Research article

On quasi-monoidal comonads and their corepresentations

  • Received: 20 March 2022 Revised: 12 May 2022 Accepted: 17 May 2022 Published: 17 June 2022
  • In this paper, we define and study quasi-monoidal comonads on a monoidal category. It generalize the (Hom type) coquasi-bialgebras to a non-braided setting. We investigate their corepresentations and their coquasitriangular structures. We also discuss their gauge equivalence relations.

    Citation: Dingguo Wang, Xiaohui Zhang. On quasi-monoidal comonads and their corepresentations[J]. Electronic Research Archive, 2022, 30(8): 3153-3171. doi: 10.3934/era.2022160

    Related Papers:

  • In this paper, we define and study quasi-monoidal comonads on a monoidal category. It generalize the (Hom type) coquasi-bialgebras to a non-braided setting. We investigate their corepresentations and their coquasitriangular structures. We also discuss their gauge equivalence relations.



    加载中


    [1] B. Mesablishvili, R. Wisbauer, Bimonads and Hopf monads on categories, J. K-Theory, 7 (2011), 349–388. https://doi.org/10.1017/is010001014jkt105 doi: 10.1017/is010001014jkt105
    [2] M. Livernet, B. Mesablishvili, R. Wisbauer, Generalised bialgebras and entwined monads and comonads, J. Pure Appl. Algebra, 219 (2015), 3263–3278. https://doi.org/10.1016/j.jpaa.2014.10.013 doi: 10.1016/j.jpaa.2014.10.013
    [3] B. Mesablishvili, R. Wisbauer, Galois functors and generalised Hopf modules, J. Homotopy Relat. Struct. 9 (2014), 199–222. https://doi.org/10.1007/s40062-013-0072-1 doi: 10.1007/s40062-013-0072-1
    [4] B. Mesablishvili, R. Wisbauer, The fundamental theorem for weak braided bimonads, J. Algebra, 490 (2017), 55–103. https://doi.org/10.1016/j.jalgebra.2017.06.023 doi: 10.1016/j.jalgebra.2017.06.023
    [5] I. Moerdijk, Monads on tensor categories, J. Pure Appl. Algebra, 168 (2002), 189–208. https://doi.org/10.1016/S0022-4049(01)00096-2 doi: 10.1016/S0022-4049(01)00096-2
    [6] A. Bruguières, A. Virelizier, Hopf monads, Adv. Math., 215 (2007), 679–733. https://doi.org/10.1016/j.aim.2007.04.011 doi: 10.1016/j.aim.2007.04.011
    [7] A. Bruguières, S. Lack, A. Virelizier, Hopf monads on monoidal categories, Adv. Math., 227 (2011), 745–800. https://doi.org/10.1016/j.aim.2011.02.008 doi: 10.1016/j.aim.2011.02.008
    [8] G. Böhm, S. Lack, R. Street, Weak bimonads and weak Hopf monads, J. Algebra, 328 (2011), 1–30. https://doi.org/10.1016/j.jalgebra.2010.07.032 doi: 10.1016/j.jalgebra.2010.07.032
    [9] X. H. Zhang, L. H. Dong, Braided mixed datums and their applications on Hom-quantum groups, Glasgow Math. J., 60 (2018), 231–251. https://doi.org/10.1017/S0017089517000088 doi: 10.1017/S0017089517000088
    [10] X. H. Zhang, W. Wang, X. F. Zhao, Smash coproducts of monoidal comonads and Hom-entwining structures, Rocky Mountain J. Math., 49 (2019), 2063–2105. https://doi.org/10.1216/RMJ-2019-49-6-2063 doi: 10.1216/RMJ-2019-49-6-2063
    [11] H. X. Zhu, The crossed structure of Hopf bimodules, J. Algebra Appl., 17 (2018), 1850172. https://doi.org/10.1142/S0219498818501724 doi: 10.1142/S0219498818501724
    [12] V. G. Drinfel'd, Quasi-Hopf algebras, Leningrad Math. J., 1 (1990), 1419–1457.
    [13] M. Gerstenhaber, J. Stasheff, Deformation theory and quantum groups with applications to mathematical physics, Contemp. Math., 134 (1992), 219–232. https://doi.org/10.1090/conm/134/1187289 doi: 10.1090/conm/134/1187289
    [14] I. Angiono, A. Ardizzoni, C. Menini, Cohomology and coquasi-bialgebras in the category of Yetter-Drinfeld modules, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (2017), 609–653. https://doi.org/10.2422/2036-2145.201509_018 doi: 10.2422/2036-2145.201509_018
    [15] X. H. Zhang, X. F. Zhao, W. Wang, Quasi-bimonads and their representations. J. Pure Appl. Algebra, 225 (2021), 106459. https://doi.org/10.1016/j.jpaa.2020.106459 doi: 10.1016/j.jpaa.2020.106459
    [16] J. Beck, Distributive laws, Lect. Notes Math., 80 (1969), 119–140. https://doi.org/10.1007/BFb0083084 doi: 10.1007/BFb0083084
    [17] R. Street, The formal theory of monads, J. Pure Appl. Algebra, 2 (1972), 149–168. https://doi.org/10.1016/0022-4049(72)90019-9 doi: 10.1016/0022-4049(72)90019-9
    [18] D. Chikhladze, S. Lack, R. Street, Hopf monoidal comonads, Theory Appl. Categ., 24 (2010), 554–563.
    [19] X. H. Zhang, D. G. Wang, Cotwists of Bicomonads and BiHom-bialgebras, Algebra Repr. Theory, 23 (2020), 1355–1385. https://doi.org/10.1007/s10468-019-09888-2 doi: 10.1007/s10468-019-09888-2
    [20] M. Elhamdadi, A. Makhlouf, Hopf algebras and tensor categories, Contemp. Math., 585 (2013), 227–245. https://doi.org/10.1090/conm/585/11617 doi: 10.1090/conm/585/11617
    [21] A. Bruguières, A. Virelizier, Quantum double of Hopf monads and categorical centers, Trans. Amer. Math. Soc., 364 (2012), 1225–1279. https://doi.org/10.1090/S0002-9947-2011-05342-0 doi: 10.1090/S0002-9947-2011-05342-0
    [22] G. Böhm, T. Brzeziński, R. Wisbauer, Monads and comonads on module categories, J. Algebra, 322 (2009), 1719–1747. https://doi.org/10.1016/j.jalgebra.2009.06.003 doi: 10.1016/j.jalgebra.2009.06.003
    [23] X. L. Fang, Gauge transformations for quasitriangular quasi-Turaev group coalgebras, J. Algebra Appl., 17 (2018), 1850080. https://doi.org/10.1142/S0219498818500809 doi: 10.1142/S0219498818500809
    [24] S. H. Wang, A. Van Daele, Y. H. Zhang, Constructing quasitriangular multiplier Hopf algebras by twisted tensor coproducts, Comm. Algebra, 37 (2009), 3171–3199. https://doi.org/10.1080/00927870902747894 doi: 10.1080/00927870902747894
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1010) PDF downloads(58) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog