This work focuses on exploring pointwise error estimate of three-level conservative difference scheme for supergeneralized viscous Burgers' equation. The cut-off function method plays an important role in constructing difference scheme and presenting numerical analysis. We study the conservative invariant of proposed method, which is energy-preserving for all positive integers $ p $ and $ q $. Meanwhile, one could apply the discrete energy argument to the rigorous proof that the three-level scheme has unique solution combining the mathematical induction. In addition, we prove the $ L_2 $-norm and $ L_{\infty} $-norm convergence of proposed scheme in pointwise sense with separate and different ways, which is different from previous work in [
Citation: Yang Shi, Xuehua Yang. Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation[J]. Electronic Research Archive, 2024, 32(3): 1471-1497. doi: 10.3934/era.2024068
This work focuses on exploring pointwise error estimate of three-level conservative difference scheme for supergeneralized viscous Burgers' equation. The cut-off function method plays an important role in constructing difference scheme and presenting numerical analysis. We study the conservative invariant of proposed method, which is energy-preserving for all positive integers $ p $ and $ q $. Meanwhile, one could apply the discrete energy argument to the rigorous proof that the three-level scheme has unique solution combining the mathematical induction. In addition, we prove the $ L_2 $-norm and $ L_{\infty} $-norm convergence of proposed scheme in pointwise sense with separate and different ways, which is different from previous work in [
[1] | Q. F. Zhang, Y. F. Qin, X. P. Wang, Z. Z. Sun, The study of exact and numerical solutions of the generalized viscous Burgers' equation, Appl. Math. Lett., 112 (2021), 106719. https://doi.org/10.1016/j.aml.2020.106719 doi: 10.1016/j.aml.2020.106719 |
[2] | M. P. Bonkile, A. Awasthi, C. Lakshmi, V. Mukundan, V. S. Aswin, A systematic literature review of Burgers' equation with recent advances, Pramana, 90 (2018), 1–21. https://doi.org/10.1007/s12043-018-1559-4 doi: 10.1007/s12043-018-1559-4 |
[3] | X. Y. Peng, D. Xu, W. L. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simulat., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004 |
[4] | Z. Y. Chen, J. Yepez, D. G. Cory, Simulation of the Burgers equation by NMR quantum-information processing, Phys. Rev. A, 7 (2006), 042321. https://doi.org/10.1103/PhysRevA.74.042321 doi: 10.1103/PhysRevA.74.042321 |
[5] | J. D. Murray, On Burgers' model equations for turbulence, J. Fluid Mech., 59 (1973), 263–279. https://doi.org/10.1017/S0022112073001564 doi: 10.1017/S0022112073001564 |
[6] | J. Yepez, Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity, Phys. Rev. A, 74 (2006), 042322. https://doi.org/10.1103/PhysRevA.74.042322 doi: 10.1103/PhysRevA.74.042322 |
[7] | Q. Q. Tian, H. X. Zhang, X. H. Yang, X. X. Jiang, An implicit difference scheme for the fourth-order nonlinear non-local PIDEs with a weakly singular kernel, Comput. Appl. Math., 41(7) (2022), 328. https://doi.org/10.1007/s40314-022-02040-9 doi: 10.1007/s40314-022-02040-9 |
[8] | C. J. Li, H. X. Zhang, X. H. Yang, A new $\alpha$-robust nonlinear numerical algorithm for the time fractional nonlinear KdV equation, Commun. Anal. Mech., 16 (2024), 147–168. https://doi.org/10.3934/cam.2024007 doi: 10.3934/cam.2024007 |
[9] | Z. Y. Zhou, H. X. Zhang, X. H. Yang, The compact difference scheme for the fourth-order nonlocal evolution equation with a weakly singular kernel, Math. Method Appl. Sci., 46(5) (2023), 5422–5447. https://doi.org/10.1002/mma.8842 doi: 10.1002/mma.8842 |
[10] | L. Wu, H. Zhang, X. Yang, The finite difference method for the fourth-order partial integro-differential equations with the multi-term weakly singular kernel, Math. Method Appl. Sci., 46(2) (2023), 2517–2537. https://doi.org/10.1002/mma.8658 doi: 10.1002/mma.8658 |
[11] | L. Wu, H. Zhang, X. Yang, F. Wang, A second-order finite difference method for the multi-term fourth-order integral-differential equations on graded meshes, Comput. Appl. Math., 41(7) (2022), 313. https://doi.org/10.1007/s40314-022-02026-7 doi: 10.1007/s40314-022-02026-7 |
[12] | X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972 |
[13] | X. H. Yang, H. X. Zhang, Q. Zhang, G. Y. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2 |
[14] | X. H. Yang, H. X. Zhang, The uniform $l^1$ long-time behavior of time discretization for time-fractional partial differential equations with nonsmooth data, Appl. Math. Lett., 124 (2022), 107644. https://doi.org/10.1016/j.aml.2021.107644 doi: 10.1016/j.aml.2021.107644 |
[15] | W. Xiao, X. H. Yang, Z. Z. Zhou, Pointwise-in-time $\alpha$-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003 |
[16] | H. X. Zhang, Y. Liu, X. H. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 |
[17] | Z. Y. Zhou, H. X. Zhang, X. H. Yang, J. Tang, An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions, Int. J. Comput. Math., (2023), 1–18. https://doi.org/10.1080/00207160.2023.2212307 |
[18] | X. Yang, W. Qiu, H. Chen, H. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004 |
[19] | X. H. Yang, L. J. Wu, H. X. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192 |
[20] | H. X. Zhang, X. H. Yang, Q. Tang, D. Xu, A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation, Comput. Math. Appl., 109 (2022), 180–190. https://doi.org/10.1016/j.camwa.2022.01.007 doi: 10.1016/j.camwa.2022.01.007 |
[21] | H. X. Zhang, X. X. Jiang, F. R. Wang, X. H, Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., (2024), 1–24. https://doi.org/10.1007/s12190-024-02000-y |
[22] | F. Wang, X. Yang, H. Zhang, L. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simulat., 199, (2022), 38–59. https://doi.org/10.1016/j.matcom.2022.03.004 |
[23] | C. J. Li, H. X. Zhang, X. H. Yang, A high-precision Richardson extrapolation method for a class of elliptic Dirichlet boundary value calculation, J. Hunan Univ. Technol., 38 (2024), 91–97. https://doi.org/10.3969/j.issn.1673-9833.2024.01.013 doi: 10.3969/j.issn.1673-9833.2024.01.013 |
[24] | T. Guo, M. A. Zaky, A. S. Hendy, W. L. Qiu, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2023), 260–277. https://doi.org/10.1016/j.apnum.2022.11.023 doi: 10.1016/j.apnum.2022.11.023 |
[25] | D. T. Blackstock, Generalized Burgers equation for plane waves, J. Acoust. Soc. Am., 77 (1985), 2050–2053. https://doi.org/10.1121/1.391778 doi: 10.1121/1.391778 |
[26] | N. Sugimoto, T. Kakutani, 'Generalized Burgers' equation' for nonlinear viscoelastic waves, Wave Motion, 7 (1985), 447–458. https://doi.org/10.1016/0165-2125(85)90019-8 doi: 10.1016/0165-2125(85)90019-8 |
[27] | D. K. Tong, L. T. Shan, Exact solutions for generalized Burgers' fluid in an annular pipe, Meccanica, 44 (2009), 427–431. https://doi.org/10.1007/s11012-008-9179-6 doi: 10.1007/s11012-008-9179-6 |
[28] | X. P. Wang, Q. F. Zhang, Z. Z. Sun, The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation, Adv. Comput. Math., 47 (2021), 1–42. https://doi.org/10.1007/s10444-021-09848-9 doi: 10.1007/s10444-021-09848-9 |
[29] | Q. F. Zhang, L. L. Liu, Convergence and stability in maximum norms of linearized fourth-order conservative compact scheme for Benjamin-Bona-Mahony-Burgers' equation, J. Sci. Comput., 87 (2021), 1–31. https://doi.org/10.1007/s10915-021-01474-3 doi: 10.1007/s10915-021-01474-3 |
[30] | Q. F. Zhang, Y. F. Qin, Z. Z. Sun, Linearly compact scheme for 2D Sobolev equation with Burgers' type nonlinearity, Numer. Algorithms, 91 (2022), 1081–1114. https://doi.org/10.1007/s11075-022-01293-z doi: 10.1007/s11075-022-01293-z |
[31] | W. Gao, Y. Liu, B. Cao, H. Li, A High-Order NVD/TVD-Based Polynomial Upwind Scheme for the Modified Burgers' Equations, Adv. Appl. Math. Mech., 4 (2012), 617–635. https://doi.org/10.4208/aamm.10-m1139 doi: 10.4208/aamm.10-m1139 |
[32] | T. Guo, D. Xu, W. L. Qiu, Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 140 (2023), 108570. https://doi.org/10.1016/j.aml.2023.108570 doi: 10.1016/j.aml.2023.108570 |
[33] | W. P. Hu, Z. C. Deng, S. M. Han, An implicit difference scheme focusing on the local conservation properties for Burgers equation, Int. J. Comp. Meth., 9 (2012), 1240028. https://doi.org/10.1142/S0219876212400282 doi: 10.1142/S0219876212400282 |
[34] | A. K. Pany, N. Nataraj, S. Singh, A new mixed finite element method for Burgers' equation, J. Appl. Math. Comput., 23 (2007), 43–55. https://doi.org/10.1007/BF02831957 doi: 10.1007/BF02831957 |
[35] | R. Jiwari, A hybrid numerical scheme for the numerical solution of the Burgers' equation, Comput. Phys. Commun., 188 (2015), 59–67. https://doi.org/10.1016/j.cpc.2014.11.004 doi: 10.1016/j.cpc.2014.11.004 |
[36] | H. F. Wang, D. Xu, J. Zhou, J. Guo, Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation, Numer. Meth. Part. Differ. Equations, 37 (2021), 732–749. https://doi.org/10.1002/num.22549 doi: 10.1002/num.22549 |
[37] | J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., (2024), 1–23. https://doi.org/10.1007/s12190-023-01975-4 |
[38] | J. W. Wang, X. X. Jiang, H. X. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002 |
[39] | J. W. Wang, H. X. Zhang, X. H. Yang, A predictor-corrector compact difference scheme for a class of nonlinear Burgers equations, J. Hunan Univ. Technol., 38 (2024), 98–104. https://doi.org/10.3969/j.issn.1673-9833.2024.01.014 doi: 10.3969/j.issn.1673-9833.2024.01.014 |
[40] | Q. F. Zhang, C. C. Sun, Z. W. Fang, H. W. Sun, Pointwise error estimate and stability analysis of fourth-order compact difference scheme for time-fractional Burgers' equation, Appl. Math. Comput., 418 (2022), 126824. https://doi.org/10.1016/j.amc.2021.126824 doi: 10.1016/j.amc.2021.126824 |
[41] | Q. F. Zhang, L. L. Liu, Z. M. Zhang, Linearly implicit invariant-preserving decoupled difference scheme for the rotation-two-component Camassa-Holm system, SIAM J. Sci. Comput., 44 (2022), A2226–A2252. https://doi.org/10.1137/21M1452020 doi: 10.1137/21M1452020 |
[42] | F. X. Sun, J. F. Wang, A meshless method for the numerical solution of the generalized Burgers equation, Appl. Mech. Mater., 101 (2012), 275–278. https://doi.org/10.4028/www.scientific.net/AMM.101-102.275 doi: 10.4028/www.scientific.net/AMM.101-102.275 |