Research article Special Issues

Do different stock indices volatility respond differently to Central bank digital currency signals?


  • Received: 09 May 2023 Revised: 12 July 2023 Accepted: 02 August 2023 Published: 14 August 2023
  • Central bank digital currency (CBDC) signals affect the volatility of stock indices in different sectors differently. This paper aims to examine whether the CBDC signal plays a role on the volatility of different stock indices. First, we employ a text analysis to compile the CBDC signal index, which spans from January 4, 2013 to March 16, 2023. Then, based on the mixing frequency data, we construct generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) models to explore the various impacts of CBDC signal on the volatility of stock indices in different sectors. The findings show the heterogeneous effect of CBDC signals on the volatility of stock indices across different sectors. Furthermore, CBDC signals have a heterogeneous effect on the volatility of stock indices in different sectors for different lag periods.

    Citation: Wenjie Li, Zimei Huang. Do different stock indices volatility respond differently to Central bank digital currency signals?[J]. Electronic Research Archive, 2023, 31(9): 5573-5588. doi: 10.3934/era.2023283

    Related Papers:

  • Central bank digital currency (CBDC) signals affect the volatility of stock indices in different sectors differently. This paper aims to examine whether the CBDC signal plays a role on the volatility of different stock indices. First, we employ a text analysis to compile the CBDC signal index, which spans from January 4, 2013 to March 16, 2023. Then, based on the mixing frequency data, we construct generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) models to explore the various impacts of CBDC signal on the volatility of stock indices in different sectors. The findings show the heterogeneous effect of CBDC signals on the volatility of stock indices across different sectors. Furthermore, CBDC signals have a heterogeneous effect on the volatility of stock indices in different sectors for different lag periods.



    加载中


    [1] Y. Tan, Z. H. Li, S. M. Liu, M. I. Nazir, M. Haris, Competitions in different banking markets and shadow banking: Evidence from China, Int. J.. Emerg. Mark., 17 (2022), 1465–1483. https://doi.org/10.1108/ijoem-04-2020-0401 doi: 10.1108/ijoem-04-2020-0401
    [2] Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanbul Rev., 23 (2023), 285–296. https://doi.org/10.1016/j.bir.2022.10.006 doi: 10.1016/j.bir.2022.10.006
    [3] Z. H. Huang, G. K. Liao, Z. H. Li, Loaning scale and government subsidy for promoting green innovation, Technol. Forecasting Soc. Change, 144 (2019), 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
    [4] Z. H. Li, Z. M. Huang, Y. Y. Su, New media environment, environmental regulation and corporate green technology innovation: Evidence from China, Energ. Econ., 119 (2023), 106545. https://doi.org/10.1016/j.eneco.2023.106545 doi: 10.1016/j.eneco.2023.106545
    [5] T. Li, X. Li; G. Liao, Business cycles and energy intensity. Evidence from emerging economies, Borsa Istanbul Rev., 22 (2021), 560–570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005
    [6] Z. H. Huang, H. Dong, S. S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energ. Econ., 112 (2022), 106160. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160
    [7] J. Barrdear, M. Kumhof, The macroeconomics of central bank digital currencies, J. Econ. Dyn. Control, 142 (2022), 104148. https://doi.org/10.1016/j.jedc.2021.104148 doi: 10.1016/j.jedc.2021.104148
    [8] Z. H. Li, B. Mo, H. Nie, Time and frequency dynamic connectedness between cryptocurrencies and financial assets in China, Int. Rev. Econ. Financ., 86 (2023), 46–57. https://doi.org/10.1016/j.iref.2023.01.015 doi: 10.1016/j.iref.2023.01.015
    [9] Z. H. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining Bitcoin Volatility: A CAViaR-based Approach, Emerg. Mark. Financ. Trade, 19 (2021), 1320–1338. https://doi.org/10.1080/1540496x.2021.1873127 doi: 10.1080/1540496x.2021.1873127
    [10] E. Y. Oh, S. Zhang, Informal economy and central bank digital currency, Econ. Inq., 60 (2022), 1520–1539. https://doi.org/10.1111/ecin.13105 doi: 10.1111/ecin.13105
    [11] Y. S. Kim, O. Kwon, Central bank digital currency, credit supply, and financial stability, 55 (2023), 297–321. https://doi.org/https://doi.org/10.1111/jmcb.12913
    [12] D. Andolfatto, Assessing the impact of central bank digital currency on private banks, Econ. J., 131 (2021), 525–540. https://doi.org/10.1093/ej/ueaa073 doi: 10.1093/ej/ueaa073
    [13] B. Xin, K. Jiang, Central bank digital currency and the effectiveness of negative interest rate policy: A DSGE analysis, Res. Int. Bus. Financ., 634 (2023), 525–540. https://doi.org/10.1016/j.ribaf.2023.101901 doi: 10.1016/j.ribaf.2023.101901
    [14] W. Shen, L. Hou, China's central bank digital currency and its impacts on monetary policy and payment competition: Game changer or regulatory toolkit?, Comput. law Secur. Rev., 41 (2021), 105577. https://doi.org/10.1016/j.clsr.2021.105577 doi: 10.1016/j.clsr.2021.105577
    [15] Y. Wang, B. M. Lucey, S. A. Vigne, L. Yarovaya, The effects of central bank digital currencies news on financial markets, Tech. Forecast. Soc. Change, 180 (2022), 121715. https://doi.org/10.1016/j.techfore.2022.121715 doi: 10.1016/j.techfore.2022.121715
    [16] Z. H. Li, C. Y. Yang, Z. H. Huang, How does the fintech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [17] Z. H. Li, L. M. Chen, H. Dong, What are bitcoin market reactions to its-related events?, Int. Rev. Econ. Financ., 73 (2021), 1–10. https://doi.org/10.1016/j.iref.2020.12.020 doi: 10.1016/j.iref.2020.12.020
    [18] A. K. Bharti, Asymmetrical herding in cryptocurrency: Impact of COVID 19, Quant. Financ. Econ., 6 (2022), 326–341. https://doi.org/10.3934/qfe.2022014 doi: 10.3934/qfe.2022014
    [19] S. L. Chen, S. M. Liu, R. J. Cai, Y. Y. Zhang, The factors that influence exchange-rate risk: Evidence in China, Emerg. Mark. Financ. Trade, 56 (2020), 1275–1292. https://doi.org/10.1080/1540496x.2019.1636229 doi: 10.1080/1540496x.2019.1636229
    [20] Z. H. Li, Z. H. Huang, H. Dong, The influential factors on outward foreign direct investment: Evidence from the "The Belt and Road", Emerg. Mark. Financ. Trade, 55 (2019), 3211–3226. https://doi.org/10.1080/1540496x.2019.1569512 doi: 10.1080/1540496x.2019.1569512
    [21] S. A. Gyamerah, B. E. Owusu, E. K. Akwaa-Sekyi, Modelling the mean and volatility spillover between green bond market and renewable energy stock market, Green Financ., 4 (2022), 310–328. https://doi.org/10.3934/gf.2022015 doi: 10.3934/gf.2022015
    [22] S. Scharnowski, Central bank speeches and digital currency competition, Financ. Res. Lett., 49 (2022), 103072. https://doi.org/10.1016/j.frl.2022.103072 doi: 10.1016/j.frl.2022.103072
    [23] P. K. Ozili, Central bank digital currency and bank earnings management using loan loss provisions, Digit. Policy Regul. Governance J., 25 (2023), 206–220. https://doi.org/10.1108/DPRG-11-2022-0139 doi: 10.1108/DPRG-11-2022-0139
    [24] S. Rahman, I. H. Moral, M. Hassan, G. S. Hossain, R. Perveen, Review a systematic review of green finance in the banking industry: perspectives from a developing country, Green Financ., 4 (2022), 347–363. https://doi.org/10.3934/gf.2022017 doi: 10.3934/gf.2022017
    [25] C. C. Lee, C. W. Wang, H. Y. Hsieh, W. L. Chen, The impact of central bank digital currency variation on firm's implied volatility, Res. Int. Bus. Financ., 64 (2023), 101878. https://doi.org/10.1016/j.ribaf.2023.101878 doi: 10.1016/j.ribaf.2023.101878
    [26] W. H. You, Y. W. Guo, H. M. Zhu, Y. Tang, Oil price shocks, economic policy uncertainty and industry stock returns in China: Asymmetric effects with quantile regression, Energ. Econ., 68 (2017), 1–18. https://doi.org/10.1016/j.eneco.2017.09.007 doi: 10.1016/j.eneco.2017.09.007
    [27] L. Pastor, P. Veronesi, Uncertainty about government policy and stock prices, J. Financ., 67 (2012), 1219–1264. https://doi.org/10.1111/j.1540-6261.2012.01746.x doi: 10.1111/j.1540-6261.2012.01746.x
    [28] S. Chen, J. Zhong, P. Failler, Does China transmit financial cycle spillover effects to the G7 countries?, Econ. Res.-Ekon. Istraž., 35 (2022), 5184–5201. https://doi.org/10.1080/1331677x.2021.2025123 doi: 10.1080/1331677x.2021.2025123
    [29] T. H. Li, J. H. Zhong, Z. M. Huang, Potential dependence of financial cycles between emerging and developed countries: Based on ARIMA-GARCH copula model, Emerg. Mark. Financ. Trade, 56 (2020), 1237–1250. https://doi.org/10.1080/1540496x.2019.1611559 doi: 10.1080/1540496x.2019.1611559
    [30] S. Deniz, Volatility spillovers among MIST stock markets, Data Sci. Financ. Econ., 2 (2022), 80–95. https://doi.org/10.3934/DSFE.2022004 doi: 10.3934/DSFE.2022004
    [31] P. Maria, M. Annalisa, T. Giacomo, Z. Lea, The informative value of central banks talks: A topic model application to sentiment analysis, Data Sci. Financ. Econ., 2 (2022), 181–204. https://doi.org/10.3934/DSFE.2022009 doi: 10.3934/DSFE.2022009
    [32] J. Park, R. A. Ratti, Oil price shocks and stock markets in the US and 13 European countries, Energy Econ., 30 (2008), 2587–2608. https://doi.org/10.1016/j.eneco.2008.04.003 doi: 10.1016/j.eneco.2008.04.003
    [33] G. K. Liao, P. Hou, X. Y. Shen, K. Albitar, The impact of economic policy uncertainty on stock returns: The role of corporate environmental responsibility engagement, Int. J. Financ. Econ., 26 (2021), 4386–4392. https://doi.org/10.1002/ijfe.2020 doi: 10.1002/ijfe.2020
    [34] Z. H. Li, J. H. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Financ. Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303
    [35] Y. Jiang, G. Tian, Y. Wu, B. Mo, Impacts of geopolitical risks and economic policy uncertainty on Chinese tourism‐listed company stock, Int. J. Financ. Econ., 27 (2022), 320–333. https://doi.org/10.1002/ijfe.2155 doi: 10.1002/ijfe.2155
    [36] G. P. Shi, X. X. Liu, Stock price fluctuation and the business cycle in the BRICS countries: A nonparametric quantiles causality approach, Financ. Res. Lett., 33 (2020), 101223. https://doi.org/10.1016/j.frl.2019.06.021 doi: 10.1016/j.frl.2019.06.021
    [37] M. Arouri, C. Estay, C. Rault, D. Roubaud, Economic policy uncertainty and stock markets: Long-run evidence from the US, Financ. Res. Lett., 18 (2016), 136–141. https://doi.org/10.1016/j.frl.2016.04.011 doi: 10.1016/j.frl.2016.04.011
    [38] S. Chen, Y. Wang, K. Albitar, Z. Huang, Does ownership concentration affect corporate environmental responsibility engagement? The mediating role of corporate leverage, Borsa Istanbul Rev., 21 (2021), S13–S24. https://doi.org/10.1016/j.bir.2021.02.001 doi: 10.1016/j.bir.2021.02.001
    [39] Y. Liu, Z. H. Li, M. R. Xu, The influential factors of financial cycle spillover: Evidence from China, Emerg. Mark. Financ. Trade, 56 (2020), 1336–1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496x.2019.1658076
    [40] Z. Li, G. Liao, K. Albitar, Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation, Bus. Strategy Environ., 29 (2019), 1045–1055. https://doi.org/10.1002/bse.2416 doi: 10.1002/bse.2416
    [41] Y. H. Jiang, G. Y. Tian, B. Mo, Spillover and quantile linkage between oil price shocks and stock returns: new evidence from G7 countries, Financ. Innov., 6 (2020). https://doi.org/10.1186/s40854-020-00208-y doi: 10.1186/s40854-020-00208-y
    [42] J. K. Sra, A. L. Booth, R. A. K. Cox, Voluntary carbon information disclosures, corporate-level environmental sustainability efforts, and market value, Green Financ., 4 (2022), 179–206. https://doi.org/10.3934/gf.2022009 doi: 10.3934/gf.2022009
    [43] C. K. M. Lau, E. Demir, M. H. Bilgin, Experience-based corporate corruption and stock market volatility: Evidence from emerging markets, Emerg. Mark. Rev., 17 (2013), 1–13. https://doi.org/10.1016/j.ememar.2013.07.002 doi: 10.1016/j.ememar.2013.07.002
    [44] P. C. Tetlock, Giving content to investor sentiment: The role of media in the stock market, J. Financ., 62 (2007), 1139–1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x doi: 10.1111/j.1540-6261.2007.01232.x
    [45] D. Zhang, J. Engelberg, P. J. Gao, The sum of All FEARS investor sentiment and asset prices, Rev. Financ. Stud., 28 (2015), 1–32. https://doi.org/10.1093/rfs/hhu072 doi: 10.1093/rfs/hhu072
    [46] G. Kaplanski, H. Levy, Sentiment and stock prices: The case of aviation disasters, J. Financ. Econ., 95 (2010), 174–201. https://doi.org/10.1016/j.jfineco.2009.10.002 doi: 10.1016/j.jfineco.2009.10.002
    [47] S. K. Agyei, A. Bossman, Investor sentiment and the interdependence structure of GⅡPS stock market returns: A multiscale approach, Quant. Financ. Econ., 7 (2023), 87–116. https://doi.org/10.3934/qfe.2023005 doi: 10.3934/qfe.2023005
    [48] Y. Chen, Z. Huang, Measuring the effects of investor attention on China's stock returns, Data Sci. Financ. Econ., 1 (2021), 327–344. https://doi.org/10.3934/DSFE.2021018 doi: 10.3934/DSFE.2021018
    [49] Z. Li, Z. Huang, P. Failler, Dynamic correlation between crude oil price and investor sentiment in China: Heterogeneous and asymmetric effect. Energies, 15 (2022), 687. https://doi.org/10.3390/en15030687 doi: 10.3390/en15030687
    [50] S. L. Chung, C. H. Hung, C. Y. Yeh, When does investor sentiment predict stock returns?, J. Empirical Financ., 19 (2012), 217–240. https://doi.org/10.1016/j.jempfin.2012.01.002 doi: 10.1016/j.jempfin.2012.01.002
    [51] R. F. Engle, J. G. Rangel, The Spline-GARCH model for low-frequency volatility and its global macroeconomic causes, Rev. Financ. Stud., 21 (2008), 1187–1222. https://doi.org/10.1093/rfs/hhn004 doi: 10.1093/rfs/hhn004
    [52] R. F. Engle, E. Ghysels, B. Sohn, Stock market volatility and macroeconomic fundamentals, Rev. Econ. Stat., 95 (2013), 776–797. https://doi.org/10.1162/REST_a_00300 doi: 10.1162/REST_a_00300
    [53] Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?, Econ. Res.-Ekon. Istraž., 35 (2021), 1–20. https://doi.org/10.1080/1331677x.2021.2019596 doi: 10.1080/1331677x.2021.2019596
    [54] Y. Zheng, Z. Wang, Z. Huang, T. Jiang, Comovement between the Chinese business cycle and financial volatility: Based on a DCC-MIDAS model, Emerg. Mark. Financ. Trade, 56 (2020), 1181–1195. https://doi.org/10.1080/1540496x.2019.1620100 doi: 10.1080/1540496x.2019.1620100
    [55] S. Charfi, F. Mselmi, Modeling exchange rate volatility: application of GARCH models with a Normal Tempered Stable distribution, Quant. Financ. Econ., 6 (2022), 206–222. https://doi.org/10.3934/qfe.2022009 doi: 10.3934/qfe.2022009
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(984) PDF downloads(54) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog