Let $ S $ be a given finite set of positive and relatively prime integers. Denote $ L(S) $ to be the set of integers obtained by taking all nonnegative integer linear combinations of integers in $ S $. It is well known that there are finitely many positive integers that are not in $ L(S) $. Let $ g(S) $ and $ n(S) $ represent the greatest integer that does not belong to $ L(S) $ and the number of nonnegative integers that do not belong to $ L(S) $, respectively. The Frobenius problem is to determine $ g(S) $ and $ n(S) $. In 2016, Tripathi obtained results on $ g(S) $ and $ n(S) $ when $ S = \{a, ha+d, ha+db, ha+db^2, \ldots, ha+db^k\} $. In this paper, for $ S_c: = \{a, ha+d, ha+c+db, ha+2c+db^2, \ldots, ha+kc+db^k\} $ with $ h, c $ being nonnegative integers, $ a, b, d $ being positive integers and $ \gcd(a, d) = 1 $, we focused the investigation on formulas for $ g(S_c) $ and $ n(S_c) $. Actually, we gave formulas for $ g(S_c) $ and $ n(S_c) $ for all sufficiently large values of $ d $ when $ c $ is any multiple of $ d $ or certain multiples of $ a $. This generalized the results of Tripathi in 2016.
Citation: Enguo Dai, Kaimin Cheng. The Frobenius problem for special progressions[J]. Electronic Research Archive, 2023, 31(12): 7195-7206. doi: 10.3934/era.2023364
Let $ S $ be a given finite set of positive and relatively prime integers. Denote $ L(S) $ to be the set of integers obtained by taking all nonnegative integer linear combinations of integers in $ S $. It is well known that there are finitely many positive integers that are not in $ L(S) $. Let $ g(S) $ and $ n(S) $ represent the greatest integer that does not belong to $ L(S) $ and the number of nonnegative integers that do not belong to $ L(S) $, respectively. The Frobenius problem is to determine $ g(S) $ and $ n(S) $. In 2016, Tripathi obtained results on $ g(S) $ and $ n(S) $ when $ S = \{a, ha+d, ha+db, ha+db^2, \ldots, ha+db^k\} $. In this paper, for $ S_c: = \{a, ha+d, ha+c+db, ha+2c+db^2, \ldots, ha+kc+db^k\} $ with $ h, c $ being nonnegative integers, $ a, b, d $ being positive integers and $ \gcd(a, d) = 1 $, we focused the investigation on formulas for $ g(S_c) $ and $ n(S_c) $. Actually, we gave formulas for $ g(S_c) $ and $ n(S_c) $ for all sufficiently large values of $ d $ when $ c $ is any multiple of $ d $ or certain multiples of $ a $. This generalized the results of Tripathi in 2016.
[1] | M. B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, Springer, New York, 2000. https://doi.org/10.1007/b98870 |
[2] | A. Brauer, On a problem of partitions, Am. J. Math., 64 (1942), 299–312. |
[3] | J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford University Press, Oxford, 2005. |
[4] | J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc., 7 (1956), 465–469. https://doi.org/10.1090/S0002-9939-1956-0091961-5 doi: 10.1090/S0002-9939-1956-0091961-5 |
[5] | G. R. Hofmeister, Zu einem Problem von Frobenius, Bruns, 1966. |
[6] | D. D. Grant, On linear forms whose coefficients are in arithmetic progression, Israel J. Math., 15 (1973), 204–209. |
[7] | E. S. Selmer, On the linear Diophantine problem of Frobenius, J. Reine Angew. Math., 293 (1977), 1–17. https://doi.org/10.1515/crll.1977.293-294.1 doi: 10.1515/crll.1977.293-294.1 |
[8] | A. Tripathi, On the Frobenius problem for geometric progressions, Integers: Electron. J. Comb. Number Theory, 8 (2008). doi: 10.1016/j.jnt.2015.10.020 |
[9] | A. Tripathi, The Frobenius problem for modified arithmetic progressions, J. Integer Seq., 16 (2013). doi: 10.1016/j.jnt.2015.10.020 |
[10] | A. Tripathi, On the Frobenius problem for $\{a, ha+d, ha+bd, ha+b^2d, \ldots, ha+b^kd\}$, J. Number Theory, 162 (2016), 212–223. https://doi.org/10.1016/j.jnt.2015.10.020 doi: 10.1016/j.jnt.2015.10.020 |
[11] | F. Liu, G. Xin, A combinatorial approach Frobenius numbers of some special sequences (complete version), preprint, arXiv: 2303.07149. |
[12] | F. Liu, G. Xin, S. Ye, J. Yin, The Frobenius formula for $A = \{(a, ha+d, ha+b_2d, \ldots, ha+b_kd\}$, preprint, arXiv: 2304.09039. |
[13] | F. Liu, G. Xin, S. Ye, J. Yin, A note on generalized repunit numerical semigroups, preprint, arXiv: 2306.10738. |
[14] | A. Brauer, J. Shockley, On a problem of Frobenius, Crelle's J., 211 (1962), 215–219. |