We study ordering properties of positive solutions u for the one-dimensional φ-Laplacian quasilinear Dirichlet problem
{−(φ(u′))′=λf(u),−L<x<L,u(−L)=u(L)=0,
where λ,L>0 are two parameters. Assume that φ∈C(−κ,κ)∩C2((−κ,0)∪(0,κ)) is odd for some positive κ≤∞, and φ′(t)>0 for all t∈(−κ,0)∪(0,κ) and f∈C[0,η), f(0)≥0, f(u)>0 on (0,η) for some positive η≤∞, where either η=∞, or η<∞ with limu→η−f(u)=∞ or limu→η−f(u)=0. Some applications are given, including f(u)=up (p>0), up+uq (0<p<q<∞), 1(1−u)p (p>0), exp(u),exp(aua+u) (a>0), and 1(1−u)2−ε2(1−u)4 (ε∈(0,1)).
Citation: Kuo-Chih Hung, Shin-Hwa Wang, Jhih-Jyun Zeng. Ordering properties of positive solutions for a class of φ-Laplacian quasilinear Dirichlet problems[J]. Electronic Research Archive, 2022, 30(5): 1918-1935. doi: 10.3934/era.2022097
[1] | Moh. Alakhrass . A note on positive partial transpose blocks. AIMS Mathematics, 2023, 8(10): 23747-23755. doi: 10.3934/math.20231208 |
[2] | Mohammad Al-Khlyleh, Mohammad Abdel Aal, Mohammad F. M. Naser . Interpolation unitarily invariant norms inequalities for matrices with applications. AIMS Mathematics, 2024, 9(7): 19812-19821. doi: 10.3934/math.2024967 |
[3] | Sourav Shil, Hemant Kumar Nashine . Positive definite solution of non-linear matrix equations through fixed point technique. AIMS Mathematics, 2022, 7(4): 6259-6281. doi: 10.3934/math.2022348 |
[4] | Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299 |
[5] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
[6] | Arnon Ploymukda, Kanjanaporn Tansri, Pattrawut Chansangiam . Weighted spectral geometric means and matrix equations of positive definite matrices involving semi-tensor products. AIMS Mathematics, 2024, 9(5): 11452-11467. doi: 10.3934/math.2024562 |
[7] | Pattrawut Chansangiam, Arnon Ploymukda . Riccati equation and metric geometric means of positive semidefinite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(10): 23519-23533. doi: 10.3934/math.20231195 |
[8] | Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492 |
[9] | Arnon Ploymukda, Pattrawut Chansangiam . Metric geometric means with arbitrary weights of positive definite matrices involving semi-tensor products. AIMS Mathematics, 2023, 8(11): 26153-26167. doi: 10.3934/math.20231333 |
[10] | Ahmad Y. Al-Dweik, Ryad Ghanam, Gerard Thompson, M. T. Mustafa . Algorithms for simultaneous block triangularization and block diagonalization of sets of matrices. AIMS Mathematics, 2023, 8(8): 19757-19772. doi: 10.3934/math.20231007 |
We study ordering properties of positive solutions u for the one-dimensional φ-Laplacian quasilinear Dirichlet problem
{−(φ(u′))′=λf(u),−L<x<L,u(−L)=u(L)=0,
where λ,L>0 are two parameters. Assume that φ∈C(−κ,κ)∩C2((−κ,0)∪(0,κ)) is odd for some positive κ≤∞, and φ′(t)>0 for all t∈(−κ,0)∪(0,κ) and f∈C[0,η), f(0)≥0, f(u)>0 on (0,η) for some positive η≤∞, where either η=∞, or η<∞ with limu→η−f(u)=∞ or limu→η−f(u)=0. Some applications are given, including f(u)=up (p>0), up+uq (0<p<q<∞), 1(1−u)p (p>0), exp(u),exp(aua+u) (a>0), and 1(1−u)2−ε2(1−u)4 (ε∈(0,1)).
Let Mn be the set of n×n complex matrices. Mn(Mk) is the set of n×n block matrices with each block in Mk. For A∈Mn, the conjugate transpose of A is denoted by A∗. When A is Hermitian, we denote the eigenvalues of A in nonincreasing order λ1(A)≥λ2(A)≥...≥λn(A); see [2,7,8,9]. The singular values of A, denoted by s1(A),s2(A),...,sn(A), are the eigenvalues of the positive semi-definite matrix |A|=(A∗A)1/2, arranged in nonincreasing order and repeated according to multiplicity as s1(A)≥s2(A)≥...≥sn(A). If A∈Mn is positive semi-definite (definite), then we write A≥0(A>0). Every A∈Mn admits what is called the cartesian decomposition A=ReA+iImA, where ReA=A+A∗2, ImA=A−A∗2. A matrix A∈Mn is called accretive if ReA is positive definite. Recall that a norm ||⋅|| on Mn is unitarily invariant if ||UAV||=||A|| for any A∈Mn and unitary matrices U,V∈Mn. The Hilbert-Schmidt norm is defined as ||A||22=tr(A∗A).
For A,B>0 and t∈[0,1], the weighted geometric mean of A and B is defined as follows
A♯tB =A1/2(A−1/2BA−1/2)tA1/2. |
When t=12, A♯12B is called the geometric mean of A and B, which is often denoted by A♯B. It is known that the notion of the (weighted) geometric mean could be extended to cover all positive semi-definite matrices; see [3, Chapter 4].
Let A,B,X∈Mn. For 2×2 block matrix M in the form
M=(AXX∗B)∈M2n |
with each block in Mn, its partial transpose of M is defined by
Mτ=(AX∗XB). |
If M and Mτ≥0, then we say it is positive partial transpose (PPT). We extend the notion to accretive matrices. If
M=(AXY∗B)∈M2n, |
and
Mτ=(AY∗XC)∈M2n |
are both accretive, then we say that M is APT (i.e., accretive partial transpose). It is easy to see that the class of APT matrices includes the class of PPT matrices; see [6,10,13].
Recently, many results involving the off-diagonal block of a PPT matrix and its diagonal blocks were presented; see [5,11,12]. In 2023, Alakhrass [1] presented the following two results on 2×2 block PPT matrices.
Theorem 1.1 ([1], Theorem 3.1). Let (AXX∗B) be PPT and let X=U|X| be the polar decomposition of X, then
|X|≤(A♯tB)♯(U∗(A♯1−tB)U),t∈[0,1]. |
Theorem 1.2 ([1], Theorem 3.2). Let (AXX∗B) be PPT, then for t∈[0,1],
ReX≤(A♯tB)♯(A♯1−tB)≤(A♯tB)+(A♯1−tB)2, |
and
ImX≤(A♯tB)♯(A♯1−tB)≤(A♯tB)+(A♯1−tB)2. |
By Theorem 1.1 and the fact si+j−1(XY)≤si(X)sj(Y)(i+j≤n+1), the author obtained the following corollary.
Corollary 1.3 ([1], Corollary 3.5). Let (AXX∗B) be PPT, then for t∈[0,1],
si+j−1(X)≤si(A♯tB)sj(A♯1−tB). |
Consequently,
s2j−1(X)≤sj(A♯tB)sj(A♯1−tB). |
A careful examination of Alakhrass' proof in Corollary 1.3 actually revealed an error. The right results are si+j−1(X)≤si(A♯tB)12sj((A♯1−tB)12) and s2j−1(X)≤sj((A♯tB)12)sj((A♯1−tB)12). Thus, in this note, we will give a correct proof of Corollary 1.3 and extend the above inequalities to the class of 2×2 block APT matrices. At the same time, some relevant results will be obtained.
Before presenting and proving our results, we need the following several lemmas of the weighted geometric mean of two positive matrices.
Lemma 2.1. [3, Chapter 4] Let X,Y∈Mn be positive definite, then
1) X♯Y=max{Z:Z=Z∗,(XZZY)≥0}.
2) X♯Y=X12UY12 for some unitary matrix U.
Lemma 2.2. [4, Theorem 3] Let X,Y∈Mn be positive definite, then for every unitarily invariant norm,
||X♯tY||≤||X1−tYt||≤||(1−t)X+tY||. |
Now, we give a lemma that will play an important role in the later proofs.
Lemma 2.3. Let M=(AXY∗B)∈M2n be APT, then for t∈[0,1],
(ReA♯tReBX+Y2X∗+Y∗2ReA♯1−tReB) |
is PPT.
Proof: Since M is APT, we have that
ReM=(ReAX+Y2X∗+Y∗2ReB) |
is PPT.
Therefore, ReM≥0 and ReMτ≥0.
By the Schur complement theorem, we have
ReB−X∗+Y∗2(ReA)−1X+Y2≥0, |
and
ReA−X∗+Y∗2(ReB)−1X+Y2≥0. |
Compute
X∗+Y∗2(ReA♯tReB)−1X+Y2=X∗+Y∗2((ReA)−1♯t(ReB)−1)X+Y2=(X∗+Y∗2(ReA)−1X+Y2)♯t(X∗+Y∗2(ReB)−1X+Y2)≤ReB♯tReA. |
Thus,
(ReB♯tReA)−X∗+Y∗2(ReA♯tReB)−1X+Y2≥0. |
By utilizing (ReB♯tReA)=ReA♯1−tReB, we have
(ReA♯tReBX+Y2X∗+Y∗2ReA♯1−tReB)≥0. |
Similarly, we have
(ReA♯tReBX∗+Y∗2X+Y2ReA♯1−tReB)≥0. |
This completes the proof.
First, we give the correct proof of Corollary 1.3.
Proof: By Theorem 1.1, there exists a unitary matrix U∈Mn such that |X|≤(A♯tB)♯(U∗(A♯1−tB)U). Moreover, by Lemma 2.1, we have (A♯tB)♯(U∗(A♯1−tB)U)=(A♯tB)12V(U∗(A♯1−tB)12U). Now, by si+j−1(AB)≤si(A)sj(B), we have
si+j−1(X)≤si+j−1((A♯tB)♯(U∗(A♯1−tB)U))=si+j−1((A♯tB)12VU∗(A♯1−tB)12U)≤si((A♯tB)12)sj((A♯1−tB)12), |
which completes the proof.
Next, we generalize Theorem 1.1 to the class of APT matrices.
Theorem 2.4. Let M=(AXY∗B) be APT, then
|X+Y2|≤(ReA♯tReB)♯(U∗(ReA♯1−tReB)U), |
where U∈Mn is any unitary matrix such that X+Y2=U|X+Y2|.
Proof: Since M is an APT matrix, we know that
(ReA♯tReBX+Y2X∗+Y∗2ReB♯1−tReA) |
is PPT.
Let W be a unitary matrix defined as W=(I00U). Thus,
W∗(ReA♯tReBX∗+Y∗2X+Y2ReA♯1−tReB)W=(ReA♯tReB|X+Y2||X+Y2|U∗(ReA♯1−tReB)U)≥0. |
By Lemma 2.1, we have
|X+Y2|≤(ReA♯tReB)♯(U∗(ReA♯1−tReB)U). |
Remark 1. When M=(AXY∗B) is PPT in Theorem 2.4, our result is Theorem 1.1. Thus, our result is a generalization of Theorem 1.1.
Using Theorem 2.4 and Lemma 2.2, we have the following.
Corollary 2.5. Let M=(AXY∗B) be APT and let t∈[0,1], then for every unitarily invariant norm ||⋅|| and some unitary matrix U∈Mn,
||X+Y2||≤||(ReA♯tReB)♯(U∗(ReA♯1−tReB)U)||≤||(ReA♯tReB)+U∗(ReA♯1−tReB)U2||≤||ReA♯tReB||+||ReA♯1−tReB||2≤||(ReA)1−t(ReB)t||+||(ReA)t(ReB)1−t||2≤||(1−t)ReA+tReB||+||tReA+(1−t)ReB||2. |
Proof: The first inequality follows from Theorem 2.4. The third one is by the triangle inequality. The other conclusions hold by Lemma 2.2.
In particular, when t=12, we have the following result.
Corollary 2.6. Let M=(AXY∗B) be APT, then for every unitarily invariant norm ||⋅|| and some unitary matrix U∈Mn,
||X+Y2||≤||(ReA♯ReB)♯(U∗(ReA♯ReB)U)||≤||(ReA♯ReB)+U∗(ReA♯ReB)U2||≤||ReA♯ReB||≤||(ReA)12(ReB)12||≤||ReA+ReB2||. |
Squaring the inequalities in Corollary 2.6, we get a quick consequence.
Corollary 2.7. If M=(AXY∗B) is APT, then
tr((X∗+Y∗2)(X+Y2))≤tr((ReA♯ReB)2)≤tr(ReAReB)≤tr((ReA+ReB2)2). |
Proof: Compute
tr((X∗+Y∗2)(X+Y2))≤tr((ReA♯ReB)∗(ReA♯ReB))=tr((ReA♯ReB)2)≤tr((ReA)(ReB))≤tr((ReA+ReB2)2). |
It is known that for any X,Y∈Mn and any indices i,j such that i+j≤n+1, we have si+j−1(XY)≤si(X)sj(Y) (see [2, Page 75]). By utilizing this fact and Theorem 2.4, we can obtain the following result.
Corollary 2.8. Let M=(AXY∗B) be APT, then for any t∈[0,1], we have
si+j−1(X+Y2)≤si((ReA♯tReB)12)sj((ReA♯1−tReB)12). |
Consequently,
s2j−1(X+Y2)≤sj((ReA♯tReB)12)sj((ReA♯1−tReB)12). |
Proof: By Lemma 2.1 and Theorem 2.4, observe that
si+j−1(X+Y2)=si+j−1(|X+Y2|)≤si+j−1((ReA♯tReB)♯(U∗(ReA♯1−tReB)U))=si+j−1((ReA♯tReB)12V(U∗(ReA♯1−tReB)U)12)≤si((ReA♯tReB)12V)sj((U∗(ReA♯1−tReB)U)12)=si((ReA♯tReB)12)sj((ReA♯1−tReB)12). |
Finally, we study the relationship between the diagonal blocks and the real part of the off-diagonal blocks of the APT matrix M.
Theorem 2.9. Let M=(AXY∗B) be APT, then for all t∈[0,1],
Re(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB)≤(ReA♯tReB)+(ReA♯1−tReB)2, |
and
Im(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB)≤(ReA♯tReB)+(ReA♯1−tReB)2. |
Proof: Since M is APT, we have that
ReM=(ReAX+Y2X∗+Y∗2ReB) |
is PPT.
Therefore,
(ReA♯tReBRe(X+Y2)Re(X∗+Y∗2)ReA♯1−tReB)=12(ReA♯tReBX+Y2X∗+Y∗2ReA♯1−tReB)+12(ReA♯tReBX∗+Y∗2X+Y2ReA♯1−tReB)≥0. |
So, by Lemma 2.1, we have
Re(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB). |
This implies the first inequality.
Since ReM is PPT, we have
(ReA−iX+Y2iX∗+Y∗2ReB)=(I00iI)(ReM)(I00−iI)≥0,(ReAiX∗+Y∗2−iX+Y2ReB)=(I00−iI)((ReM)τ)(I00iI)≥0. |
Thus,
(ReA−iX+Y2iX∗+Y∗2ReB) |
is PPT.
By Lemma 2.3,
(ReA♯tReB−iX+Y2iX∗+Y∗2ReA♯1−tReB) |
is also PPT.
So,
12(ReA♯tReB−iX+Y2iX∗+Y∗2ReA♯1−tReB)+12(ReA♯tReBiX∗+Y∗2−iX+Y2ReA♯1−tReB)≥0, |
which means that
(ReA♯tReBIm(X+Y2)Im(X+Y2)ReA♯1−tReB)≥0. |
By Lemma 2.1, we have
Im(X+Y2)≤(ReA♯tReB)♯(ReA♯1−tReB). |
This completes the proof.
Corollary 2.10. Let (ReAX+Y2X+Y2ReB)≥0. If X+Y2 is Hermitian and t∈[0,1], then,
X+Y2≤(ReA♯tReB)♯(ReA♯1−tReB)≤(ReA♯tReB)+(ReA♯1−tReB)2. |
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work is supported by National Natural Science Foundation (grant No. 12261030), Hainan Provincial Natural Science Foundation for High-level Talents (grant No. 123RC474), Hainan Provincial Natural Science Foundation of China (grant No. 124RC503), the Hainan Provincial Graduate Innovation Research Program (grant No. Qhys2023-383 and Qhys2023-385), and the Key Laboratory of Computational Science and Application of Hainan Province.
The authors declare that they have no conflict of interest.
[1] |
Y. H. Cheng, K. C. Hung, S. H. Wang, Global bifurcation diagrams and exact multiplicity of positive solutions for a one-dimensional prescribed mean curvature problem arising in MEMS, Nonlinear Anal. Theory Methods Appl., 89 (2013), 284–298. http://dx.doi.org/https://doi.org/10.1016/j.na.2013.04.018 doi: 10.1016/j.na.2013.04.018
![]() |
[2] |
P. Habets, P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math., 9 (2007), 701–730. https://doi.org/10.1142/S0219199707002617 doi: 10.1142/S0219199707002617
![]() |
[3] |
K. C. Hung, Y. H. Cheng, S. H. Wang, C. H. Chuang, Exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional prescribed mean curvature problem, J. Differ. Equations, 257 (2014), 3272–3299. https://doi.org/10.1016/j.jde.2014.06.013 doi: 10.1016/j.jde.2014.06.013
![]() |
[4] |
P. Korman, Y. Li, Global solution curves for a class of quasilinear boundary value problem, Proc. R. Soc. Edinburgh Sect. A: Math., 140 (2010), 1197–1215. https://doi.org/10.1017/S0308210509001449 doi: 10.1017/S0308210509001449
![]() |
[5] |
F. Obersnel, Classical and non-classical sign-changing solutions of a one-dimensional autonomous prescribed curvature equation, Adv. Nonlinear Stud., 7 (2007), 671–682. https://doi.org/10.1515/ans-2007-0409 doi: 10.1515/ans-2007-0409
![]() |
[6] |
H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. Theory Methods Appl., 70 (2009), 999–1010. https://doi.org/10.1016/j.na.2008.01.027 doi: 10.1016/j.na.2008.01.027
![]() |
[7] |
H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, Nonlinear Anal. Theory Methods Appl., 74 (2011), 1234–1260. https://doi.org/10.1016/j.na.2010.09.063 doi: 10.1016/j.na.2010.09.063
![]() |
[8] |
H. Pan, R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, II, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3751–3768. https://doi.org/10.1016/j.na.2011.03.020 doi: 10.1016/j.na.2011.03.020
![]() |
[9] |
C. Bereanu, P. Jebelean, P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 265 (2013), 644–659. https://doi.org/10.1016/j.jfa.2013.04.006 doi: 10.1016/j.jfa.2013.04.006
![]() |
[10] |
A. Boscaggin, G. Feltrin, Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight, Nonlinear Anal., 196 (2020), 111807. https://doi.org/10.1016/j.na.2020.111807 doi: 10.1016/j.na.2020.111807
![]() |
[11] |
I. Coelho, C. Corsato, F. Obersnel, P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621–638. https://doi.org/10.1016/j.jmaa.2013.04.003 doi: 10.1016/j.jmaa.2013.04.003
![]() |
[12] |
S. Y. Huang, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differ. Equations, 264 (2018), 5977–6011. https://doi.org/10.1016/j.jde.2018.01.021 doi: 10.1016/j.jde.2018.01.021
![]() |
[13] |
S. Y. Huang, Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications, Discrete Contin. Dyn. Syst., 39 (2019), 3443–3462. https://doi.org/10.3934/dcds.2019142 doi: 10.3934/dcds.2019142
![]() |
[14] |
S.Y. Huang, Global bifurcation diagrams for Liouville-Bratu-Gelfand problem with Minkowski curvature operator, J. Dyn. Differ. Equations, (2021), 1–16. https://doi.org/10.1007/s10884-021-09982-4 doi: 10.1007/s10884-021-09982-4
![]() |
[15] |
R. Ma, L. Wei, Z. Chen, Evolution of bifurcation curves for one-dimensional Minkowski-curvature problem, Appl. Math. Lett., 103 (2020), 106176. https://doi.org/10.1016/j.aml.2019.106176 doi: 10.1016/j.aml.2019.106176
![]() |
[16] |
X. Zhang, M. Feng, Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space, Commun. Contemp. Math., 21 (2019), 1850003. https://doi.org/10.1142/S0219199718500037 doi: 10.1142/S0219199718500037
![]() |
[17] | J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Volume I, Elliptic Equations, SERBIULA (sistema Librum 2.0), Pitman, Boston, MA, 1985. |
[18] | J. I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction, Extracta Math., 16 (2001), 303–341. Available from: https://www.eweb.unex.es/eweb/extracta/Vol-16-3/16a3diaz.pdf. |
[19] |
S. Y. Huang, S. H. Wang, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Ration. Mech. Anal., 222 (2016), 769–825. https://doi.org/10.1007/s00205-016-1011-1 doi: 10.1007/s00205-016-1011-1
![]() |
[20] |
X. Lao, H. Pan, R. Xing, Global bifurcation curves of a regularized MEMS model, Appl. Math. Lett., 111 (2021), 106688. https://doi.org/10.1016/j.aml.2020.106688 doi: 10.1016/j.aml.2020.106688
![]() |
[21] |
Z. Liu, X. Zhang, A class of two-point boundary value problems, J. Math. Anal. Appl., 254 (2001), 599–617. https://doi.org/10.1006/jmaa.2000.7258 doi: 10.1006/jmaa.2000.7258
![]() |
[22] | R. Manásevich, F. I. Njoku, F. Zanolin, Positive solutions for the one-dimensional p-Laplacian, Differ. Integr. Equations, 8 (1995), 213–222. Available from: https://projecteuclid.org/journals/differential-and-integral-equations/volume-8/issue-1/Positive-solutions-for-the-one-dimensional-p-Laplacian/die/1411134162.full. |
[23] |
B. Rynne, Exact multiplicity and stability of solutions of a 1-dimensional, p-Laplacian problem with positive convex nonlinearity, Nonlinear Anal., 183 (2019), 271–283. https://doi.org/10.1016/j.na.2019.01.023 doi: 10.1016/j.na.2019.01.023
![]() |
[24] |
S. H. Wang, D. M. Long, An exact multiplicity theorem involving concave-convex nonlinearities and its application to stationary solutions of a singular diffusion problem, Nonlinear Anal. Theory Methods Appl., 44 (2001), 469–486. https://doi.org/10.1016/S0362-546X(99)00272-2 doi: 10.1016/S0362-546X(99)00272-2
![]() |
[25] |
S. H. Wang, T. S. Yeh, Exact multiplicity and ordering properties of positive solutions of a p-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl., 287 (2003), 380–398. https://doi.org/10.1016/S0022-247X(02)00520-6 doi: 10.1016/S0022-247X(02)00520-6
![]() |
[26] |
U. Das, A. Muthunayake, R. Shivaji, Existence results for a class of p-q Laplacian semipositone boundary value problems, Electron. J. Qual. Theory Differ. Equations, (2020), 1–7. https://doi.org/10.14232/ejqtde.2020.1.88 doi: 10.14232/ejqtde.2020.1.88
![]() |
[27] |
R. Kajikiya, I. Sim, S. Tanaka, A complete classification of bifurcation diagrams for a class of (p,q)-Laplace equations, J. Math. Anal. Appl., 462 (2018), 1178–1194. https://doi.org/10.1016/j.jmaa.2018.02.049 doi: 10.1016/j.jmaa.2018.02.049
![]() |
[28] | R. Kajikiya, M. Tanaka, S. Tanaka, Bifurcation of positive solutions for the one-dimensional (p,q)-Laplace equation, Electron. J. Differ. Equations, 2017 (2017), 1–37. Available from: https://ejde.math.txstate.edu/Volumes/2017/107/kajikija.pdf. |
[29] |
Y. Komiya, R. Kajikiya, Existence of infinitely many solutions for the (p,q)-Laplace equation, Nonlinear Differ. Equations Appl., 23 (2016), 49. https://doi.org/10.1007/s00030-016-0402-1 doi: 10.1007/s00030-016-0402-1
![]() |
[30] |
I. Sim, B. Son, Positive solutions to classes of infinite semipositone (p,q)-Laplace problems with nonlinear boundary conditions, J. Math. Anal. Appl., 494 (2021), 124577. https://doi.org/10.1016/j.jmaa.2020.124577 doi: 10.1016/j.jmaa.2020.124577
![]() |
[31] | H. Pan, R. Xing, On the existence of positive solutions for some nonlinear boundary value problems II, preprint, arXiv: 1501.02882. |
[32] |
M. G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52 (1973), 161–180. https://doi.org/10.1007/BF00282325 doi: 10.1007/BF00282325
![]() |
[33] |
H. Pan, R. Xing, On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models, Discrete Contin. Dyn. Syst., 35 (2015), 3627–3682. https://doi.org/10.3934/dcds.2015.35.3627 doi: 10.3934/dcds.2015.35.3627
![]() |
[34] |
A. Boscaggin, G. Feltrin, F. Zanolin, Uniqueness of positive solutions for boundary value problems associated with indefinite Φ-Laplacian-type equations, Open Math., 19 (2021), 163–183. https://doi.org/10.1515/math-2021-0003 doi: 10.1515/math-2021-0003
![]() |
[35] | D. D. Hai, X. Wang, Existence and multiplicity of positive solutions for singular ϕ-Laplacian superlinear problems with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equations, (2021). |
[36] |
D. D. Hai, X. Wang, Positive solutions for singular superlinear ϕ-Laplacian problems with nonlinear boundary conditions, Mediterr. J. Math., 19 (2022), 42. https://doi.org/10.1007/s00009-021-01963-7 doi: 10.1007/s00009-021-01963-7
![]() |