Research article Special Issues

Unconditional well-posedness for the periodic Boussinesq and Kawahara equations

  • Received: 11 December 2023 Revised: 05 January 2024 Accepted: 11 January 2024 Published: 25 January 2024
  • In this article, we obtain new results on the unconditional well-posedness for a pair of periodic nonlinear dispersive equations using an abstract framework introduced by Kishimoto. This framework is based on a normal form reductions argument coupled with a number of crucial multilinear estimates.

    Citation: Dan-Andrei Geba. Unconditional well-posedness for the periodic Boussinesq and Kawahara equations[J]. Electronic Research Archive, 2024, 32(2): 1067-1081. doi: 10.3934/era.2024052

    Related Papers:

  • In this article, we obtain new results on the unconditional well-posedness for a pair of periodic nonlinear dispersive equations using an abstract framework introduced by Kishimoto. This framework is based on a normal form reductions argument coupled with a number of crucial multilinear estimates.



    加载中


    [1] S. K. Turitsyn, Blow-up in the Boussinesq equation, Phys. Rev. E: Stat. Nonlinear Biol. Soft Matter Phys., 47 (1993), R796–R799. https://doi.org/10.1103/PhysRevE.47.R796 doi: 10.1103/PhysRevE.47.R796
    [2] F. Falk, E. W. Laedke, K. H. Spatschek, Stability of solitary-wave pulses in shape-memory alloys, Phys. Rev. B: Condens. Matter Mater. Phys., 36 (1987), 3031–3041. https://doi.org/10.1103/PhysRevB.36.3031 doi: 10.1103/PhysRevB.36.3031
    [3] J. V. Boussinesq, Theory of waves and vortices propagating along a horizontal rectangular channel, communicating to the liquid in the channel generally similar velocities of the bottom surface, J. Math. Pures Appl., 17 (1872), 55–108.
    [4] V. G. Makhankov, Dynamics of classical solitons (in nonintegrable systems), Phys. Rep., 35 (1978), 1–128. https://doi.org/10.1016/0370-1573(78)90074-1 doi: 10.1016/0370-1573(78)90074-1
    [5] T. Kakutani, H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Jpn., 26 (1969), 1305–1318. https://doi.org/10.1143/JPSJ.26.1305 doi: 10.1143/JPSJ.26.1305
    [6] H. Hasimoto, Water waves-their dispersion and steepening, Kagaku, 40 (1970), 401–408.
    [7] D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013. https://doi.org/10.1090/surv/188
    [8] Y. F. Fang, M. G. Grillakis, Existence and uniqueness for Boussinesq type equations on a circle, Commun. Partial Differ. Equations, 21 (1996), 1253–1277. https://doi.org/10.1080/03605309608821225 doi: 10.1080/03605309608821225
    [9] L. G. Farah, M. Scialom, On the periodic "good" Boussinesq equation, Proc. Am. Math. Soc., 138 (2010), 953–964. https://doi.org/10.1090/S0002-9939-09-10142-9 doi: 10.1090/S0002-9939-09-10142-9
    [10] S. Oh, A. Stefanov, Improved local well-posedness for the periodic "good" Boussinesq equation, J. Differ. Equations, 254 (2013), 4047–4065. https://doi.org/10.1016/j.jde.2013.02.006 doi: 10.1016/j.jde.2013.02.006
    [11] N. Kishimoto, Sharp local well-posedness for the "good" Boussinesq equation, J. Differ. Equations, 254 (2013), 2393–2433. https://doi.org/10.1016/j.jde.2012.12.008 doi: 10.1016/j.jde.2012.12.008
    [12] D. A. Geba, A. A. Himonas, D. Karapetyan, Ill-posedness results for generalized Boussinesq equations, Nonlinear Anal. Theory Methods Appl., 95 (2014), 404–413. https://doi.org/10.1016/j.na.2013.09.017 doi: 10.1016/j.na.2013.09.017
    [13] M. Okamoto, Norm inflation for the generalized Boussinesq and Kawahara equations, Nonlinear Anal., 157 (2017), 44–61. https://doi.org/10.1016/j.na.2017.03.011 doi: 10.1016/j.na.2017.03.011
    [14] H. Hirayama, Local well-posedness for the periodic higher order KdV type equations, Nonlinear Differ. Equations Appl., 19 (2012), 677–693. https://doi.org/10.1007/s00030-011-0147-9 doi: 10.1007/s00030-011-0147-9
    [15] T. Kato, Low regularity well-posedness for the periodic Kawahara equation, Differ. Integr. Equations, 25 (2012), 1011–1036. https://doi.org/10.57262/die/1356012249 doi: 10.57262/die/1356012249
    [16] T. Kato, On nonlinear Schrödinger equations, Ⅱ. $H^s$-solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281–306. https://doi.org/10.1007/BF02787794 doi: 10.1007/BF02787794
    [17] S. Kwon, T. Oh, H. Yoon, Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse Math., 29 (2020), 649–720. https://doi.org/10.5802/afst.1643 doi: 10.5802/afst.1643
    [18] N. Kishimoto, Unconditional uniqueness of solutions for nonlinear dispersive equations, preprint, arXiv: 1911.04349.
    [19] A. V. Babin, A. A. Ilyin, E. S. Titi, On the regularization mechanism for the periodic Korteweg-de Vries equation, Comm. Pure Appl. Math., 64 (2011), 591–648. https://doi.org/10.1002/cpa.20356 doi: 10.1002/cpa.20356
    [20] S. Kwon, T. Oh, On unconditional well-posedness of modified KdV, Int. Math. Res. Not., 2012 (2012), 3509–3534. https://doi.org/10.1093/imrn/rnr156 doi: 10.1093/imrn/rnr156
    [21] Z. Guo, S. Kwon, T. Oh, Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Commun. Math. Phys., 322 (2013), 19–48. https://doi.org/10.1007/s00220-013-1755-5 doi: 10.1007/s00220-013-1755-5
    [22] N. Kishimoto, Unconditional uniqueness for the periodic Benjamin-Ono equation by normal form approach, J. Math. Anal. Appl., 514 (2022), 126309. https://doi.org/10.1016/j.jmaa.2022.126309 doi: 10.1016/j.jmaa.2022.126309
    [23] T. Kato, K. Tsugawa, Cancellation properties and unconditional well-posedness for the fifth order KdV type equations with periodic boundary condition, preprint, arXiv: 2308.07190.
    [24] L. G. Farah, Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation, Commun. Pure Appl. Anal., 8 (2009), 1521–1539. https://doi.org/10.3934/cpaa.2009.8.1521 doi: 10.3934/cpaa.2009.8.1521
    [25] D. A. Geba, B. Lin, Unconditional well-posedness for the Kawahara equation, J. Math. Anal. Appl., 502 (2021), 125282. https://doi.org/10.1016/j.jmaa.2021.125282 doi: 10.1016/j.jmaa.2021.125282
    [26] N. Kishimoto, Unconditional local well-posedness for periodic NLS, J. Differ. Equations, 274 (2021), 766–787. https://doi.org/10.1016/j.jde.2020.10.025 doi: 10.1016/j.jde.2020.10.025
    [27] N. Kishimoto, Unconditional uniqueness for the periodic modified Benjamin-Ono equation by normal form approach, Int. Math. Res. Not., 2022 (2022), 12180–12219. https://doi.org/10.1093/imrn/rnab079 doi: 10.1093/imrn/rnab079
    [28] N. Kishimoto, K. Tsugawa, Local well-posedness for quadratic nonlinear Schrödinger equations and the "good" Boussinesq equation, Differ. Integr. Equations, 23 (2010), 463–493. https://doi.org/10.57262/die/1356019307 doi: 10.57262/die/1356019307
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(629) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog