Modern block ciphers deal with the development of security mechanisms to meet the security needs in several fields of application. The substitution box, which is an important constituent in block ciphers, necessarily has sufficient cryptographic robustness to counter different attacks. The basic problem with S-box design is that there is no evident pattern in its cryptographic properties. This study introduces a new mathematical algorithm for developing S-box based on the modular group coset graphs and a newly invented mathematical notion "matrix transformer". The proficiency of the proposed S-box is assessed through modern performance evaluation tools, and it has been observed that the constructed S-box has almost optimal features, indicating the effectiveness of the invented technique.
Citation: Asima Razzaque, Abdul Razaq, Sheikh Muhammad Farooq, Ibtisam Masmali, Muhammad Iftikhar Faraz. An efficient S-box design scheme for image encryption based on the combination of a coset graph and a matrix transformer[J]. Electronic Research Archive, 2023, 31(5): 2708-2732. doi: 10.3934/era.2023137
Modern block ciphers deal with the development of security mechanisms to meet the security needs in several fields of application. The substitution box, which is an important constituent in block ciphers, necessarily has sufficient cryptographic robustness to counter different attacks. The basic problem with S-box design is that there is no evident pattern in its cryptographic properties. This study introduces a new mathematical algorithm for developing S-box based on the modular group coset graphs and a newly invented mathematical notion "matrix transformer". The proficiency of the proposed S-box is assessed through modern performance evaluation tools, and it has been observed that the constructed S-box has almost optimal features, indicating the effectiveness of the invented technique.
[1] | H. Delfs, H. Knebl, H. Knebl, Introduction to Cryptography, Heidelberg, Springer, 2002. https://doi.org/10.1007/978-3-662-47974-2 |
[2] | S. Kumar, T. Wollinger, Fundamentals of symmetric cryptography, in Embedded Security Cars, Springer, (2006), 125–143. https://doi.org/10.1007/3-540-28428-1_8 |
[3] | A. D. Gordon, A. Jeffrey, Types and effects for asymmetric cryptographic protocols, J. Comput. Secur., 12 (2004), 435–483. https://doi.org/10.3233/JCS-2004-123-406 doi: 10.3233/JCS-2004-123-406 |
[4] | L. R. Knudsen, M. J. B. Robshaw, The Block Cipher Companion, Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-17342-4 |
[5] | P. Nastou, Y. Stamatiou, Enhancing the security of block ciphers with the aid of parallel substitution box construction, in Proceedings 22nd International Conference on Distributed Computing Systems Workshops, IEEE, (2002), 29–34. |
[6] | A. Razaq, S. Akhter, A. Yousaf, U. Shuaib, M. Ahmad, A group theoretic construction of highly nonlinear substitution box and its applications in image encryption, Multimedia Tools Appl., 81 (2022), 4163–4184. https://doi.org/10.1007/s11042-021-11635-z doi: 10.1007/s11042-021-11635-z |
[7] | H. Zhu, X. Tong, Z. Wang, J. Ma, A novel method of dynamic S-box design based on combined chaotic map and fitness function, Multimedia Tools Appl., 79 (2020), 12329–12347. https://doi.org/10.1007/s11042-019-08478-0 doi: 10.1007/s11042-019-08478-0 |
[8] | A. Javeed, T. Shah, A. Ullah, Construction of non-linear component of block cipher by means of chaotic dynamical system and symmetric group, Wireless Pers. Commun., 112 (2020), 467–480. https://doi.org/10.1007/s11277-020-07052-4 doi: 10.1007/s11277-020-07052-4 |
[9] | A. Razaq, A. Yousaf, U. Shuaib, N. Siddiqui, A. Ullah, A. Waheed, A novel construction of substitution box involving coset diagram and a bijective map, Secur. Commun. Netw., 2017 (2017), 1–16. https://doi.org/10.1155/2017/5101934 doi: 10.1155/2017/5101934 |
[10] | Y. Si, H. Liu, Y. Chen, Constructing keyed strong S-box using an enhanced quadratic map, Int. J. Bifurcation Chaos, 31 (2021), 2150146. https://doi.org/10.1142/S0218127421501467 doi: 10.1142/S0218127421501467 |
[11] | D. Lambić, A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design, Nonlinear Dyn., 100 (2020), 699–711. https://doi.org/10.1007/s11071-020-05503-y doi: 10.1007/s11071-020-05503-y |
[12] | A. Anees, Z. Ahmed, A technique for designing substitution box based on van der pol oscillator. Wireless Pers. Commun., 82 (2015), 1497–1503. https://doi.org/10.1007/s11277-015-2295-4 doi: 10.1007/s11277-015-2295-4 |
[13] | H. Liu, J. Liu, C. Ma, Constructing dynamic strong S-box using 3D chaotic map and application to image encryption, Multimedia Tools Appl., (2022), 1–16. https://doi.org/10.1007/s11042-022-12069-x |
[14] | Y. Wang, K. W. Wong, C. Li, Y. Li, A novel method to design S-box based on chaotic map and genetic algorithm, Phys. Lett. A, 376 (2012), 827–833. https://doi.org/10.1016/j.physleta.2012.01.009 doi: 10.1016/j.physleta.2012.01.009 |
[15] | Z. M. Z. Muhammad, F. Özkaynak, An image encryption algorithm based on chaotic selection of robust cryptographic primitives, IEEE Access, 8 (2022), 56581–56589. https://doi.org/10.1109/ACCESS.2020.2982827 doi: 10.1109/ACCESS.2020.2982827 |
[16] | F. Artuğer, F. Özkaynak, A novel method for performance improvement of chaos-based substitution boxes, Symmetry, 12 (2020), 571. https://doi.org/10.3390/sym12040571 doi: 10.3390/sym12040571 |
[17] | Y. Q. Zhang, J. L. Hao, X. Y. Wang, An efficient image encryption scheme based on S-boxes and fractional-order differential logistic map, IEEE Access, 8 (2020), 54175–54188. https://doi.org/10.1109/ACCESS.2020.2979827 doi: 10.1109/ACCESS.2020.2979827 |
[18] | B. B. Cassal-Quiroga, E. Campos-Cantón, Generation of dynamical S-boxes for block ciphers via extended logistic map, Math. Probl. Eng., 2020 (2020), 1–12. https://doi.org/10.1155/2020/2702653 doi: 10.1155/2020/2702653 |
[19] | M. A. Yousaf, H. Alolaiyan, M. Ahmad, M. Dilbar, A. Razaq, Comparison of pre and post-action of a finite abelian group over certain nonlinear schemes, IEEE Access, 8 (2020), 39781–39792. https://doi.org/10.1109/ACCESS.2020.2975880 doi: 10.1109/ACCESS.2020.2975880 |
[20] | B. Abd-El-Atty, M. Amin, A. Abd-El-Latif, H. Ugail, I. Mehmood, An efficient cryptosystem based on the logistic-chebyshev map, in 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), IEEE, (2019), 1–6, https://doi.org/10.1109/SKIMA47702.2019.8982535. |
[21] | S. Zhou, X. Wang, Y. Zhang, Novel image encryption scheme based on chaotic signals with finite-precision error, Inf. Sci., 621 (2023), 782–798. https://doi.org/10.1016/j.ins.2022.11.104 doi: 10.1016/j.ins.2022.11.104 |
[22] | X. Liu, X. Tong, Z. Wang, M. Zhang, A novel hyperchaotic encryption algorithm for color image utilizing DNA dynamic encoding and self-adapting permutation, Multimedia Tools Appl., 81 (2022), 21779–21810. https://doi.org/10.1007/s11042-022-12472-4 doi: 10.1007/s11042-022-12472-4 |
[23] | S. Zhou, Z. Zhao, X. Wang, Novel chaotic colour image cryptosystem with deep learning, Chaos, Solitons Fractals, 161 (2022), 112380. https://doi.org/10.1016/j.chaos.2022.112380 doi: 10.1016/j.chaos.2022.112380 |
[24] | X. Liu, X. Tong, Z. Wang, M. Zhang, Construction of controlled multi-scroll conservative chaotic system and its application in color image encryption, Nonlinear Dyn., 2 (2022), 1897–1934. https://doi.org/10.1007/s11071-022-07702-1 doi: 10.1007/s11071-022-07702-1 |
[25] | S. Zhou, Y. Qiu, X. Wang, Y. Zhang, Novel image cryptosystem based on new 2D hyperchaotic map and dynamical chaotic S-box, Nonlinear Dyn., 2023 (2023), 1–19. https://doi.org/10.1007/s11071-023-08312-1 doi: 10.1007/s11071-023-08312-1 |
[26] | X. Liu, X. Tong, Z. Wang, M. Zhang, A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its' applications in image encryption, Chaos, Solitons Fractals, 154 (2022), 111693. https://doi.org/10.1016/j.chaos.2021.111693 doi: 10.1016/j.chaos.2021.111693 |
[27] | S. Zhou, X. Wang, Y. Zhang, B. Ge, M. Wang, S. Gao, A novel image encryption cryptosystem based on true random numbers and chaotic systems, Multimedia Syst., 28 (2022), 95–112. https://doi.org/10.1007/s00530-021-00803-8 doi: 10.1007/s00530-021-00803-8 |
[28] | M. Aamir, M. A. Yousaf, A. Razaq, Number of distinct homomorphic images in coset diagrams, J. Math., 2021 (2021), 1–29, https://doi.org/10.1155/2021/6669459 doi: 10.1155/2021/6669459 |
[29] | R. C. Lyndon, P. E. Schupp, R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 188 (1977). https://doi.org/10.1007/978-3-642-61896-3 |
[30] | A. Razaq, Q. Mushtaq, A Yousaf, The number of circuits of length 4 in PSL (2, ℤ)-space, Commun. Algebra, 46 (2018), 5136–5145. https://doi.org/10.1080/00927872.2018.1461880 doi: 10.1080/00927872.2018.1461880 |
[31] | A. Torstensson, Coset diagrams in the study of finitely presented groups with an application to quotients of the modular group, J. Commut. Algebra, 2 (2010), 501–514. https://doi.org/10.1216/JCA-2010-2-4-501 doi: 10.1216/JCA-2010-2-4-501 |
[32] | J. R. Bastida, Field Extensions and Galois Theory, Cambridge University Press, 22 (1984). |
[33] | J. Pieprzyk, G. Finkelstein, Towards effective nonlinear cryptosystem design, IEE J. Comput. Digital Tech., 135 (1988), 325–335. https://doi.org/10.1049/ip-e.1988.0044 doi: 10.1049/ip-e.1988.0044 |
[34] | A. F. Webster, S. E. Tavares, On the design of S-boxes, in Advances in Cryptology—CRYPTO'85 Proceedings, 218 (1985), 523–534. |
[35] | M. Matsui, Linear cryptanalysis method for DES cipher, in Workshop on the Theory and Application of of Cryptographic Techniques, Springer, Berlin, Heidelberg, (1985), 386–397. https://doi.org/10.1007/3-540-48285-7 |
[36] | J. Daemen, V. Rijmen, The advanced encryption standard, in The Design of Rijndael, Springer, Berlin, Heidelberg, (2002), 1–8. https://doi.org/10.1007/978-3-662-04722-4_1 |
[37] | U. Hayat, N. A. Azam, H. R. Gallegos-Ruiz, S. Naz, L. Batool, A truly dynamic substitution box generator for block ciphers based on elliptic curves over finite rings, Arabian J. Sci. Eng., 46 (2021), 8887–8899. https://doi.org/10.1007/s13369-021-05666-9 doi: 10.1007/s13369-021-05666-9 |
[38] | S. Ibrahim, A. M. Abbas, Efficient key-dependent dynamic S-boxes based on permutated elliptic curves, Inf. Sci., 558 (2021), 246–264. https://doi.org/10.1016/j.ins.2021.01.014 doi: 10.1016/j.ins.2021.01.014 |
[39] | B. M. Alshammari, R. Guesmi, T. Guesmi, H. Alsaif, A. Alzamil, Implementing a symmetric lightweight cryptosystem in highly constrained IoT devices by using a chaotic S-box, Symmetry, 13 (2021), 129. https://doi.org/10.3390/sym13010129 doi: 10.3390/sym13010129 |
[40] | H. S. Alhadawi, M. A. Majid, D. Lambić, M. Ahmad, A novel method of S-box design based on discrete chaotic maps and cuckoo search algorithm, Multimedia Tools Appl., 80 (2021), 7333–7350. https://doi.org/10.1007/s11042-020-10048-8 |
[41] | M. Long, L. Wang, S-box design based on discrete chaotic map and improved artificial bee colony algorithm, IEEE Access, 9 (2021), 86144–86154. https://doi.org/10.1109/ACCESS.2021.3069965 doi: 10.1109/ACCESS.2021.3069965 |
[42] | R. Soto, B. Crawford, F. González, R. Olivares, Human behaviour based optimization supported with self-organizing maps for solving the S-box design problem, IEEE Access, 9 (2021), 84605–84618. https://doi.org/10.1109/ACCESS.2021.3087139 doi: 10.1109/ACCESS.2021.3087139 |
[43] | W. Yan, Q. Ding, A novel S-box dynamic design based on nonlinear-transform of 1D chaotic maps, Electronics, 10 (2021), 1313. https://doi.org/10.3390/electronics10111313 doi: 10.3390/electronics10111313 |
[44] | P. Zhou, J. Du, K. Zhou, S. Wei, 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation, Nonlinear Dyn., 103 (2021), 1151–1166. https://doi.org/10.1007/s11071-020-06098-0 doi: 10.1007/s11071-020-06098-0 |
[45] | I. Hussain, T. Shah, M. A. Gondal, H. Mahmood, Generalized majority logic criterion to analyze the statistical strength of S-boxes, Z. Naturforsch. A, 67 (2012), 282–288. https://doi.org/10.5560/zna.2012-0022 doi: 10.5560/zna.2012-0022 |
[46] | A. M. Eskicioglu, P. S. Fisher, Image quality measures and their performance, IEEE Trans. Commun., 43 (1995), 2959–2965, https://doi.org/10.1109/26.477498 doi: 10.1109/26.477498 |
[47] | Q. Huynh-Thu, M. Ghanbari, Scope of validity of PSNR in image/video quality assessment, IET Electron. Lett., 44 (2008), 800–801. https://doi.org/10.1049/el:20080522 doi: 10.1049/el:20080522 |
[48] | X. J. Wu, H. B. Kan, J. Kurths, A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps, Appl. Soft Comput., 37 (2015), 24–39. https://doi.org/10.1016/j.asoc.2015.08.008 doi: 10.1016/j.asoc.2015.08.008 |
[49] | Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861 |