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Abstract: Let S be a given finite set of positive and relatively prime integers. Denote L(S ) to be the
set of integers obtained by taking all nonnegative integer linear combinations of integers in S . It is well
known that there are finitely many positive integers that are not in L(S ). Let g(S ) and n(S ) represent
the greatest integer that does not belong to L(S ) and the number of nonnegative integers that do not
belong to L(S ), respectively. The Frobenius problem is to determine g(S ) and n(S ). In 2016, Tripathi
obtained results on g(S ) and n(S ) when S = {a, ha + d, ha + db, ha + db2, . . . , ha + dbk}. In this paper,
for S c := {a, ha+ d, ha+ c+ db, ha+ 2c+ db2, . . . , ha+ kc+ dbk} with h, c being nonnegative integers,
a, b, d being positive integers and gcd(a, d) = 1, we focused the investigation on formulas for g(S c)
and n(S c). Actually, we gave formulas for g(S c) and n(S c) for all sufficiently large values of d when c
is any multiple of d or certain multiples of a. This generalized the results of Tripathi in 2016.

Keywords: Frobenius problem; Frobenius number; special progressions; linear form; euclidean
division

1. Introduction

Let n be a positive integer greater than 1. For a given set S = {a1, a2, . . . , an} with each ai being a
positive integer and gcd(S ) := gcd(a1, a2, . . . , an) = 1, define L(S ) to be the set of integers represented
as nonnegative integer linear forms of integers in S ; that is,

L(S ) = {x1a1 + x2a2 + · · · + xnan|x1, . . . , xn ∈ N},

where N represents the natural number set containing zero. It is well known that (see, for example,
Theorem 1.16 in [1]) for any positive integer z if

z ≥ (an − 1)
n−1∑
i=1

ai,
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then z belongs to L(S ). It follows that there are finitely many nonnegative integers that are not in L(S ).
So, if Lc(S ) := N \ L(S ), then Lc(S ) is a finite set. Define

g(S ) := max Lc(S ), and n(S ) := |Lc(S )|,

where | · | denotes the size of a set. Perhaps Sylvester was the first person who asked to determine g(S )
and n(S ). He also proved that

g(a1, a2) = (a1 − 1)(a2 − 1) − 1 and n(a1, a2) =
1
2

(a1 − 1)(a2 − 1).

During the early part of the twentieth century, Frobenius raised the same problem in his lectures
(according to [2]). Frobenius was largely instrumental in giving this problem the early recognition,
and it was after him that the problem was named. This problem of determining g(S ) is called the
Frobenius problem and g(S ) is the Frobenius number. The Frobenius problem has a rich and long
history, with several applications, extensions and connections to several areas of research. A
comprehensive survey covering all aspects of the problem was given by Ramı́res-Alfonsı́n [3].

Exact determination of the g(S ) and n(S ) is a difficult problem in general. There are only a few
cases where the g(S ) and n(S ) have been exactly determined for any n variables. Table 1 shows some
of the results in the case of S being special progressions, which were obtained by researchers over the
past few decades.

Table 1. Progress on the Frobenius problem for special progressions

S Condition g(S ) n(S ) Year Reference
a, a + 1, a + 2, . . . , a + k ✓ 1942 Brauer [2]
a, a + d, a + 2d, . . . , a + kd ✓ 1956 Roberts [4]
a, a + d, a + bd, . . . , a + bkd For sufficiently large d ✓ 1966 Hofmeister [5]
a, a + d, a + 2d, . . . , a + kd ✓ 1973 Grant [6]
a, ha + d, ha + 2d, . . . , ha + kd ✓ 1977 Selmer [7]
a, a + 1, a + 2, a + 22, . . . , a + 2k a > (k − 3)2k + 1 ✓ ✓ 1977 Selmer [7]
ak, ak−1b, ak−2b2, . . . , bk ✓ ✓ 2008 Tripathi [8]
a, ha + d, ha + 2d, . . . , ha + kd ✓ 2013 Tripathi [9]
a, ha + d, ha + bd, . . . , ha + bkd d ≥ h(k(b − 1) − ⌊ a

bk ⌋) ✓ ✓ 2016 Tripathi [10]

Here, ✓ means that the responding result was obtained. The results in the table show that scholars
were gradually attacking the Frobenius problem for more general sets. For some very recent
development aspects of this field, one can refer to [11–13].

For any nonnegative integer c, let

S c := {a, ha + d, ha + c + bd, ha + 2c + b2d, . . . , ha + kc + bkd},

where k, a, b, d and h are positive integers with gcd(a, d) = 1. It is natural to consider the Frobenius
problem for S c. In the paper, we present formulas for g(S c) and n(S c) for all sufficiently large values
of d in the condition that c is a multiple of a or a multiple of d.
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In order to state our theorem well, let us first define some notations. Let b, k and u be nonnegative
integers with b ≥ 2 and k ≥ 1. For any positive integer x, define two sequences of nonnegative integers,
denoted by {qi(x)}ki=0 and {ri(x)}ki=0, as follows:

x = qk(x)(bk + uk) + rk(x),
rk(x) = qk−1(x)(bk−1 + u(k − 1)) + rk−1(x),

rk−1(x) = qk−2(x)(bk−2 + u(k − 2)) + rk−2(x),
...

r2(x) = q1(x)(b1 + u · 1) + r1(x),
r1(x) = q0(x)(b0 + u · 0) + r0(x),

where 0 ≤ ri(x) ≤ bi + ui − 1 for each 1 ≤ i ≤ k and r0(x) = 0. From Euclidean division, we know that
{qi(x)}ki=0 and {ri(x)}ki=0 are uniquely determined by x, so they are well defined. It is immediate that

qk(x) =
⌊ x
bk + uk

⌋
, q0(x) = r1(x) ≤ b + u − 1,

and

qi(x) =
ri+1(x) − ri(x)

bi + ui
≤

ri+1(x)
bi + ui

<
bi+1 + u(i + 1)

bi + ui
=

b(bi + ui) + u(i + 1 − bi)
bi + ui

≤ b,

i.e., 0 ≤ qi(x) ≤ b for any 1 ≤ i ≤ k − 1. In particular, when u = 0, we use {qi(x)}ki=0 and {ri(x)}ki=0 to
replace {qi(x)}ki=0 and {ri(x)}ki=0, respectively. Thus,

qk(x) =
⌊ x
bk

⌋
, q j(x) =

 x −
∑k

i= j+1 qi(x)bi

b j

 , 0 ≤ j ≤ k − 1, (1.1)

and

rm(x) = x −
k∑

i=m

qi(x)bi =

m−1∑
i=0

qi(x)bi, 0 ≤ m ≤ k (1.2)

is the b-adic representation of rm(x). Let

Wb,u(x) :=
k−1∑
i=0

qi(x) and Vb,v(x) :=
k−1∑
i=0

(1 + iv)qi(x), (1.3)

where v is a nonnegative integer.
Now, we can report the main theorem as follows.

Theorem 1.1. Let k, a, b, d and h be positive integers with gcd(a, d) = 1 and b ≥ 2. For any
nonnegative integer c, let S c := {a, ha + d, ha + c + bd, ha + 2c + b2d, . . . , ha + kc + bkd}. The
following statements are true.
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(a) If c = ud for a nonnegative integer u and d ≥ ah(k(b − 1) + u), then

g(S c) = ah
(⌊

a − 1
bk + uk

⌋
+ Wb,u(a − 1)

)
+ d(a − 1)

and

n(S c) = h
a−1∑
x=1

Wb,u(x) +
1
2

hq(q − 1)(bk + ku) + hq(r + 1) +
1
2

(a − 1)(d − 1).

(b) If c = va for a nonnegative integer v with v ≤ b − 1 and d ≥ 1
2akh(b − 1)(2 + (k − 1)v), then

g(S c) = ah
(
(1 + kv)

⌊
a − 1

bk

⌋
+ Vb,v(a − 1)

)
+ d(a − 1)

and

n(S c) =
1
2

(a − 1)(ah + d − 1) + h
k∑

i=1

(v(b + i − ib) + 1 − b)Mi,

where Mi =
1
2bi

⌊
a−1
bi

⌋
(
⌊

a−1
bi

⌋
− 1) +

⌊
a−1
bi

⌋
(a − bi

⌊
a−1
bi

⌋
).

Here, Wb,u and Vb,v are defined as (1.3).

Clearly, Theorem 1.1 extends a result of Tripathi [10]. The paper is organized as follows. First,
in Section 2, two key lemmas are given. Second, in Section 3, we present the proof of Theorem 1.1.
Finally, in Section 4, another possible direction of the generalizations of S for the Frobenius problem
is introduced, which can be served as a future research for the interested.

2. Lemmas

Let S be any given finite set of positive integers with gcd(S ) = 1. Let a be a positive integer of
S . For any integer x with 1 ≤ x ≤ a − 1, denote ⟨x⟩ to be the residue class of integers congruent to
x modulo a. Let m(S , x) represent the least positive integer in L(S ) ∩ ⟨x⟩. Brauer and Shockley [14]
obtained the following results, which give g(S ) and n(S ) from m(S , x).

Lemma 2.1. Let S be any finite set of positive integers with gcd(S ) = 1. For any a ∈ S ,

g(S ) = max
1≤x≤a−1

m(S , x) − a and n(S ) =
1
a

a−1∑
x=1

m(S , x) −
1
2

(a − 1).

The second lemma presents results of min(L(S ) ∩ ⟨x⟩).

Lemma 2.2. Let c be a fixed nonnegative integer, k, a, b, d and h be positive integers with gcd(a, d) = 1
and b ≥ 2. Let S c = {a, ha + d, ha + c + bd, ha + 2c + b2d, . . . , ha + kc + bkd}. For any integer x
with 1 ≤ x ≤ a − 1, let m(x) := min (L(S c) ∩ ⟨dx⟩), where ⟨dx⟩ denotes the residue class of integers
congruent to dx modulo a. The following results are derived.

Electronic Research Archive Volume 31, Issue 12, 7195–7206.
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(a) if c = ud for a nonnegative integer u, then for any positive integer x with x ≤ a − 1 we have

m(x) = min
t∈N

(
ah

(⌊ at + x
bk + uk

⌋
+ Wb,u(at + x)

)
+ d(at + x)

)
.

In particular, if d ≥ h
(
k(b − 1) + u −

⌊
a

bk+uk

⌋)
with gcd(a, d) = 1, then

m(x) = ah
(⌊ x

bk + uk

⌋
+ Wb,u(x)

)
+ dx.

(b) if c = va for a nonnegative integer v with v ≤ b − 1, then for any positive integer x with x ≤ a − 1
we have

m(x) = min
s∈N

(
ah(1 + kv)

⌊as + x
bk

⌋
+ ahVb,v(as + x) + d(as + x)

)
.

Moreover, if d ≥ 1
2kh(b − 1)(2 + (k − 1)v) − h(1 + kv)

⌊
a
bk

⌋
, then

m(x) = ah(1 + kv)
⌊ x
bk

⌋
+ ahVb,v(x) + dx.

Here, Wb,u and Vb,v are defined as (1.3).

Proof. Let x be a positive integer with x ≤ a − 1. For any N ∈ L(S c) ∩ ⟨dx⟩, one writes

N = x−1a + x0(ha + d) + x1(ha + c + bd) + · · · + xk(ha + kc + bkd)

= a

x−1 + h
k∑

i=0

xi

 + d
k∑

i=0

bixi + c
k∑

i=0

ixi,

with each xi being a nonnegative integer.
First, let c = ud for a nonnegative integer u. Rewrite

N = a

x−1 + h
k∑

i=0

xi

 + d
k∑

i=0

(bi + ui)xi. (2.1)

Since N ∈ ⟨dx⟩, then (2.1) implies that

k∑
i=0

(bi + ui)xi ≡ x (mod a).

Let
∑k

i=0(bi + ui)xi = at + x for some nonnegative integer t. On the one hand, we can regard as N a
function of the variables t, x−1, x0, x1, . . . , xk and write N = N(t; x−1, x0, x1, . . . , xk). It then follows that

min (L(S c) ∩ ⟨dx⟩) = min
t∈N

(
min

x−1,...,xk∈N
N(t; x−1, x0, x1, . . . , xk)

)
.

On the other hand, for any fixed t, one readily finds that

min
x−1,...,xk∈N

N(t; x−1, x0, x1, . . . , xk)
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= N(t; 0, q0(at + x), q1(at + x), . . . , qk(at + x))

= ah
k∑

i=0

qi(at + x) + d(at + x)

= ah
(⌊ at + x

bk + uk

⌋
+ Wb,u(at + x)

)
+ d(at + x),

where Wb,u is defined in (1.3). Therefore,

m(x) = min
t∈N

(
ah

(⌊ at + x
bk + uk

⌋
+ Wb,u(at + x)

)
+ d(at + x)

)
.

Let F(t) := ah
(⌊

at+x
bk+uk

⌋
+ Wb,u(at + x)

)
+ d(at + x), and consider F(t + 1) − F(t), which equals

ah
(⌊at + a + x

bk + uk

⌋
−

⌊ at + x
bk + uk

⌋
+ Wb,u(at + a + x) − Wb,u(at + x)

)
+ da. (2.2)

Note that ⌊at + a + x
bk + uk

⌋
−

⌊ at + x
bk + uk

⌋
=

⌊ a
bk + uk

⌋
or

⌈ a
bk + uk

⌉
and

−k(b − 1) − u ≤ Wb,u(at + a + x) − Wb,u(at + x) ≤ k(b − 1) + u.

By (2.2), one then has that F(t+1) ≥ F(t) for any nonnegative integer t if d ≥ h
(
k(b − 1) + u −

⌊
a

bk+uk

⌋)
.

Thus
m(x) = min

t∈N
F(t) = F(0) = ah

(⌊ x
bk + uk

⌋
+ Wb,u(x)

)
+ dx,

whenever d ≥ h
(
k(b − 1) + u −

⌊
a

bk+uk

⌋)
, as desired. Item (a) is proved.

Next, let c = va for an integer v with 0 ≤ v ≤ b − 1, then

N = a

x−1 + h
k∑

i=0

(1 + vi)xi

 + d
k∑

i=0

bixi. (2.3)

Note that N ≡ dx (mod a), then by (2.3) one may let
∑k

i=0 bixi = as + x for some nonnegative integer
s. For any fixed nonnegative integer s, let

f (x0, . . . , xk) :=
k∑

i=0

(1 + vi)xi (2.4)

be a function of the variables x0, . . . , xk subject to
∑k

i=0 bixi = as + x, then one claims that

min
x0 ,...,xk∈N∑k

i=0 bi xi=as+x

f (x0, . . . , xk) = f (q0(as + x), q1(as + x), . . . , qk(as + x)), (2.5)

where each qi is defined as (1.1). Now, let us prove the claim by mathematical induction on k as follows.
• Let k = 1. Let as + x = x0 + bx1 = g1. Write g1 = q1(g1)b + r1(g1) with 0 ≤ r1(g1) ≤ b − 1 and let
q0(g1) = r1(g1). Note that x1 ≤ ⌊

g1
b ⌋ = q1(g1), then we have

f (x0, x1) = x0 + (v + 1)x1

Electronic Research Archive Volume 31, Issue 12, 7195–7206.
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= g1 + (v − (b − 1))x1

≥ g1 + (v − (b − 1))q1(g1)
= q0(g1) + (v + 1)q1(g1) = f (q0(g1), q1(g1)),

where the inequality in the third line holds because v ≤ b − 1. It follows that

min
x0 ,x1∈N

x0+bx1=as+x

f (x0, x1) = f (q0(as + x), q1(as + x)).

This is to say that the claim of (2.5) is true for k = 1.
• Assume that the claim of (2.5) holds for k − 1 with k ≥ 2. Let gk :=

∑k
i=0 bixi = as + x and

f̃ (x0, x1, . . . , xk−1) :=
∑k−1

i=0 (1 + vi)xi. By (2.4), one then deduces that

f (x0, . . . , xk) = (1 + vk)xk + f̃ (x0, x1, . . . , xk−1)

≥ (1 + vk)xk + min
x0 ,...,xk∈N∑k−1

i=0 bi xi=gk−bk xk

f̃ (x0, x1, . . . , xk−1). (2.6)

By the inductive hypothesis we have

min
x0 ,...,xk∈N∑k−1

i=0 bi xi=gk−bk xk

f̃ (x0, x1, . . . , xk−1) = f̃ (q′0(gk − bkxk), . . . , q′k−1(gk − bkxk)),

where

q′k−1(gk − bkxk) =
⌊
gk − bkxk

bk−1

⌋
and

q′ j(gk − bkxk) =

gk − bkxk −
∑k−1

i= j+1 biq′ j(gk − bkxk)

b j


for j = k− 2, k− 3, . . . , 0. For gk = as+ x, let {qi(gk)}ki=0 be the sequence defined as (1.1). It is observed
that gk − xkbk (mod bk−1) is independent on xk. One then finds that

q j(gk) = q′ j(gk − xkbk)

for any 0 ≤ j ≤ k − 2. This together with (2.6) implies that

f (x0, . . . , xk) ≥ (1 + vk)xk + (1 + v(k − 1))
⌊
gk − bkxk

bk−1

⌋
+

k−2∑
i=0

(1 + iv)qi(gk)

= (1 + vk)xk + (1 + v(k − 1))(bqk(gk) + qk−1(gk) − bxk) +
k−2∑
i=0

(1 + iv)qi(gk)

= xk(1 + kv − b − bv(k − 1)) + qk(gk)b + qk(gk)bv(k − 1) +
k−1∑
i=0

(1 + iv)qi(gk)

≥ qk(gk)(1 + kv − b − bv(k − 1)) + qk(gk)b + qk(gk)bv(k − 1) +
k−1∑
i=0

(1 + iv)qi(gk);
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that is,

f (x0, . . . , xk) ≥
k∑

i=0

(1 + iv)qi(gk) = f (q0(gk), q1(gk), . . . , qk(gk)).

Hence, we arrive at

min
x0 ,...,xk∈N∑k
i=0 bi xi=gk

f (x0, . . . , xk) = f (q0(gk), q1(gk), . . . , qk(gk)),

which means that (2.5) is true for k, so the claim of (2.5) is proved. It then follows from (2.3)–(2.5) that

m(x) = min
s∈N

ah
k∑

i=0

(1 + vi)qi(as + x) + d(as + x)

 .
Let G(s) := ah

∑k
i=0(1 + vi)qi(as + x) + d(as + x). It is direct to check that G(s + 1) − G(s) = ah(1 +

kv)
(⌊

as+x+a
bk

⌋
−

⌊
as+x

bk

⌋)
+ ah

∑k−1
i=0 (1 + iv)(qi(as + x + a) − qi(as + x)). Note that⌊as + x + a

bk

⌋
−

⌊as + x
bk

⌋
≥

⌊ a
bk

⌋
and

1 − b ≤ qi(as + x + a) − qi(as + x) ≤ b − 1

for any 0 ≤ i ≤ k − 1. It infers that

G(s + 1) −G(s) ≥ ah(1 + kv)
⌊ a
bk

⌋
−

1
2

kah(b − 1)(2 + (k − 1)v) + da,

so G(s + 1) −G(s) ≥ 0 for any nonnegative integer s whenever

d ≥
1
2

kh(b − 1)(2 + (k − 1)v) − h(1 + kv)
⌊ a
bk

⌋
.

Therefore,

m(x) = min
s∈N

G(s) = G(0) = ah
k∑

i=0

(1 + vi)qi(x) + dx

for these values of d ≥ 1
2kh(b − 1)(2 + (k − 1)v) − h(1 + kv)

⌊
a
bk

⌋
. The proof of Item (b) is finished.

This completes the proof of Lemma 2.2. □

3. Proof of Theorem 1.1

In this section, we use Lemmas 2.1 and 2.2 to prove Theorem 1.1.
Proof of Theorem 1.1. First, let c = ud for a nonnegative integer and d ≥ ah(k(b − 1) + u). Note that
gcd(a, d) = 1, then by Lemmas 2.1 and 2.2 we have that

g(S c) = max
⟨dx⟩,⟨0⟩

m(x) − a

Electronic Research Archive Volume 31, Issue 12, 7195–7206.
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= max
1≤x≤a−1

m(x) − a

= max
1≤x≤a−1

(
ah

(⌊ x
bk + uk

⌋
+ Wb,u(x)

)
+ dx

)
− a. (3.1)

Let H(x) := ah
(⌊

x
bk+uk

⌋
+ Wb,u(x)

)
+ dx, then

H(x + 1) − H(x) = ah
(⌊

x + 1
bk + uk

⌋
−

⌊ x
bk + uk

⌋
+ Wb,u(x + 1) − Wb,u(x)

)
+ d

≥ d − ah(k(b − 1) + u) ≥ 0

for any positive integer x. It follows from (3.1) that

g(S c) = H(a − 1) = ah
(⌊

a − 1
bk + uk

⌋
+ Wb,u(a − 1)

)
+ da − d − a.

Next, applying Lemmas 2.1 and 2.2 to computing n(S c), one has that

n(S c) =
1
a

∑
⟨dx⟩,⟨0⟩

m(x) −
1
2

(a − 1)

=
1
a

a−1∑
x=1

m(x) −
1
2

(a − 1)

= h
a−1∑
x=1

(⌊ x
bk + uk

⌋
+ Wb,u(x)

)
+

1
2

(a − 1)(d − 1). (3.2)

Write a − 1 = q(bk + ku) + r with 0 ≤ r ≤ bk − 1, then

a−1∑
x=1

⌊ x
bk + uk

⌋
=

q−1∑
i=0

(i+1)(bk+ku)−1∑
x=i(bk+uk)

⌊ x
bk + uk

⌋
+

q(bk+ku)+r∑
x=q(bk+ku)

⌊ x
bk + uk

⌋

=

q−1∑
i=0

(i+1)(bk+ku)−1∑
x=i(bk+uk)

i +
q(bk+ku)+r∑
x=q(bk+ku)

q

=
1
2

q(q − 1)(bk + ku) + (r + 1)q. (3.3)

Putting (3.3) into (3.2), we derive that

n(S c) = h
a−1∑
x=1

Wb,u(x) +
1
2

hq(q − 1)(bk + ku) + hq(r + 1) +
1
2

(a − 1)(d − 1),

as desired. Item (a) is proved.
Now, we let c = va for a nonnegative integer v with v ≤ b − 1 and d ≥ 1

2akh(b − 1)(2 + (k − 1)v). To
be similar as the proof of Item (a), we also can obtain that

g(S c) = ah
(
(1 + kv)

⌊
a − 1

bk

⌋
+ Vb,v(a − 1)

)
+ d(a − 1).
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Next, let us compute n(S c) in the following. First, by employing Lemmas 2.1 and 2.2 we have that

n(S c) =
1
a

∑
⟨dx⟩,⟨0⟩

m(x) −
1
2

(a − 1)

=
1
a

a−1∑
x=1

m(x) −
1
2

(a − 1)

= h
a−1∑
x=1

(
(1 + kv)

⌊ x
bk

⌋
+ Vb,v(x)

)
+

1
2

(a − 1)(d − 1). (3.4)

Second, we compute
∑a−1

x=1

⌊
x

bk

⌋
and

∑a−1
x=1 Vb,v(x). For the purpose, define two sequences {qi}

k
i=1 and

{ri}
k
i=1 by

qi :=
⌊
a − 1

bi

⌋
, ri := a − 1 − qibi. (3.5)

Then, for any 0 ≤ i ≤ k, one deduces that

a−1∑
x=1

⌊ x
bi

⌋
=

qi−1∑
j=0

( j+1)bi−1∑
x= jbi

⌊ x
bi

⌋
+

qibi+ri∑
x=qibi

⌊ x
bi

⌋

=

qi−1∑
j=0

( j+1)bi−1∑
x= jbi

j +
qibi+ri∑
x=qibi

qi

=
1
2

biqi(qi − 1) + qi(ri + 1), (3.6)

which is denoted by Mi for brevity. Recall that qi(x) is defined as (1.1), and it is checked that

qi(x) =
⌊ x
bi

⌋
− b

⌊ x
bi+1

⌋
for any 0 ≤ i ≤ k − 1. It then follows that

a−1∑
x=1

Vb,v(x) =
a−1∑
x=1

k−1∑
i=0

(1 + iv)qi(x)

=

k−1∑
i=0

(1 + iv)
a−1∑
x=1

qi(x)

=

k−1∑
i=0

(1 + iv)
a−1∑
x=1

(⌊ x
bi

⌋
− b

⌊ x
bi+1

⌋)
=

k−1∑
i=0

(1 + iv)(Mi − bMi+1). (3.7)

Finally, putting (3.6) and (3.7) into (3.4) we arrive at

n(S c) =
1
2

(a − 1)(ah + d − 1) + h
k∑

i=1

(v(b + i − ib) + 1 − b)Mi,
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where Mi =
1
2biqi(qi − 1) + qi(ri + 1), qi and ri are defined as (3.5). Thus, the proof of Item (b) is done.

The proof of Theorem 1.1 is completed. □

4. Conclusions

Let S = {a1, a2, . . . , an} be a set of positive integers with gcd(a1, a2, . . . , an) = 1. The celebrated
Frobenius problem is to find g(S ) and n(S ), which is the largest natural number that is not representable
as a nonnegative integer combination of a1, a2, . . . , an and the number of natural numbers that are not
nonnegative integer combinations of a1, a2, . . . , an, respectively. In this paper, we determined g(S c)
and n(S c) for S c = {a, ha + d, ha + c + db, ha + 2c + db2, . . . , ha + kc + dbk} in the case of that c is
divided by one of a and d. In fact, we presented a formula for m(S c, x) by determining the minimum
value of certain functions with multi variables, where m(S c, x) is the least positive integer in L(S )∩⟨x⟩
(see Lemma 2.2). By employing Lemmas 2.1 and 2.2 and with some technical calculations on some
complex sums, we finally derived the explicit expressions of g(S c) and n(S c), so the paper extended
a result of Tripathi in 2016. However, in this paper we do not say anything about this problem when
a ∤ c and d ∤ c. Maybe it needs more new ideas to settle the problem for that case. In addition, the
following generalization direction for the Frobenius problem is attractive as well.

Problem 4.1. Let a, k, h, d and s be positive integers with gcd(a, d) = 1. Let b1, . . . , bs ≥ 2 be distinct
positive integers. For

S = {a, ha + d, ha + d(b1 + · · · + bs), ha + d(b2
1 + · · · + b2

s), . . . , ha + d(bk
1 + · · · + bk

s)},

find g(S ) and n(S ).
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