Low ionic conductivity in gel polymer electrolytes (GPEs) affects low dye-sensitized solar cells (DSSCs) performance is a crucial issue. Generally, the GPEs contain polymer (act as solvent holder), solvent, and salt (as ions provider). Usually, the GPE-based DSSCs are assembly with three necessary compartments: working electrode, GPE, and platinum electrode. The DSSCs parameters are included open-circuit voltage, Voc; short-circuit current density, Jsc; fill factor, ff and efficiency, %. This review's main objective was to explore an additive such as plasticizer, filler, and ionic liquid effects on the ionic conductivity in GPEs by improving ions mobility and expanding the free volume of the GPE. The impact of additives in the GPE is also expected to enhance the DSSCs performance by increasing the Jsc, Voc, ff, and efficiency. This comprehensive review discussed the latest progress of GPE utilizing the additive by listing the literature from the recent ten years.
Citation: Mohd Fareezuan Abdul Aziz, Nur Ezyanie Safie, Mohd Asyadi Azam, Tunku Aidil Ilham Tunku Adaham, Tan Jun Yu, Akito Takasaki. A comprehensive review of filler, plasticizer, and ionic liquid as an additive in GPE for DSSCs[J]. AIMS Energy, 2022, 10(6): 1122-1145. doi: 10.3934/energy.2022053
Low ionic conductivity in gel polymer electrolytes (GPEs) affects low dye-sensitized solar cells (DSSCs) performance is a crucial issue. Generally, the GPEs contain polymer (act as solvent holder), solvent, and salt (as ions provider). Usually, the GPE-based DSSCs are assembly with three necessary compartments: working electrode, GPE, and platinum electrode. The DSSCs parameters are included open-circuit voltage, Voc; short-circuit current density, Jsc; fill factor, ff and efficiency, %. This review's main objective was to explore an additive such as plasticizer, filler, and ionic liquid effects on the ionic conductivity in GPEs by improving ions mobility and expanding the free volume of the GPE. The impact of additives in the GPE is also expected to enhance the DSSCs performance by increasing the Jsc, Voc, ff, and efficiency. This comprehensive review discussed the latest progress of GPE utilizing the additive by listing the literature from the recent ten years.
[1] | Bhattacharya S, John S (2019) Beyond 30% conversion efficiency in silicon solar cells: A numerical demonstration. Sci Rep 9: 12482. https://doi.org/10.1038/s41598-019-48981-w doi: 10.1038/s41598-019-48981-w |
[2] | Andreani LC, Bozzola A, Kowalczewski P, et al. (2019) Silicon solar cells: toward the efficiency limits. Adv Phys-X 4: 1548305. https://doi.org/10.1080/23746149.2018.1548305 doi: 10.1080/23746149.2018.1548305 |
[3] | Kowalczewski P, Andreani LC (2015). Towards the efficiency limits of silicon solar cells: How thin is too thin? Sol Energy Mater Sol Cells 143: 260–268. https://doi.org/10.1016/j.solmat.2015.06.054 doi: 10.1016/j.solmat.2015.06.054 |
[4] | Yan D, Cuevas A, Michel JI, et al. (2021) Polysilicon passivated junctions: The next technology for silicon solar cells? Joule 5: 811–828. https://doi.org/10.1016/j.joule.2021.02.013 doi: 10.1016/j.joule.2021.02.013 |
[5] | Kim S, Van QH, Bark CW (2021) Photovoltaic technologies for flexible solar cells: beyond silicon. Mater Today Energy 19: 100583. https://doi.org/10.1016/j.mtener.2020.100583 doi: 10.1016/j.mtener.2020.100583 |
[6] | Nugroho HS, Refantero G, Septiani NLW, et al. (2022). A progress review on the modification of CZTS (e)-based thin-film solar cells. J Ind Eng Chem 105: 83–110. https://doi.org/10.1002/adma.202202969 doi: 10.1002/adma.202202969 |
[7] | Cheng S, Zhang K, Zhang Y, et al. (2021) Effects of different Cs distribution in the film on the performance of CIGS thin film solar cells. Sol Energy Mater Sol Cells 222: 110917. https://doi.org/10.1016/j.solmat.2020.110917 doi: 10.1016/j.solmat.2020.110917 |
[8] | McGott DL, Muzzillo CP, Perkins CL, et al. (2021) 3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule 5: 1057–1073. https://doi.org/10.1016/j.joule.2021.03.015 doi: 10.1016/j.joule.2021.03.015 |
[9] | Shi S, Yao L, Ma P, et al. (2021) Recent progress in the high-temperature-resistant PI substrate with low CTE for CIGS thin-film solar cells. Mater Today Energy 20: 100640. https://doi.org/10.1016/j.mtener.2021.100640 doi: 10.1016/j.mtener.2021.100640 |
[10] | Yadav RK, Pawar PS, Neerugatti KE, et al. (2021) Effect of intrinsic ZnO thickness on the performance of SnS/CdS-based thin-film solar cells. Curr Appl Phys 31: 232–238. https://doi.org/10.1016/j.cap.2021.09.009 doi: 10.1016/j.cap.2021.09.009 |
[11] | O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 737–740. https://doi.org/10.1038/353737a0 doi: 10.1038/353737a0 |
[12] | Mohammad Bagher A (2015) Types of solar cells and application. American J Opt Photonics 3: 94. https://doi.org/10.11648/j.ajop.20150305.17 doi: 10.11648/j.ajop.20150305.17 |
[13] | Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem 4: 145–153. https://doi.org/10.1016/S1389-5567(03)00026-1 doi: 10.1016/S1389-5567(03)00026-1 |
[14] | Chen M, Shao LL, Lv XW, et al. (2020) In situ growth of Ni-encapsulated and N-doped carbon nanotubes on N-doped ordered mesoporous carbon for high-efficiency triiodide reduction in dye-sensitized solar cells. J Chem Eng 390: 124633. https://doi.org/10.1016/j.cej.2020.124633 doi: 10.1016/j.cej.2020.124633 |
[15] | Chen M, Wang GC, Shao LL, et al. (2018) Strategic design of vacancy-enriched Fe1-xs nanoparticles anchored on Fe3c-encapsulated and n-doped carbon nanotube hybrids for high-efficiency triiodide reduction in dye-sensitized solar cells. ACS Appl Mater Interfaces 10: 31208–31224. https://doi.org/10.1021/acsami.8b08489 doi: 10.1021/acsami.8b08489 |
[16] | Abdukarimov A, Shah S, Teo LP, et al. (2020) Characteristics of dye-sensitized solar cells (DSSCs) using liquid and gel polymer electrolytes with tetrapropylammonium salt. Opt Quantum Electron 52: 152. https://doi.org/10.1007/s11082-020-02264-1 doi: 10.1007/s11082-020-02264-1 |
[17] | Careem MA, Aziz MF, Buraidah MH (2017) Boosting efficiencies of gel polymer electrolyte based dye sensitized solar cells using mixed cations. Mater Today: Proc 4: 5092–5099. https://doi.org/10.1016/j.matpr.2017.05.013 doi: 10.1016/j.matpr.2017.05.013 |
[18] | Saikia D, Chen-Yang YW, Chen YT, et al. (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium-ion battery. Desalination 234: 24–32. https://doi.org/10.1016/j.desal.2007.09.066 doi: 10.1016/j.desal.2007.09.066 |
[19] | Storck JL, Dotter M, Adabra S, et al. (2020) Long-term stability improvement of non-toxic dye-sensitized solar cells via poly(ethylene oxide) gel electrolytes for future textile-based solar cells. Polymers 12: 3035. https://doi.org/10.3390/polym12123035 doi: 10.3390/polym12123035 |
[20] | Shi LY, Chen TL, Chen CH, et al. (2013) Synthesis and characterization of a gel-type electrolyte with ionic liquid added for dye-sensitized solar cells. Int J Photoenergy 2013: 834184. https://doi.org/10.1155/2013/834184 doi: 10.1155/2013/834184 |
[21] | Mohan K, Dolui S, Nath B, et al. (2017) A highly stable and efficient quasi solid state dye sensitized solar cell based on Polymethyl methacrylate (PMMA)/Carbon black (CB) polymer gel electrolyte with improved open circuit voltage. Electrochim Acta 247. https://doi.org/10.1016/j.electacta.2017.06.062 doi: 10.1016/j.electacta.2017.06.062 |
[22] | Abrol SA, Bhargava C, Sharma PK (2020) Electrical properties enhancement of liquid and polymer gel based electrolytes used for dssc applications. Mater Res Express 7: 106202. https://doi.org/10.1088/2053-1591/abc2a2 doi: 10.1088/2053-1591/abc2a2 |
[23] | Aram E, Ehsani M, Khonakdar HA (2015) Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte. Thermochim Acta 615: 61–67. https://doi.org/10.1016/j.tca.2015.07.006 doi: 10.1016/j.tca.2015.07.006 |
[24] | Sundararajan V, Farhana NK, Ng HM, et al. (2019) Efficiency enhancement study on addition of 1-hexyl-3-methylimidazolium iodide ionic liquid to the poly (methyl methacrylate-co-methacrylic acid) electrolyte system as applied in dye-sensitized solar cells. J Phys Chem Solids 129: 252–260. https://doi.org/10.1016/j.jpcs.2019.01.016 doi: 10.1016/j.jpcs.2019.01.016 |
[25] | Abrol SA, Bhargava C, Sharma PK (2021) Efficiency enhancement of dye-sensitized solar cells using gel polymer electrolytes. Endorsed Trans Energy Web 8: 1–7. https://doi.org/10.4108/eai.19-2-2021.168726 doi: 10.4108/eai.19-2-2021.168726 |
[26] | Tsai CH, Lu CY, Chen MC, et al. (2013) Efficient gel-state dye-sensitized solar cells adopting polymer gel electrolyte based on poly(methyl methacrylate). Org Electron 14: 3131–3137. https://doi.org/10.1016/j.orgel.2013.07.026 doi: 10.1016/j.orgel.2013.07.026 |
[27] | Yang H, Huang M, Wu J, et al. (2008) The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells. Mater Chem Phys 110: 38–42. https://doi.org/10.1016/j.matchemphys.2008.01.010 doi: 10.1016/j.matchemphys.2008.01.010 |
[28] | Xu T, Li J, Gong R, et al. (2018) Environmental effects on the ionic conductivity of poly(methyl methacrylate) (PMMA)-based quasi-solid-state electrolyte. Ionics 24: 2621–2629. https://doi.org/10.1007/s11581-017-2397-y doi: 10.1007/s11581-017-2397-y |
[29] | Sarangika HNM, Dissanayake MAKL, Senadeera GKR (2020) Efficiency enhancement in dye-sensitized solar cells irrespective of the electrolyte medium by nanostructured tri-layer TiO2 photoanode. Ionics 26: 4747–4755. https://doi.org/10.1007/s11581-020-03620-7 doi: 10.1007/s11581-020-03620-7 |
[30] | Abdullah H, Zainudin MK, Ahmad M, et al. (2019) (SiO2)100-x-Nix (x = 2.5, 10.0) Composite-based photoanode with polymer gel electrolyte for increased dye-sensitized solar cell performance. Ionics 25: 3387–3396. https://doi.org/10.1007/s11581-019-02886-w doi: 10.1007/s11581-019-02886-w |
[31] | Saidi NM, Omar FS, Ramesh K, et al. (2019) Effect of nickel oxide on the conductivity of polymer blend electrolyte doped with sodium iodide and its application in dye-sensitized solar cell. Malays J Sci 38: 1–12. https://doi.org/10.22452/MJS/VOL38NO1.1 doi: 10.22452/MJS/VOL38NO1.1 |
[32] | Sakali SM, Khanmirzaei MH, Lu SC, et al. (2019) Investigation on gel polymer electrolyte-based dye-sensitized solar cells using carbon nanotube. Ionics 25: 319–325. https://doi.org/10.1007/s11581-018-2598-z doi: 10.1007/s11581-018-2598-z |
[33] | Bettucci O, Saavedra Becerril V, Bandara TMWJ, et al. (2018) Organic dye-sensitized solar cells containing alkaline iodide-based gel polymer electrolytes: Influence of cation size. Phys Chem Chem Phys 20: 1276–1285. https://doi.org/10.1039/c7cp07544h doi: 10.1039/c7cp07544h |
[34] | Abdullah H, Mahalingam S, Abu Bakar NA, et al. (2021) Influence of Fe2O3 in ZnO/GO-based dye-sensitized solar cell. Polym Bull 79: 4287–4301. https://doi.org/10.1007/s00289-021-03708-8 doi: 10.1007/s00289-021-03708-8 |
[35] | Chowdhury FI, Islam J, Arof AK, et al. (2021) Electrocatalytic and structural properties and computational calculation of PAN-EC-PC-TPAI-I2gel polymer electrolytes for dye sensitized solar cell application. RSC Adv 11: 22937–22950. https://doi.org/10.1039/d1ra01983j doi: 10.1039/d1ra01983j |
[36] | Dotter M, Storck JL, Surjawidjaja M, et al. (2021) Investigation of the long-term stability of different polymers and their blends with peo to produce gel polymer electrolytes for non-toxic dye-sensitized solar cells. Appl Sci 11: 5834. https://doi.org/10.3390/app11135834 doi: 10.3390/app11135834 |
[37] | Manafi P, Nazockdast H, Karimi M, et al. (2021) A study on the microstructural development of gel polymer electrolytes and different imidazolium-based ionic liquids for dye-sensitized solar cells. J Power Sources 481: 228622. https://doi.org/10.1016/j.jpowsour.2020.228622 doi: 10.1016/j.jpowsour.2020.228622 |
[38] | Chen LH, Venkatesan S, Liu IP, et al. (2020) Highly efficient dye-sensitized solar cells based on poly (Vinylidene fluoride-co-hexafluoropropylene) and montmorillonite nanofiller-based composite electrolytes. J Oleo Sci 69: 539–547. https://doi.org/10.5650/jos.ess19281 doi: 10.5650/jos.ess19281 |
[39] | Zhang K, Chen S, Feng Y, et al. (2017) Study of quasi-solid electrolyte in dye-sensitized solar cells using surfactant as pore-forming materials in TiO2 photoelectrodes. J Solid State Electrochem 21: 715–724. https://doi.org/10.1007/s10008-016-3409-y doi: 10.1007/s10008-016-3409-y |
[40] | Hwang DK, Nam JE, Jo HJ, et al. (2017) Quasi-solid state electrolyte for semi-transparent bifacial dye-sensitized solar cell with over 10% power conversion efficiency. J Power Sources 361: 87–95. https://doi.org/10.1016/j.jpowsour.2017.06.067 doi: 10.1016/j.jpowsour.2017.06.067 |
[41] | Venkatesan S, Liu IP, Chen LT, et al. (2016) Effects of TiO2 and tic nanofillers on the performance of dye sensitized solar cells based on the polymer gel electrolyte of a cobalt redox system. ACS Appl Mater Interfaces 8: 24559–24566. https://doi.org/10.1021/acsami.6b06429 doi: 10.1021/acsami.6b06429 |
[42] | Anggraini PN, Nursam NM, Putra RA, et al. (2019) Study on the effect of PVDF and TiO2 composition on quasi-solid state DSSC. J Phys Conf Ser 1245: 012068. https://doi.org/10.1088/1742-6596/1245/1/012068 doi: 10.1088/1742-6596/1245/1/012068 |
[43] | Manafi P, Nazockdast H, Karimi M, et al. (2020) Microstructural development and rheological study of a nanocomposite gel polymer electrolyte based on functionalized graphene for dye-sensitized solar cells. Polymers 12: 1–23. https://doi.org/10.3390/polym12071443 doi: 10.3390/polym12071443 |
[44] | Cheng F, Wu C, Wang S, et al. (2021) Polydopamine-modified electrospun polyvinylidene fluoride nanofiber based flexible polymer gel electrolyte for highly stable dye-sensitized solar cells. ACS Omega 6: 28663–28670. https://doi.org/10.1021/acsomega.1c03232 doi: 10.1021/acsomega.1c03232 |
[45] | Ruslan, Ariyansyah, Wiraningtyas A, et al. (2020) Preparation of alginate-KI/I2 composite as an electrolyte gel on dye sensitized solar cell (DSSC). AIP Conf Proc 2229: 030010. https://doi.org/10.1063/5.0002434 doi: 10.1063/5.0002434 |
[46] | Khannam M, Nath BC, Mohan KJ, et al. (2017) Development of quasi-solid-state dye-sensitized solar cells based on a poly (vinyl alcohol)/poly (ethylene glycol)/functionalized multi-walled carbon nanotubes gel electrolyte. ChemistrySelect 2: 673–679. https://doi.org/10.1002/slct.201601766 doi: 10.1002/slct.201601766 |
[47] | Jauhari H, Grover R, Nanda O, et al. (2016) Efficient quasi-solid state dye sensitized solar cell using succinonitrile: Thiourea based electrolyte composition. RSC Adv 6: 66788–66794. https://doi.org/10.1039/c6ra13667b doi: 10.1039/c6ra13667b |
[48] | Anantharaj G, Joseph J, Selvaraj M, et al. (2015) Fabrication of stable dye sensitized solar cell with gel electrolytes using poly(ethylene oxide)-poly(ethylene glycol). Electrochim Acta 176: 1403–1409. https://doi.org/10.1016/j.electacta.2015.07.137 doi: 10.1016/j.electacta.2015.07.137 |
[49] | Seni RS, Puspitasari N (2017) Effect of the addition of peg and pva polymer for gel electrolytes in dye-sensitized solar cell (dssc) with chlorophyll as dye sensitizer. IOP Conf Ser: Mater Sci Eng 214: 012011. https://doi.org/10.1088/1757-899X/214/1/012011 doi: 10.1088/1757-899X/214/1/012011 |
[50] | Aziz MF, Noor IM, Sahraoui B, et al. (2014) Dye-sensitized solar cells with PVA-KI-EC-PC gel electrolytes. Opt Quantum Electron 46: 133–141. https://doi.org/10.1007/s11082-013-9722-0 doi: 10.1007/s11082-013-9722-0 |
[51] | Bandara TMWJ, Fernando HDNS, Furlani M, et al. (2016) Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys Chem Chem Phys 18: 10873–10881. https://doi.org/10.1039/C6CP00013D doi: 10.1039/C6CP00013D |
[52] | Chowdhury FI, Buraidah MH, Arof AK, et al. (2020) Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Sol Energy 196: 379–388. https://doi.org/10.1016/j.solener.2019.12.033 doi: 10.1016/j.solener.2019.12.033 |
[53] | Chowdhury FI, Khalil I, Khandaker MU, et al. (2020) Electrochemical and structural characterization of polyacrylonitrile (PAN)‑based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells. Ionics 26: 4737–4746. https://doi.org/10.1007/s11581-020-03612-7 doi: 10.1007/s11581-020-03612-7 |
[54] | Rao BN, Giribabu L, Raghavender M (2018) PEO based polymer composite with added acetamide, NaI/I2 as gel polymer electrolyte for dye sensitized solar cell applications. IOP Conf Ser: Mater Sci Eng 310: 012012. https://doi.org/10.1088/1757-899X/310/1/012012 doi: 10.1088/1757-899X/310/1/012012 |
[55] | Aziz MF, Buraidah MH, Arof AK (2013) Dye-sensitized solar cells using binary iodide-PVA gel electrolyte. 2013 15th International Conference on Transparent Optical Networks (ICTON), 1–4. https://doi.org/10.1109/ICTON.2013.6602808 |
[56] | Aziz MF, Azam MA, Buraidah MH, et al. (2021) Effect of the potassium iodide in tetrapropyl ammonium iodide-polyvinyl alcohol based gel polymer electrolyte for dye-sensitized solar cells. Optik 247: 167978. https://doi.org/10.1016/j.ijleo.2021.167978 doi: 10.1016/j.ijleo.2021.167978 |
[57] | Suryanarayanan V, Lee KM, Chen JG, et al. (2009) High performance dye-sensitized solar cells containing 1-methyl-3-propyl imidazolinium iodide-effect of additives and solvents. J Electroanal Chem 633: 146–152. https://doi.org/10.1016/j.jelechem.2009.05.005 doi: 10.1016/j.jelechem.2009.05.005 |
[58] | Senthil RA, Theerthagiri J, Madhavan, J, et al. (2017) Influence of organic additive to PVDF-HFP mixed iodide electrolytes on the photovoltaic performance of dye-sensitized solar cells. J Phys Chem Solids 101: 18–24. https://doi.org/10.1016/j.jpcs.2016.10.007 doi: 10.1016/j.jpcs.2016.10.007 |
[59] | Senthil RA, Theerthagiri J, Madhavan J, et al. (2016) Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode. J Solid State Chem 242: 199–206. https://doi.org/10.1016/j.jssc.2016.07.020 doi: 10.1016/j.jssc.2016.07.020 |
[60] | Senthil RA, Theerthagiri J, Madhavan J, et al. (2016) Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells. Opt Mater 58: 357–364. https://doi.org/10.1016/j.optmat.2016.06.007 doi: 10.1016/j.optmat.2016.06.007 |
[61] | Dissanayake MA, Thotawatthage CA, Senadeera GK, et al. (2013) Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr4NI+ MgI2 binary iodide salt mixture. J Appl Electrochem 43: 891–901. https://doi.org/10.1007/s10800-013-0582-x doi: 10.1007/s10800-013-0582-x |
[62] | Dintcheva NT, Furlani M, Jayasundara WJ, et al. (2013) Rheological behavior of PAN-based electrolytic gel containing tetrahexylammonium and magnesium iodide for photoelectrochemical applications. Rheol Acta 52: 881–889. https://doi.org/10.1007/s00397-013-0727-1 doi: 10.1007/s00397-013-0727-1 |
[63] | Bandara TMWJ, DeSilva LA, Ratnasekera JL, et al. (2019) High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles. Renewable Sustainable Energy Rev 103: 282–290. https://doi.org/10.1016/j.rser.2018.12.052 doi: 10.1016/j.rser.2018.12.052 |
[64] | Tiautit N, Puratane C, Panpinit S, et al. (2014) Effect of SiO2 and TiO2 nanoparticles on the performance of dye- sensitized solar cells using pvdf-hfp/pva gel electrolytes. Energy Procedia 56: 378–385. https://doi.org/10.1016/j.egypro.2014.07.170 doi: 10.1016/j.egypro.2014.07.170 |
[65] | Zebardastan N, Khanmirzaei MH, Ramesh S, et al. (2017) Performance enhancement of poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based nanocomposite polymer electrolyte with ZnO nanofiller for dye-sensitized solar cell. Org Electron 49: 292–299. https://doi.org/10.1016/j.orgel.2017.06.062 doi: 10.1016/j.orgel.2017.06.062 |
[66] | Zebardastan N, Khanmirzaei MH, Ramesh S, et al. (2016) Novel poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based gel polymer electrolyte containing fumed silica (SiO2) nanofiller for high performance dye-sensitized solar cell. Electrochim Acta 220: 573–580. https://doi.org/10.1016/j.electacta.2016.10.135 doi: 10.1016/j.electacta.2016.10.135 |
[67] | Chen HW, Chiang YD, Kung CW, et al. (2014) Highly efficient plastic-based quasi-solid-state dye-sensitized solar cells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. J Power Sources 245: 411–417. https://doi.org/10.1016/j.jpowsour.2013.06.142 doi: 10.1016/j.jpowsour.2013.06.142 |
[68] | Zhao XG, Jin EM, Park JY, et al. (2014) Hybrid polymer electrolyte composite with SiO2 nanofiber filler for solid-state dye-sensitized solar cells. Compos Sci Technol 103: 100–105. https://doi.org/10.1016/j.compscitech.2014.08.020 doi: 10.1016/j.compscitech.2014.08.020 |
[69] | Jeon N, Kim DW (2013) Dye-sensitized solar cells assembled with composite gel polymer electrolytes containing nanosized Al2O3 particles. J Nanosci Nanotechnol 13: 7955–7958. https://doi.org/10.1166/jnn.2013.8123 doi: 10.1166/jnn.2013.8123 |
[70] | Lim SJ, Kang YS, Kim DW (2011) Dye-sensitized solar cells with quasi-solid-state cross-linked polymer electrolytes containing aluminum oxide. Electrochim Acta 56: 2031–2035. https://doi.org/10.1016/j.electacta.2010.12.027 doi: 10.1016/j.electacta.2010.12.027 |
[71] | Lai YH, Lin CY, Chen JG, et al. (2010) Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes. Sol Energy Mater Sol Cells 94: 668–674. https://doi.org/10.1016/j.solmat.2009.11.027 doi: 10.1016/j.solmat.2009.11.027 |
[72] | Wang X, Zhang Y, Xu Q, et al. (2015) A low-cost quasi-solid DSSC assembled with PVDF-based gel electrolyte plasticized by PC-EC & electrodeposited Pt counter electrode. J Photochem Photobiol 311: 112–117. https://doi.org/10.1016/j.jphotochem.2015.06.023 doi: 10.1016/j.jphotochem.2015.06.023 |
[73] | Aziz MF, Azam MA, Noor IM, et al. (2021) Impact of diethyl carbonate in PVA based gel polymer electrolytes on dye-sensitized solar cells performance. Opt Quantum Electron 53: 40. https://doi.org/10.1007/s11082-020-02724-8 doi: 10.1007/s11082-020-02724-8 |
[74] | Noor MM, Buraidah MH, Careem MA, et al. (2014) An optimized poly (vinylidene fluoride-hexafluoropropylene)‑NaI gel polymer electrolyte and its application in natural dye sensitized solar cells. Electrochim Acta 121: 159–167. https://doi.org/10.1016/j.electacta.2013.12.136 doi: 10.1016/j.electacta.2013.12.136 |
[75] | Sundararajan V, Selvaraj G, Ng HM, et al. (2017) Exploring the effect of novel N-butyl-6-methylquinolinium bis (trifluoromethylsulfonyl) imide ionic liquid addition to poly (methyl methacrylate-co-methacrylic) acid electrolyte system as employed in gel-state dye sensitized solar cells. Electrochim Acta 240: 361–370. https://doi.org/10.1016/j.electacta.2017.04.097 doi: 10.1016/j.electacta.2017.04.097 |
[76] | Syairah A, Khanmirzaei MH, Saidi NM, et al. (2019) Effect of different imidazolium-based ionic liquids on gel polymer electrolytes for dye-sensitized solar cells. Ionics 25: 2427–2435. https://doi.org/10.1007/s11581-018-2603-6 doi: 10.1007/s11581-018-2603-6 |
[77] | Sundararajan V, Farhana NK, Ng HM, et al. (2019) Efficiency enhancement study on addition of 1-hexyl-3-methylimidazolium iodide ionic liquid to the poly (methyl methacrylate-co-methacrylic acid) electrolyte system as applied in dye-sensitized solar cells. J Phys Chem Solids 129: 252–260. https://doi.org/10.1016/j.jpcs.2019.01.016 doi: 10.1016/j.jpcs.2019.01.016 |
[78] | Latip NAA, Ng HM, Farah N, et al. (2017) Novel development towards preparation of highly efficient ionic liquid based co-polymer electrolytes and its application in dye-sensitized solar cells. Org Electron 41: 33–41. https://doi.org/10.1016/j.orgel.2016.11.040 doi: 10.1016/j.orgel.2016.11.040 |
[79] | Ng HM, Ramesh S, Ramesh K (2015) Efficiency improvement by incorporating 1-methyl-3-propylimidazolium iodide ionic liquid in gel polymer electrolytes for dye-sensitized solar cells. Electrochim Acta 175: 169–175. https://doi.org/10.1016/j.electacta.2015.01.076 doi: 10.1016/j.electacta.2015.01.076 |
[80] | Su'ait MS, Jumaah FN, Faizzi HM, et al. (2018) Palm-based polyurethane-ionic liquid gel polymer electrolyte for quasi-solid state dye sensitized solar cell. Ind Crops Prod 113: 406–413. https://doi.org/10.1016/j.indcrop.2018.01.008 doi: 10.1016/j.indcrop.2018.01.008 |
[81] | Tan CY, Saidi NM, Farhana NK, et al. (2020) Improved ionic conductivity and efficiency of dye-sensitized solar cells with the incorporation of 1-methyl-3-propylimidazolium iodide. Ionics 26: 3173–3183. https://doi.org/10.1007/s11581-020-03447-2 doi: 10.1007/s11581-020-03447-2 |
[82] | Shi LY, Chen TL, Chen CH, et al. (2013) Synthesis and characterization of a gel-type electrolyte with ionic liquid added for dye-sensitized solar cells. Int J Photoenergy 2013: 834184. https://doi.org/10.1155/2013/834184 doi: 10.1155/2013/834184 |
[83] | Lobregas M, Camacho D (2018) Gel polymer electrolyte system based on starch grafted with ionic liquid: Synthesis, characterization and its application in dye-sensitized solar cell. Electrochim Acta 298: 219–228 https://doi.org/10.1016/j.electacta.2018.12.090 doi: 10.1016/j.electacta.2018.12.090 |