with the experimental parameters
in Figure1 (a). We set the following initial values: T0(x) = 5 × 107(1 + x(1 − x)2(2 − x)3), I0(x) =
10 × (1 + x(1 − x)2(2 − x)3) L0(x) = 10 × (1 + x(1 − x)2(2 − x)3), M0(x) = 50 × (1 + x(1 − x)2(2 − x)3),
V0(x) = 25 × (1 + x(1 − x)2(2 − x)3). Under the influence of heterogeneous parameters, we obtain the
concentration changes in each compartment as shown in Figure 2. In addition, Figure 3 is a graph of
the change in concentration of each compartment when β is a spatial homogeneous parameter (β(x) =
0.25β̃).

In Figures 2 and 3, the compartments representing infected cells and virions are both beyond
normal levels due to infection. Susceptible compartment shows no significant changes in the short
term. Comparing the cases of heterogeneous and homogeneous parameters, we find that the
concentrations of the infected compartments (I, L,M,V) are significantly higher under heterogeneous
parameters than under homogeneous parameters. This indicates that using spatially averaged
parameters will underestimate the extent of HIV infection.
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(a) (b)

(c) (d)

(e)

Figure 2. The solution surface to system (2.3)–(2.5) on ΩΓ = [0, 1] × [0, 1], β(x) = 8 ×
10−11(1 + sin(2πx)).
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(a) (b)

(c) (d)

(e)

Figure 3. The solution surface to system (2.3)–(2.5) on ΩΓ = [0, 1]× [0, 1], β(x) = 8× 10−11.
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(a) (b)

(c) (d)

(e)

Figure 4. The solution surface to the control system (5.1)–(5.3) on ΩΓ = [0, 1] × [0, 1].
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(a) (b)

(c)

Figure 5. The optimal controls on ΩΓ = [0, 1] × [0, 1].

6.3. Numerical simulation of optimal control in HIV transmission

In the context of researching optimal control problems for reaction-diffusion models, it is crucial
to consider the rational selection of parameters within the objective functional C (T, I, L,M,V,w). The
values for the parameters are as follows: ϱ1 = 1, ϱ2 = 1, ϱ3 = 1, ϱ4 = 1, ϱ5 = 1, l1 = 0.4, l2 = 0.3,
l3 = 0.3, l4 = 0.3, l5 = 0.35, ε1 = 100, ε2 = 100, ε3 = 100. The initial values are the same as those
in Figure 3. Based on the given parameter values, we employ the finite difference method (Crank-
Nicolson) to numerically simulate the optimal control problem (5.1)–(5.4). For the numerical solution
of the adjoint system (5.17), we use the iterative solution of the control system (5.1) to solve backward
in time by the Crank-Nicolson method.

The solution surface of the control system (5.1) is shown in Figure 4. After adding controls, we
found that the load of immature infected cells, latent infected cells, mature infected cells and viral
particles all decreased significantly under the optimal treatment strategy. This indicated that the optimal
treatment strategy is very effective in controlling HIV infection in the host. Susceptible compartments
(CD4+T ) did not change significantly in the short term. The base number of susceptible cells is large,
and the early spread of the virus has little impact on the concentration of susceptible cells (Figure 4(a)).
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The optimal control w∗i , i = 1, 2, 3 is shown in Figure 5. We found that the optimal control strategies
are Bang-Bang control forms. For w1 and w3 control, the optimal control is interrupted for a certain
distance at the early time, the maximum control intensity is reached near the mid-range moment. For
w2 control, the maximum control intensity is reached near the terminal time. When the w1 variable and
w3 variable are not controlled in the later stage, they lead to an increase in the concentration of latent
infected cells and mature infected cells respectively. The free viral particle compartment converged to
lower concentrations after the addition of the control term w2, and it suggest that the ability of infected
cells to produce virus was controlled at low levels. This indicates that pharmacological interventions
can slow down the process of viral infection in humans and reduce the severity of the disease in the
early stages of HIV transmission.

In addition, the values of optimal control are different at different spatial locations x, which means
that the intensity of measures taken depends on the different spatial locations. During the clinical
treatment of HIV, the differences in human body organs and tissues should be taken into consideration
in the dosage. Large doses should be used in areas with a high degree of infection, and less medication
should be used in areas with a mild degree of infection. In this way, on the one hand, HIV infection in
the body can be accurately controlled, and on the other hand, the cost of treatment can be reduced. A
treatment process that does not take heterogeneity into account is equivalent to completely equalizing
medication, which is not conducive to suppressing the spread of the virus and also increases the cost.

7. Conclusions

In this paper, we develop a dynamic model of HIV transmission in human body that includes a
spatially heterogeneous diffusion term to study combination effect of reverse transcriptase inhibitors,
protease inhibitor and Flavonoid Compound. We study the case of bounded spaces with Neumann
boundaries to obtain the persistence conditions of viruses in heterogeneous spaces. First, we discuss
the case of well-posedness under Neumann boundary conditions and prove the existence of the global
attractor of the system, and we derive a biologically meaningful threshold index, the basic reproduction
ratio R0. We prove that the threshold dynamics of R0: The virus persists in body when R0 > 1 and is
eventually eliminated when R0 < 1. The basic reproduction ratio for this model is characterized as
the spectral radius of the next generation operator and can be numerically calculated when the model
parameters are spatially independent.

To further investigate the optimal control strategy for pharmacological intervention in the HIV
infection, we introduced control variables representing reverse transcriptase inhibitors, protease
inhibitor and Flavonoid Compounds, respectively. An objective function that minimizes the number
of infected cells and intervention costs while maximizing the number of susceptible cells was
established. Finally, We prove the first-order necessary conditions.

In the numerical simulation section, we initially compared the changes in virus concentration under
different basic reproduction number values, and that experimental and theoretical results are consistent.
Next, we compared the variations in concentration over time and position in different compartments
with and without control. It is shown that the implementation of the optimal treatment strategies in this
paper can significantly reduce the load of infected cell and free virus, so as to effectively control HIV
infection in the host.
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