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1. Introduction

In this paper, we study the periodic Cauchy problems∂2
t u − ∂2

xu + ∂
4
xu + ∂

2
x(u

2) = 0, u = u(t, x) : R × T→ R,
u(0, x) = u0(x), ∂tu(0, x) = u1(x), (u0, u1) ∈ H s(T) × H s−2(T),

(1.1)

and ∂tu + β∂3
xu − ∂

5
xu + ∂x(u2) = 0, u = u(t, x) : R × T→ R,

u(0, x) = u0(x), u0 ∈ H s(T),
(1.2)

where
u(t, 0) = u(t, 2π), T = R/2πZ, and β = 0, 1, or − 1.

The first partial differential equation is called the “good” Boussinesq equation and it is known
to describe electromagnetic waves in nonlinear dielectrics [1]. When the quadratic nonlinearity is
replaced by 4u3 − 6u5, the resulting equation was, in fact, derived in the context of shape-memory
alloys [2]. The “good” Boussinesq equation can be seen as an improved frequency dispersion version
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of the original water wave equation derived by Boussinesq [3],

∂2
t u − gh ∂2

xu − gh ∂2
x

{
3

2h
u2 +

h2

3
∂2

xu
}
= 0,

where g is the gravitational acceleration, h is undisturbed depth of the channel where the water waves
are observed, and u = u(t, x) is the elevation of the water surface. This equation admits solitary wave
solutions of the form

u(t, x) = a sech2

√3a
h3 (x ± ct)

 ,
where a and c are suitably chosen constants, and many consider this to be the place where the stability
theory of solitary wave solutions started. For a detailed review of various mathematical and physical
aspects concerning Boussinesq equations and their generalizations, we refer the reader to the excellent
review article by Makhankov [4].

The partial differential equation in the second Cauchy problem is referred to as the Kawahara
equation and it represents a scalar approximation for the full water wave equations in the shallow
water regime, when one also takes into account the surface tension. For the derivation of this type
of equations, one uses three non-dimensional parameters: δ and ϵ which quantize the dispersive and
nonlinear effects, and µ, also known as the Bond number. Shallow water regime corresponds to δ ≪ 1
and, if ϵ = δ2 and µ , 1/3, then one obtains

± ∂tu +
(
1
6
−
µ

2

)
∂3

xu +
3
4
∂x(u2) = 0,

which is the well-known KdV equation. On the other hand, if ϵ = δ4 and µ = 1/3 + νϵ1/2, then one
arrives at the Kawahara equation

± ∂tu −
ν

2
∂3

xu +
1
90
∂5

xu +
3
4
∂x(u2) = 0.

This equation was first derived by Kakutani and Ono [5] to describe nonlinear hydromagnetic waves
in plasmas and by Hasimoto [6] precisely in the context of shallow water waves with surface tension
and Bond number close to 1/3. For an extensive mathematical and physical perspective on the Kawa-
hara equation, we ask the interested reader to consult the impressive monograph [7] by Lannes.

The well-posedness (WP) of (1.1) and (1.2) has received considerable interest, with the Boussi-
nesq problem being the subject of works by Fang and Grillakis [8], Farah and Scialom [9], Oh and
Stefanov [10], Kishimoto [11], Geba et al. [12], and Okamoto [13]. For the Kawahara problem, im-
portant contributions were made by Hirayama [14], Kato [15], and Okamoto [13]. The articles by
Kishimoto [11] and Kato [15] are of particular significance. The former proves that (1.1) is locally WP
for s ≥ −1/2 and is ill-posed for s < −1/2, while the latter shows that (1.2) is locally WP for s ≥ −3/2
and is ill-posed for s < −3/2. A parallel, more comprehensive literature addresses the corresponding
non-periodic Cauchy problems.

When studying the WP of (1.1) and (1.2), the natural solution spaces, also called Hadamard spaces,
are

X = C(I; H s(T)) ∩C1(I; H s−2(T))
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and
X = C(I; H s(T))

respectively, where I ⊆ R is a time interval with 0 ∈ I. Yet, in the previously listed WP references,
uniqueness of solutions to either (1.1) or (1.2) is only attained in a proper subset of X. This has the
format X ∩ Y , where Y is an additional functional space. It is then natural to ask under what conditions
these solutions become unique in their full Hadamard spaces. This is what is called the studying of
unconditional uniqueness or, by extension, unconditional well-posedness (UWP) for these Cauchy
problems. In this direction, our article provides the following results:

Theorem 1.1. UWP of solutions to the Cauchy problem (1.1) holds for data in H s(T) × H s−2(T) when
s > 0.

Theorem 1.2. UWP of solutions to the Cauchy problem (1.2) holds for data in H s(T) when s > 1/4.

The subject of UWP for nonlinear dispersive equations has produced an impressive amount of
research for the last 30 years, arguably starting with Kato’s work [16] on nonlinear Schrödinger equa-
tions. In the same context, we mention the recent seminal papers of Kwon et al. [17] and Kishi-
moto [18] addressing fairly generic dispersive problems. Specifically for periodic problems, a selec-
tion of notable results consists of the ones obtained by Babin et al. [19], Kwon and Oh [20], Guo et
al. [21], Kishimoto [22], and Kato and Tsugawa [23]. For comprehensive discussions on UWP, as well
as access to extensive bibliographies on the subject, we refer the reader to [17, 18].

Related to our results, we first recall that UWP in the non-periodic case was previously obtained by
Farah [24] for the “good” Boussinesq equation and by Geba and Lin [25] for the Kawahara equation,
both for data in L2(R). To our knowledge, prior to this paper, there are no UWP arguments in the
literature for either (1.1) or (1.2). For both of the sharp locally WP results mentioned before (i.e.,
Kishimoto [11] for (1.1) and Kato [15] for (1.2)), uniqueness of solutions is derived only in proper
subsets of their corresponding Hadamard space. Moreover, it is important to note that the question
of what the optimal Sobolev index needs to be in order to guarantee UWP is a fairly delicate issue,
as discussed in [17, 18]. Current methodologies and previous results on related dispersive equations
suggest that s = 0 should be the right value for both (1.1) and (1.2).

In proving Theorems 1.1 and 1.2, we apply an abstract framework developed by Kishimoto [18]
in the context of nonlinear dispersive equations. This has been successfully used in obtaining UWP
for periodic Cauchy problems associated to nonlinear Schrödinger equations [26], the Benjamin-Ono
equation [22], and the modified Benjamin-Ono equation [27]. At the heart of this method lies a critical
set of multilinear bounds, which are used to derive even more complex multilinear estimates. The latter
represent the key elements in an infinite iteration scheme of normal form reductions proving UWP for
the Cauchy problem under consideration.

In concluding this section, we want to emphasize that one of the goals of this paper is to advocate
for the simplicity and the robustness of Kishimoto’s method. These two features allowed us to keep
the argument quite concise and, in our opinion, very transparent. Of course, one could argue that, at
least for (1.2), our result is likely not optimal, since the Cauchy problem for the KdV equation (which
enjoys weaker dispersion when compared to the Kawahara equation) is UWP in L2(T), as proven in [19]
through finitely many normal form reductions. Again, our aim is to present a streamlined approach to
UWP questions, which caters to a large audience.
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2. Preliminaries

2.1. Basic notational conventions and terminology

First, we write A ≲ B to stand for A ≤ CB, where C > 0 is a constant varying from line to line and
depending on various fixed parameters. Next, we ask that A ∼ B denotes that both A ≲ B and B ≲ A
are valid. We also let A ≪ B signify that A ≤ ϵB for some small absolute constant ϵ > 0.

Secondly, for a function f = f (x) defined on T, its Fourier series is given by

f (x) =
∑
k∈Z

fk eikx, fk =
1

2π

∫
T

e−ikx f (x) dx, ∀ k ∈ Z. (2.1)

In similar fashion, for v = v(t, x) defined on R × T, we write

v(t, x) =
∑
k∈Z

vk(t) eikx, vk(t) =
1

2π

∫
T

e−ikxv(t, x) dx, ∀ k ∈ Z. (2.2)

Finally, for s ∈ R, we will operate with the space

l2
s = l2

s(Z) = {ω = (ωk)k; (⟨k⟩sωk)k ∈ l2(Z)}, ∥ω∥2l2s =
∑
k∈Z

⟨k⟩2s|ωk|
2,

where ⟨k⟩ = (1 + |k|2)1/2.

2.2. Adapted Kishimoto’s methodology

Here, we present a version of Kishimoto’s framework specifically suited to be applied to our two
Cauchy problems, (1.1) and (1.2).

In the case of (1.2), we consider the generic Cauchy problem
∂twk(t) =

∑
k1+k2=k

eitφ(k,k1,k2)m(k, k1, k2) wk1(t) wk2(t),

w(0) = w(0) ∈ l2
s ,

(2.3)

and we work with the following version of Theorem 1.1 in [18]:

Theorem 2.1. The Cauchy problem (2.3) has at most one solution

w ∈ C([0,T ]; l2
s)

if, for some 0 < δ < 1/2, ∥∥∥∥∥∥∥ ∑
k1+k2=k

|m|
⟨φ⟩1/2

yk1 zk2

∥∥∥∥∥∥∥
l2s

≲ ∥y∥l2s∥z∥l2s , (2.4)

∥∥∥∥∥∥∥ ∑
k1+k2=k

|m|
⟨φ⟩1−δ

yk1 zk2

∥∥∥∥∥∥∥
l2s−2

≲ min{∥y∥l2s−2
∥z∥l2s , ∥y∥l2s∥z∥l2s−2

}, (2.5)

∥∥∥∥∥∥∥ ∑
k1+k2=k

|m| yk1 zk2

∥∥∥∥∥∥∥
l2s−2

≲ ∥y∥l2s∥z∥l2s (2.6)

hold true.
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For (1.1), we look at the generic Cauchy problem

∂tvk(t) =
∑

k1+k2=k

eitφ11(k,k1,k2)m11(k, k1, k2) vk1(t) vk2(t)

+
∑

k1+k2=k

eitφ12(k,k1,k2)m12(k, k1, k2) vk1(t) wk2(t)

+
∑

k1+k2=k

eitφ13(k,k1,k2)m13(k, k1, k2) wk1(t) vk2(t)

+
∑

k1+k2=k

eitφ14(k,k1,k2)m14(k, k1, k2) wk1(t) wk2(t)

+ R1[v,w]k,

∂twk(t) =
∑

k1+k2=k

eitφ21(k,k1,k2)m21(k, k1, k2) vk1(t) vk2(t)

+
∑

k1+k2=k

eitφ22(k,k1,k2)m22(k, k1, k2) vk1(t) wk2(t)

+
∑

k1+k2=k

eitφ23(k,k1,k2)m23(k, k1, k2) wk1(t) vk2(t)

+
∑

k1+k2=k

eitφ24(k,k1,k2)m24(k, k1, k2) wk1(t) wk2(t)

+ R2[v,w]k,

(v(0),w(0)) = (v0,w0) ∈ l2
s × l2

s .

(2.7)

In Section 2.5 of [18], Kishimoto discusses how his scheme can be adapted to abstract systems like
the one above, and we take as a working version the following result:

Theorem 2.2. The Cauchy problem (2.7) has at most one solution

(v,w) ∈ C([0,T ]; l2
s × l2

s)

if
∥R1[y, z]∥C([0,T ];l2s ) + ∥R2[y, z]∥C([0,T ];l2s ) ≤ C(∥y, z∥C([0,T ];l2s )), (2.8)

∥R1[y, z] − R1[ỹ, z̃]∥C([0,T ];l2s ) + ∥R2[y, z] − R2[ỹ, z̃]∥C([0,T ];l2s )

≤ C(∥y, z, ỹ, z̃∥C([0,T ];l2s ))(∥y − ỹ∥C([0,T ];l2s ) + ∥z − z̃∥C([0,T ];l2s )),
(2.9)

and, for some 0 < δ < 1/2, ∥∥∥∥∥∥∥ ∑
k1+k2=k

|mi j|

⟨φi j⟩
1/2 yk1 zk2

∥∥∥∥∥∥∥
l2s

≲ ∥y∥l2s∥z∥l2s , (2.10)

∥∥∥∥∥∥∥ ∑
k1+k2=k

|mi j|

⟨φi j⟩
1−δ yk1 zk2

∥∥∥∥∥∥∥
l∞

≲ min{∥y∥l∞∥z∥l2s , ∥y∥l2s∥z∥l∞}, (2.11)∥∥∥∥∥∥∥ ∑
k1+k2=k

|mi j| yk1 zk2

∥∥∥∥∥∥∥
l∞

≲ ∥y∥l2s∥z∥l2s (2.12)

hold true for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4.
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3. Proof of Theorem 1.1

We begin this section by reformulating the Boussinesq Cauchy problem (1.1) in such a way that we
can implement the methodology described before. The first step consists in rewriting it as a Cauchy
problem for a Schrödinger equation. As in Kishimoto and Tsugawa [28], if we take

(v, v0) := (u − i(1 − ∂2
x)
−1ut, u0 − i(1 − ∂2

x)
−1u1),

then (1.1) gets transformed intoi∂tv − ∂2
xv =

v−v
2 + ω(∂x)

(
v+v

2

)2
, v = v(t, x) : R × T→ C,

v(0, x) = v0(x),
(3.1)

where
ω(∂x) := −∂2

x(1 − ∂
2
x)
−1.

Conversely, if v and v0 satisfy this Cauchy problem, then, by letting

(u, u0, u1) =
(
v + v

2
,

v0 + v0

2
, (1 − ∂2

x)
(
v0 − v0

2i

))
,

it is easy to check that u, u0, and u1 are all real-valued and solve (1.1). It is equally important to notice
that, for an arbitrary T > 0,

U = (C([0,T ],H s) ∩C1([0,T ],H s−2)) × H s × H s−2, V = C([0,T ]; H s) × H s,

the maps
(u, u0, u1) ∈ U 7→ (v, v0) ∈ V

and
(v, v0) ∈ V 7→ (u, u0, u1) ∈ U

are both Lipschitz continuous. Thus, UWP for (1.1) with data in H s × H s−2 becomes equivalent to
UWP for (3.1) in H s.

Next, by introducing the Fourier series coefficients for v0 and v according to (2.1) and (2.2), re-
spectively, it follows that (3.1) can be turned into the infinite coupled system of ordinary differential
equations 

i∂tvk + k2vk =
1
2

(v−k − vk) +
ω(k)

4

∑
k1 ,k2∈Z

k1+k2=k

(vk1 + v−k1)(vk2 + v−k2),

vk(0) = v0k,

where

ω(k) :=
k2

1 + k2 . (3.2)

If we take
u+k (t) := e−itk2

vk(t), u−k (t) := eitk2
v−k(t),
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then the previous system comes to be

∂tu+k =
i
2

(u+k − e−2itk2
u−k )

−
iω(k)

4

∑
k1 ,k2∈Z

k1+k2=k

e−itk2
(eitk2

1 u+k1
+ e−itk2

1 u−k1
)(eitk2

2 u+k2
+ e−itk2

2 u−k2
),

∂tu−k =
i
2

(e2itk2
u+k − u−k )

+
iω(k)

4

∑
k1 ,k2∈Z

k1+k2=k

eitk2
(eitk2

1 u+k1
+ e−itk2

1 u−k1
)(eitk2

2 u+k2
+ e−itk2

2 u−k2
),

(u+k (0),u−k (0)) = (v0k, v0,−k).

Finally, we rely on the notation 
ϕ++(k, k1, k2) := −k2 + k2

1 + k2
2,

ϕ+−(k, k1, k2) := −k2 + k2
1 − k2

2,

ϕ−+(k, k1, k2) := −k2 − k2
1 + k2

2,

ϕ−−(k, k1, k2) := −k2 − k2
1 − k2

2,

(3.3)

and 
R+[y, z]k :=

i
2

(yk − e−2itk2
zk),

R−[y, z]k :=
i
2

(e2itk2
yk − zk),

(3.4)

to arrive at the following working version of the original Cauchy problem (1.1):

∂tu±k = ∓
iω(k)

4

∑
k1 ,k2∈Z

k1+k2=k

(
e±itϕ++u+k1

u+k2
+ e±itϕ+−u+k1

u−k2

+ e±itϕ−+u−k1
u+k2
+ e±itϕ−−u−k1

u−k2

)
+ R±[u+, u−]k,

(u+k (0),u−k (0)) = (v0k, v0,−k).

(3.5)

It is for this system that we verify the validity of Theorem 2.2 when s > 0, thus proving Theorem
1.1.

Proposition 3.1. Theorem 2.2 holds true for the Cauchy problem (3.5) when s > 0.

Proof. We start the argument by recognizing that, in our setting,

φi j ∈ {ϕ
++, ϕ+−, ϕ−+, ϕ−−}, mi j ∈

{
iω(k)

4
,−

iω(k)
4

}
, {R1,R2} = {R+,R−}.

We deduce directly from (3.4) that

|R+[y, z]k| + |R−[y, z]k| ≤ |yk| + |zk|,

|R+[y, z]k − R+[ỹ, z̃]k| + |R−[y, z]k − R−[ỹ, z̃]k| ≤ |yk − ỹk| + |zk − z̃k|,
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which immediately implies (2.8) and (2.9).
From (3.2), we derive (

mi j = 0⇐⇒ k = 0
)

and
(
|mi j| <

1
4

)
. (3.6)

Using this fact, the Cauchy-Schwarz inequality, and s ≥ 0, we can easily prove (2.12) as follows:∥∥∥∥∥∥∥ ∑
k1+k2=k

|mi j| yk1 zk2

∥∥∥∥∥∥∥
l∞

≲

∥∥∥∥∥∥∥ ∑
k1+k2=k

|yk1 | |zk2 |

∥∥∥∥∥∥∥
l∞

≤ ∥y∥l2∥z∥l2 ≤ ∥y∥l2s∥z∥l2s .

Next, we turn to the argument for (2.10), which can be reduced, with the help of the Cauchy-
Schwarz inequality, to proving

sup
k

 ∑
k1+k2=k

|mi j|
2

⟨φi j⟩

⟨k⟩2s

⟨k1⟩
2s⟨k2⟩

2s

 ≲ 1.

By relying on (3.6), we can further simplify the previous estimate down to

sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

⟨k⟩2s

⟨k1⟩
2s⟨k2⟩

2s

 ≲ 1. (3.7)

Now, we introduce the notation

|kmax| = max{|k1|, |k2|}, |kmin| = min{|k1|, |k2|}, (3.8)

and, based on the triangle inequality, we have

|k| = |k1 + k2| ≲ |kmax|. (3.9)

Jointly with (3.3), this bound yields that the size of |φi j| is similar to one of

{|kmax| |kmin|, |k| |kmax|, |k| |kmin|, |kmax|
2}.

If kmin = 0, then kmax = k and (3.7) follows at once. If kmin , 0, then we split the analysis into two
complementary scenarios:

1 ≤ |k| ≲ |kmax| ∼ |kmin|, 1 ≤ |kmin| ≪ |k| ∼ |kmax|. (3.10)

If 1 ≤ |k| ≲ |kmax| ∼ |kmin|, then the previous fact about the size of |φi j| and s > 0 lead to

sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

⟨k⟩2s

⟨k1⟩
2s⟨k2⟩

2s

 ≲ sup
k,0

 ∑
|k|≲|kmax |

1
|k| |kmax|

|k|2s

|kmax|
4s


≲ sup

k,0

 1
|k|

∑
|k|≲|kmax |

1
|kmax|

1+2s

 ≲ 1.
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If we are in the second scenario, then, using again the information about the size of |φi j| and s ≥ 0,
we obtain

sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

⟨k⟩2s

⟨k1⟩
2s⟨k2⟩

2s

 ≲ sup
k,0

 ∑
|kmin |≪|k|

1
|k| |kmin|

1
|kmin|

2s


≲ sup

k,0

 ∑
|kmin |≪|k|

1
|kmin|

2

 ≲ 1.

This completes the proof of (3.7) and, hence, of (2.10).
Finally, we come to the argument for (2.11). First, we use (3.6), the Cauchy-Schwarz inequality,

and s ≥ 0 to infer ∥∥∥∥∥∥∥ ∑
k1+k2=k

|mi j|

⟨φi j⟩
1−δ yk1 zk2

∥∥∥∥∥∥∥
l∞

≲

∥∥∥∥∥∥∥ ∑
k1+k2=k,0

1
⟨φi j⟩

1−δ |zk2 |

∥∥∥∥∥∥∥
l∞

∥y∥l∞

≲ sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

2−2δ


1/2

∥y∥l∞∥z∥l2

≲ sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

2−2δ


1/2

∥y∥l∞∥z∥l2s .

This effectively reduces the proof of (2.11) to the one for

sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

2−2δ

 ≲ 1.

Here, we reason in identical fashion with the argument for (3.7), involving the notation (3.8), the
information about the size of |φi j|, and the complementary scenarios (3.10). The case kmin = 0 can be
easily dispensed with. Otherwise, if 1 ≤ |k| ≲ |kmax| ∼ |kmin|, then

sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

2−2δ

 ≲ sup
k,0

 1
|k|2−2δ

∑
|k|≲|kmax |

1
|kmax|

2−2δ

 ≲ 1,

since δ < 1/2. If instead 1 ≤ |kmin| ≪ |k| ∼ |kmax| is valid, then

sup
k,0

 ∑
k1+k2=k

1
⟨φi j⟩

2−2δ

 ≲ sup
k,0

 1
|k|2−2δ

∑
|kmin |≪|k|

1
|kmin|

2−2δ

 ≲ 1,

again due to δ < 1/2. This concludes the argument for (2.11) and the whole proof.

Remark 3.2. It is important to recognize that we used s > 0 only in the argument for (2.10), while the
proofs for (2.8), (2.9), (2.11), and (2.12) required only that s ≥ 0.
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4. Proof of Theorem 1.2

For the Kawahara Cauchy problem (1.2), we proceed in similar fashion to the previous section and
we reformulate it in a form amenable to the framework we want to implement. First, we notice that its
smooth solutions satisfy ∫

T

∂tu(t, x) dx = 0,

which implies ∫
T

u(t, x) dx =
∫
T

u(0, x) dx =
∫
T

u0(x) dx := µ. (4.1)

If we take
(v, v0) := (u − µ, u0 − µ),

then (1.2) becomes ∂tv + β∂3
xv − ∂

5
xv + 2µ∂xv = −∂x(v2),

v(0, x) = v0(x),
(4.2)

and now, due to (4.1), one has ∫
T

v(t, x) dx = 0. (4.3)

This will turn out to be important moving forward.
Next, by turning to the Fourier series coefficients (2.1) and (2.2) for v0 and v, respectively, we obtain

the equivalent form of (4.2) as an infinite coupled system of ordinary differential equations:
∂tvk + i(−βk3 − k5 + 2µk)vk = −ik

∑
k1 ,k2∈Z

k1+k2=k

vk1vk2

vk(0) = v0k.

In the end, we let
wk(t) := eit(−βk3−k5+2µk)vk(t)

to rewrite the previous system as 
∂twk = −ik

∑
k1 ,k2∈Z

k1+k2=k

eitϕwk1wk2 ,

wk(0) = v0k,

where
ϕ = ϕ(k, k1, k2) := −βk3 − k5 + 2µk + βk3

1 + k5
1 − 2µk1 + βk3

2 + k5
2 − 2µk.

When k = k1 + k2, we have the following important factorization:

ϕ = −kk1k2(5(k2
1 + k2

2 + k1k2) + 3β). (4.4)
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At this moment, we observe that (4.3) implies v0(t) ≡ 0 and, hence, w0(t) ≡ 0. This allows us to
remove from the system the equation corresponding to k = 0. Moreover, when k , 0, we see that
(4.4) implies

ϕ = 0⇐⇒ k1 = 0 or k2 = 0.

Thus, a working version for the Cauchy problem (1.2) is represented by
∂twk = −ik

∑
k1+k2=k
ϕ,0

eitϕwk1wk2 , ∀ k , 0,

wk(0) = v0k,

(4.5)

for which we argue that Theorem 2.1 holds true when s > 1/4. This clearly proves Theorem 1.2.

Proposition 4.1. Theorem 2.1 is valid for the Cauchy problem (4.5) when s > 1/4.

Proof. All three estimates in Theorem 2.1 (i.e., (2.4)–(2.6)) to be verified share the generic profile∥∥∥∥∥∥∥ ∑
k1+k2=k

a(k, k1, k2) yk1 zk2

∥∥∥∥∥∥∥
l2s3

≲ ∥y∥l2s1
∥z∥l2s2
.

Using duality, this bound can be seen to be the consequence of

sup
k

 ∑
k1+k2=k

a2(k, k1, k2)⟨k⟩2s3

⟨k1⟩
2s1⟨k2⟩

2s2

 ≲ 1. (4.6)

It is important to note that, due to (4.4), β ∈ {−1, 0, 1}, and (4.5), we can further assume above that,
in our context, none of k, k1, and k2 are equal to 0.

Here, as in the argument for Proposition 3.1, we rely on the notation (3.8), the bound (3.9), and the
complementary scenarios (3.10). We start by proving (2.4), for which

a(k, k1, k2) =
|k|
⟨ϕ⟩1/2

, s1 = s2 = s3 = s.

Since s ≥ 0, the estimate (3.9) implies

⟨k⟩2s

⟨k1⟩
2s⟨k2⟩

2s ≲ 1

and, hence, (4.6) holds true if we show

sup
k

( ∑
k1+k2=k
ϕ,0

|k|2

⟨ϕ⟩

)
≲ 1. (4.7)

If 1 ≤ |k| ≲ |kmax| ∼ |kmin|, then we deduce from (4.4) that |ϕ| ∼ |k||kmax|
4 and, hence,∑

k1+k2=k
ϕ,0

|k|2

⟨ϕ⟩
≲

∑
|k|≤|kmax |

1
|kmax|

3 ≲ 1,
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which yields (4.7).
If 1 ≤ |kmin| ≪ |k| ∼ |kmax|, then (4.4) implies |ϕ| ∼ |kmin||k|4 and, thus,∑

k1+k2=k
ϕ,0

|k|2

⟨ϕ⟩
≲

∑
1≤|kmin |≪|k|

1
|kmin||k|2

≲
ln |k|
|k|2
≲ 1,

which also yields (4.7).
Next, we turn to the argument for (2.5), which corresponds to (4.6) with

a(k, k1, k2) =
|k|
⟨ϕ⟩1−δ

, s1 = s3 = s − 2, s2 = s.

Like above, on the basis of s ≥ 0 and (3.9), we derive

|k|2⟨k⟩2s−4

⟨k1⟩
2s−4⟨k2⟩

2s ≲
⟨kmax⟩

4

⟨k⟩2
,

and, hence, reduce the proof of (4.6) to the one for

sup
k

( ∑
k1+k2=k
ϕ,0

⟨kmax⟩
4

⟨k⟩2⟨ϕ⟩2−2δ

)
≲ 1. (4.8)

If 1 ≤ |k| ≲ |kmax| ∼ |kmin|, then |ϕ| ∼ |k||kmax|
4 and, by taking δ < 3/8, we deduce∑

k1+k2=k
ϕ,0

⟨kmax⟩
4

⟨k⟩2⟨ϕ⟩2−2δ ≲
∑
|k|≤|kmax |

1
|kmax|

4−8δ|k|4−2δ ≲
1
|k|4−2δ ≲ 1,

which yields (4.8).
If 1 ≤ |kmin| ≪ |k| ∼ |kmax|, then |ϕ| ∼ |kmin||k|4 and, now using only that δ < 1/2, we infer∑

k1+k2=k
ϕ,0

⟨kmax⟩
4

⟨k⟩2⟨ϕ⟩2−2δ ≲
∑

1≤|kmin |≪|k|

1
|kmin|

2−2δ|k|6−8δ ≲
1
|k|6−8δ ≲ 1,

which also yields (4.8).
Finally, we get to prove (2.6), for which

a(k, k1, k2) = |k|, s3 = s − 2, s1 = s2 = s.

Thus, due to the symmetry in this case with respect to the indices 1 and 2, (4.6) is valid if we show

sup
k

( ∑
k1+k2=k
ϕ,0

|k|2⟨k⟩2s−4

⟨kmax⟩
2s⟨kmin⟩

2s

)
≲ 1. (4.9)

If 1 ≤ |k| ≲ |kmax| ∼ |kmin|, then, as s > 1/4, we deduce∑
k1+k2=k
ϕ,0

|k|2⟨k⟩2s−4

⟨kmax⟩
2s⟨kmin⟩

2s ≲
∑
|k|≤|kmax |

1
|kmax|

2s+1/2|k|3/2
≲

1
|k|3/2

≲ 1,
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which implies (4.9).
If 1 ≤ |kmin| ≪ |k| ∼ |kmax|, then, since s ≥ 0, we infer∑

k1+k2=k
ϕ,0

|k|2⟨k⟩2s−4

⟨kmax⟩
2s⟨kmin⟩

2s ≲
∑

1≤|kmin |≪|k|

1
|kmin|

2s+2 ≲ 1,

which also implies (4.9).

Remark 4.2. It is important to note that in the previous proposition we used s > 1/4 only in the proof
of (2.6), when 1 ≤ |k| ≲ |kmax| ∼ |kmin|. All the other arguments simply required that s ≥ 0.

Remark 4.3. It seems that the restriction s > 1/4 is essential in the sense that, by switching from s− 2
to s − σ for some other σ > 0, one encounters it again in the same scenario. As suggested by one
of the referees, this is likely one of the shortcomings of this methodology, as (2.6) is particularly not
responsive to the presence of dispersion in the original equation.
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