Review Special Issues

Recent advances in polymer structures for organic solar cells: A review

  • Received: 25 January 2022 Revised: 16 March 2022 Accepted: 23 March 2022 Published: 28 March 2022
  • High energy dependence on fossil fuels and an increase in greenhouse gas emissions are factors that highlight the need for alternative energy sources. Photovoltaic technology is a strong candidate that uses the most abundant resource, solar energy, but what makes its wide use difficult is the high cost of the commercially available devices. Thus, research has been devoted to developing new low-cost photovoltaic systems that are easier to manufacture with high efficiency and durability, such as the third-generation solar cells. According to this study, organic solar cells (OPV) with polymers in the active layers are more prominent concerning power conversion efficiency associated with durability, resulting in great research interest. Furthermore, polymer solar cells are easier to process and can be manufactured on a large scale achieving high efficiencies and stability. This review aims to raise the state of the art about these solar cells, discourse their architectures, current developments on polymer structures, and most relevant challenges for OPV devices, as a search for increased efficiency and stability.

    Citation: Taihana Paula, Maria de Fatima Marques. Recent advances in polymer structures for organic solar cells: A review[J]. AIMS Energy, 2022, 10(1): 149-176. doi: 10.3934/energy.2022009

    Related Papers:

  • High energy dependence on fossil fuels and an increase in greenhouse gas emissions are factors that highlight the need for alternative energy sources. Photovoltaic technology is a strong candidate that uses the most abundant resource, solar energy, but what makes its wide use difficult is the high cost of the commercially available devices. Thus, research has been devoted to developing new low-cost photovoltaic systems that are easier to manufacture with high efficiency and durability, such as the third-generation solar cells. According to this study, organic solar cells (OPV) with polymers in the active layers are more prominent concerning power conversion efficiency associated with durability, resulting in great research interest. Furthermore, polymer solar cells are easier to process and can be manufactured on a large scale achieving high efficiencies and stability. This review aims to raise the state of the art about these solar cells, discourse their architectures, current developments on polymer structures, and most relevant challenges for OPV devices, as a search for increased efficiency and stability.



    加载中


    [1] Ahmad KS, Naqvi SN, Jaffri SB (2021) Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration. Rev Inorg Chem 41: 21-39. https://doi.org/10.1515/revic-2020-0009 doi: 10.1515/revic-2020-0009
    [2] Sathiyan G, Siva G, Sivakumar EKT, et al. (2018) Synthesis and studies of carbazole-based donor polymer for organic solar cell applications. Colloid Polym Sci 296: 1193-1203. https://doi.org/10.1007/s00396-018-4337-4 doi: 10.1007/s00396-018-4337-4
    [3] Cui Y, Yao H, Gao B, et al. (2017) Fine-Tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J Am Chem Soc 139: 7302-7309. https://doi.org/10.1021/jacs.7b01493 doi: 10.1021/jacs.7b01493
    [4] Mutlu A, Can M, Tozlu C (2019) Performance improvement of organic solar cell via incorporation of donor type self-assembled interfacial monolayer. Thin Solid Films 685: 88-96. https://doi.org/10.1016/j.tsf.2019.05.064 doi: 10.1016/j.tsf.2019.05.064
    [5] Freudenberg J, Jänsch D, Hinkel F, et al. (2018) Immobilization strategies for organic semiconducting conjugated polymers. Chem Rev 118: 5598-5689. https://doi.org/10.1021/acs.chemrev.8b00063 doi: 10.1021/acs.chemrev.8b00063
    [6] Ragoussia M-E, Torres T (2015) New generation solar cells: Concepts, trends and perspectives. Chem Commun 51: 3957-3972. https://doi.org/10.1039/C4CC09888A doi: 10.1039/C4CC09888A
    [7] Majumder C, Rai A, Bose C (2018) Performance optimization of bulk heterojunction organic solar cell. Optik 157: 924-929. https://doi.org/10.1016/j.ijleo.2017.11.114 doi: 10.1016/j.ijleo.2017.11.114
    [8] Chen S, Yang S, Sun H, et al. (2017) Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer. J Power Sources 353: 123-130. https://doi.org/10.1016/j.jpowsour.2017.03.144 doi: 10.1016/j.jpowsour.2017.03.144
    [9] Mabindisa R, Tambwe K, Mciteka L, et al. (2021) Organic nanostructured materials for sustainable application in next generation solar cells. Appl Sci 11: 11324. https://doi.org/10.3390/app112311324 doi: 10.3390/app112311324
    [10] Oh Kwon K, Uddin MA, Park J-H, et al. (2016) A high efficiency nonfullerene organic solar cell with optimized crystalline organizations. Adv Mater 28: 910-916. https://doi.org/10.1002/adma.201504091 doi: 10.1002/adma.201504091
    [11] Li Z, Zhu C, Yuan J, et al. (2022) Optimizing side chains on different nitrogen aromatic rings achieving 17% efficiency for organic photovoltaics. J Energy Chem 65: 173-178. https://doi.org/10.1016/j.jechem.2021.05.041 doi: 10.1016/j.jechem.2021.05.041
    [12] Wibowo FTA, Krishna NV, Sinaga S, et al. (2021) High-efficiency organic solar cells prepared using a halogen-free solution process. Cell Rep Phys Sci 2: 100517. https://doi.org/10.1016/j.xcrp.2021.100517 doi: 10.1016/j.xcrp.2021.100517
    [13] Bi P, Zhang S, Chen Z, et al. (2021) Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5: 2408-2419. https://doi.org/10.1016/j.joule.2021.06.020 doi: 10.1016/j.joule.2021.06.020
    [14] Distler A, Brabec CJ, Egelhaaf H-J (2021) Organic photovoltaic modules with new world record efficiencies. Prog Photovoltaics: Res Appl 29: 24-31. https://doi.org/10.1002/pip.3336 doi: 10.1002/pip.3336
    [15] Ma L, Zhang S, Wang J, et al. (2020) Recent advances in non-fullerene organic solar cells: from lab to fab. Chem Commun 56: 14337. https://doi.org/10.1039/D0CC05528J doi: 10.1039/D0CC05528J
    [16] Yao C, Zhao J, Zhu Y, et al. (2020) Trifluoromethyl Group-Modified Non-Fullerene acceptor toward improved power conversion efficiency over 13% in polymer solar cells. ACS Appl Mater Interfaces 12: 11543-11550. https://doi.org/10.1021/acsami.9b20544 doi: 10.1021/acsami.9b20544
    [17] Yang Y (2021) The original design principles of the Y-Series nonfullerene acceptors, from Y1 to Y6. ACS Nano 15: 18679-18682. https://doi.org/10.1021/acsnano.1c10365 doi: 10.1021/acsnano.1c10365
    [18] Wagenpfahl A (2017) Mobility dependent recombination models for organic solar cells. J Phys: Condens Matter 29: 373001. https://doi.org/10.1088/1361-648X/aa7952 doi: 10.1088/1361-648X/aa7952
    [19] Xu B, Zheng Z, Zhao K, et al. (2016) A bifunctional interlayer material for modifying both the anode and cathode in highly efficient polymer solar cells. Adv Mater 28: 434-439. https://doi.org/10.1002/adma.201502989 doi: 10.1002/adma.201502989
    [20] Zheng Z, Hu Q, Zhang S, et al. (2018) A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv Mater 30: 1-9. https://doi.org/10.1002/adma.201801801 doi: 10.1002/adma.201801801
    [21] Doat O, Barboza BH, Batagin-Neto A, et al. (2021) Review: materials and modeling for organic photovoltaic devices. Polym Int 71: 6-25. https://doi.org/10.1002/pi.6280 doi: 10.1002/pi.6280
    [22] Zhao Y, Zhu Y, Cheng H-W, et al. (2021) A review on semitransparent solar cells for agricultural application. Mater Today Energy 22: 100852. https://doi.org/10.1016/j.mtener.2021.100852 doi: 10.1016/j.mtener.2021.100852
    [23] Bi P, Zhang S, Chen Z, et al. (2021) Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5: 2408-2419. https://doi.org/10.1016/j.joule.2021.06.020 doi: 10.1016/j.joule.2021.06.020
    [24] Zuo L, Shi X, Jo SB, et al. (2018) Tackling energy loss for high‐efficiency organic solar cells with integrated multiple strategies. Adv Mater 30: 1706816. https://doi.org/10.1002/adma.201706816 doi: 10.1002/adma.201706816
    [25] Wilken S, Scheunemann D, Dahlström S, et al. (2021) How to reduce charge recombination in organic solar cells: There are still lessons to learn from P3HT:PCBM. Adv Electron Mater 7: 2001056. https://doi.org/10.1002/aelm.202001056 doi: 10.1002/aelm.202001056
    [26] Nakano K, Terado K, Kaji Y, et al. (2021) Reduction of electric current loss by Aggregation-Induced molecular alignment of a Non-Fullerene acceptor in organic photovoltaics. ACS Appl Mater Interfaces 13: 60299-60305. https://doi.org/10.1021/acsami.1c19275 doi: 10.1021/acsami.1c19275
    [27] Pugliese SN, Gallaher JK, Uddin MA, et al. (2022) Spectroscopic comparison of charge dynamics in fullerene and non-fullerene acceptor-based organic photovoltaic cells. J Mater Chem C. https://doi.org/10.1039/D1TC04800G doi: 10.1039/D1TC04800G
    [28] Zhao F, Zhang H, Zhang R, et al. (2020) Emerging approaches in enhancing the efficiency and stability in Non‐Fullerene organic solar cells. Adv Energy Mater 10: 2002746. https://doi.org/10.1002/aenm.202002746 doi: 10.1002/aenm.202002746
    [29] Zhu L, Zhang M, Zhong W, et al. (2021) Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy Environ Sci 1: 4341-4357. https://doi.org/10.1039/D1EE01220G doi: 10.1039/D1EE01220G
    [30] Lin Y, Zhao F, Wu Y, et al. (2016) Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv Mater 29: 1604155. https://doi.org/10.1002/adma.201604155 doi: 10.1002/adma.201604155
    [31] Chung HY, Park J-H, Cui J, et al. (2021) Influence of intramolecular charge-transfer characteristics of excitons on polaron generation at the Donor/Acceptor interface in polymer solar cells. J Phys Chem C 125: 18352-18361. https://doi.org/10.1021/acs.jpcc.1c05524 doi: 10.1021/acs.jpcc.1c05524
    [32] Etxebarria I, Ajuria J, Pacios R (2015) Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Org Electron: Phys, Mater, Appl 19: 34-60. https://doi.org/10.1016/j.orgel.2015.01.014 doi: 10.1016/j.orgel.2015.01.014
    [33] Zuo L, Yu J, Shi X, et al. (2017) High-Efficiency nonfullerene organic solar cells with a parallel tandem configuration. Adv Mater 29: 1702547. https://doi.org/10.1002/adma.201702547 doi: 10.1002/adma.201702547
    [34] Zheng NN, Wang ZF, Zhang K, et al. (2019) High-performance inverted polymer solar cells without an electron extraction layer via a one-step coating of cathode buffer and active layer. J Mater Chem A 7: 1429-1434. https://doi.org/10.1039/c8ta09763a doi: 10.1039/c8ta09763a
    [35] Pandey R, Lim JW, Kim JH, et al. (2018) Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM). Appl Surf Sci 444: 97-104. https://doi.org/10.1016/j.apsusc.2018.03.012 doi: 10.1016/j.apsusc.2018.03.012
    [36] Sun C, Pan F, Bin H, et al. (2018) A low cost and high performance polymer donor material for polymer solar cells. Nature Commun 9: 1-10. https://doi.org/10.1038/s41467-018-03207-x doi: 10.1038/s41467-018-03207-x
    [37] Shen W, Xiao M, Tang J, et al. (2015) Effective regulation of the micro-structure of thick P3HT: PC 71 BM film by the incorporation of ethyl benzenecarboxylate in toluene solution. RSC Adv 5: 47451-47457. https://doi.org/10.1039/C5RA06957B doi: 10.1039/C5RA06957B
    [38] Wang D, Wright M, Elumalai NK, et al. (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147: 255-275. https://doi.org/10.1016/j.solmat.2015.12.025 doi: 10.1016/j.solmat.2015.12.025
    [39] Salem AMS, El-Sheikh SM, Harraz FA, et al. (2017) Inverted polymer solar cell based on MEH-PPV/PC 61 BM coupled with ZnO nanoparticles as electron transport layer. Appl Surf Sci 425: 156-163. https://doi.org/10.1016/j.apsusc.2017.06.322 doi: 10.1016/j.apsusc.2017.06.322
    [40] Ranganathan K, Wamwangi D, Coville NJ (2015) Plasmonic Ag nanoparticle interlayers for organic photovoltaic cells: An investigation of dielectric properties and light trapping. Sol Energy 118: 256-266. https://doi.org/10.1016/j.solener.2015.05.022 doi: 10.1016/j.solener.2015.05.022
    [41] Meyer J, Hamwi S, Kröger M, et al. (2012) Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv Mater 24: 5408-5427. https://doi.org/10.1002/adma.201201630 doi: 10.1002/adma.201201630
    [42] Nuramdhani I, Jose M, Samyn P, et al. (2019). Charge-Discharge characteristics of textile energy storage devices having different PEDOT: PSS ratios and conductive yarns configuration. Polymers 11: 345. https://doi.org/10.3390/polym11020345
    [43] Mota IC, Santos BPS, Santos REPD, et al. (2021) Influence of reaction time on properties of regioregular poly(3-hexylthiophene) by the Grignard metathesis polymerization. J Therm Anal Calorim 2021: 1-26. https://doi.org/10.1007/s10973-021-10890-4 doi: 10.1007/s10973-021-10890-4
    [44] Ghosekar IC, Patil GC (2021) Review on performance analysis of P3HT:PCBM based bulk heterojunction organic solar cells. Semicond Sci Technol 36: 045005. https://doi.org/10.1088/1361-6641/abe21b doi: 10.1088/1361-6641/abe21b
    [45] Chen K-W, Lin L-Y, Li Y-H, et al. (2018) Fluorination effects of A-D-A-type small molecules on physical property and the performance of organic solar cell. Org Electron: Phy, Mater, Appl 52: 342-349. https://doi.org/10.1016/j.orgel.2017.11.021 doi: 10.1016/j.orgel.2017.11.021
    [46] Sathiyan G, Thangamuthu R, Sakthivel P (2016) Synthesis of carbazole-based copolymers containing carbazole-thiazolo[5, 4-:D] thiazole groups with different dopants and their fluorescence and electrical conductivity applications. RSC Adv 6: 69196-69205. https://doi.org/10.1039/C6RA08888K doi: 10.1039/C6RA08888K
    [47] Wang C, Liu F, Chen QM, et al. (2021) Benzothiadiazole-based conjugated polymers for organic solar cells. Chin J Polym Sci 39: 525-536. https://doi.org/10.1007/s10118-021-2537-8 doi: 10.1007/s10118-021-2537-8
    [48] Zhong W, Xiao J, Sun S, et al. (2016) Wide bandgap dithienobenzodithiophene-based π-conjugated polymers consisting of fluorinated benzotriazole and benzothiadiazole for polymer solar cells. J Mater Chem C 4: 4719-4727. https://doi.org/10.1039/C6TC00271D doi: 10.1039/C6TC00271D
    [49] Zhao Q, Qu J, He F (2020) Chlorination: An effective strategy for high-performance organic solar cells. Adv Sci 7: 2000509. https://doi.org/10.1002/advs.202000509 doi: 10.1002/advs.202000509
    [50] Chen W, Wu Y, Yue Y, et al. (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350: 944-948. https://doi.org/10.1126/science.aad1015 doi: 10.1126/science.aad1015
    [51] Li M, Gao K, Wan X, et al. (2017) Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nature Photonics 11: 85-90. https://doi.org/10.1038/nphoton.2016.240 doi: 10.1038/nphoton.2016.240
    [52] Jo JW, Jung JW, Jung EH, et al. (2015) Fluorination on both D and A units in D-A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells. Energy Environ Sci 8: 2427-2434. https://doi.org/10.1039/C5EE00855G doi: 10.1039/C5EE00855G
    [53] Chao P, Johner N, Zhong Xi, et al. (2019) Chlorination strategy on polymer donors toward efficient solar conversions. J Energy Chem 39: 208-216. https://doi.org/10.1016/j.jechem.2019.04.002 doi: 10.1016/j.jechem.2019.04.002
    [54] Zhou J, Zhang B, Geng Y, et al. (2021) Gradual chlorination at different positions of D-π-A copolymers based on benzodithiophene and isoindigo for organic solar cells. Mater Rep: Energy 1: 100065. https://doi.org/10.1016/j.matre.2021.100065. doi: 10.1016/j.matre.2021.100065
    [55] Dai T, Lei P, Zhang B, et al. (2021) Tricyclic or pentacyclic D units: Design of D−π-A-Type copolymers for high VOC organic photovoltaic cells. ACS Appl Mater Interfaces 13: 30756-30765. https://doi.org/10.1021/acsami.1c08487 doi: 10.1021/acsami.1c08487
    [56] Yan T, Bin H, Sun C, et al. (2018) Effect of Thieno[3, 2-b]thiophene π-bridge on photovoltaic performance of a D-A copolymer of alkoxy-benzodithiophene-alt-fluoro-benzotriazole. Org Electron 55: 106-111. https://doi.org/10.1016/j.orgel.2018.01.018 doi: 10.1016/j.orgel.2018.01.018
    [57] Bin H, Xiao L, Liu Y, et al. (2014) Effects of donor unit and p-Bridge on photovoltaic properties of D-A copolymers based on Benzo[1, 2-b:4, 5-c']-dithiophene-4, 8-dione acceptor unit. J Polym Sci Part A: Polym Chem 52: 1929-1940. https://doi.org/10.1002/pola.27209 doi: 10.1002/pola.27209
    [58] Akkuratov AV, Mühlbach S, Susarova DK, et al. (2017) Positive side of disorder: Statistical fluorene-carbazole-TTBTBTT terpolymers show improved optoelectronic and photovoltaic properties compared to the regioregular structures. Sol Energy Mater Sol Cells 160: 346-354. https://doi.org/10.1016/j.solmat.2016.10.039 doi: 10.1016/j.solmat.2016.10.039
    [59] Jiang X, Yang Y, Zhu J, et al. (2017) Constructing D-A copolymers based on thiophene-fused benzotriazole units containing different alkyl side-chains for non-fullerene polymer solar cells. J Mater Chem C 5: 8179-8186. https://doi.org/10.1039/C7TC02098H doi: 10.1039/C7TC02098H
    [60] Zhou P, Yang Y, Chen X, et al. (2017) Design of a thiophene-fused benzotriazole unit as an electron acceptor to build D-A copolymers for polymer solar cells. J Mater Chem C 5: 2951-2957. https://doi.org/10.1039/C7TC00083A doi: 10.1039/C7TC00083A
    [61] Jiang X, Wang J, Yang Y, et al. (2018) Fluorinated Thieno[2', 3':4, 5]benzo[1, 2‑d][1, 2, 3]triazole: New acceptor unit to construct polymer donors. ACS Omega 3: 13894-13901. https://doi.org/10.1021/acsomega.8b02053 doi: 10.1021/acsomega.8b02053
    [62] Chang C, Li W, Guo X, et al. (2018) A narrow-bandgap donor polymer for highly efficient as-cast non-fullerene polymer solar cells with a high open circuit voltage. Org Electron 58: 82-87. https://doi.org/10.1016/j.orgel.2018.04.001 doi: 10.1016/j.orgel.2018.04.001
    [63] Sun C, Pan F, Bin H, et al. (2018) A low cost and high performance polymer donor material for polymer solar cells. Nature Commun 9: 1-10. https://doi.org/10.1038/s41467-018-03207-x doi: 10.1038/s41467-018-03207-x
    [64] Fan B, Zhang D, Li M, et al. (2019) Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem 62: 746-752. https://doi.org/10.1007/s11426-019-9457-5 doi: 10.1007/s11426-019-9457-5
    [65] Xiong J, Jin K, Jiang Y, et al. (2019) Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull 64: 1573-1576. https://doi.org/10.1016/j.scib.2019.10.002 doi: 10.1016/j.scib.2019.10.002
    [66] Liu Q, Jiang Y, Jin K, et al. (2020) 18% Efficiency organic solar cells. Sci Bull 65: 272-275. https://doi.org/10.1016/j.scib.2020.01.001 doi: 10.1016/j.scib.2020.01.001
    [67] Matsuo Y, Hatano J, Kuwabara T, et al. (2012) Fullerene acceptor for improving open-circuit voltage in inverted organic photovoltaic devices without accompanying decrease in short-circuit current density. Appl Phys Lett, 100. https://doi.org/10.1063/1.3683469
    [68] Zhao G, He Y, Li Y (2010) 6.5% Efficiency of polymer solar cells based on poly(3‐hexylthiophene) and Indene‐C60 bisadduct by device optimization. Adv Mater 22: 4355-4358. https://doi.org/10.1002/adma.201001339 doi: 10.1002/adma.201001339
    [69] Cai Y, Li Y, Wang R, et al. (2021) A Well-Mixed phase formed by two compatible Non-Fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv Mater 33: 2101733. https://doi.org/10.1002/adma.202101733 doi: 10.1002/adma.202101733
    [70] Li M, Gao K, Wan X, et al. (2017) Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nature Photonics 11: 85-90. https://doi.org/10.1038/nphoton.2016.240 doi: 10.1038/nphoton.2016.240
    [71] Chen X, Kan B, Kan Y, et al. (2020) As-Cast ternary organic solar cells based on an asymmetric Side-Chains featured acceptor with reduced voltage loss and 14.0% efficiency. Adv Funct Mater 30: 1909535. https://doi.org/10.1002/adfm.201909535 doi: 10.1002/adfm.201909535
    [72] Xiao L, Wu X, Ren G, et al. (2021) Highly efficient ternary solar cells with efficient förster resonance energy transfer for simultaneously enhanced photovoltaic parameters. Adv Funct Mater 31: 2105304. https://doi.org/10.1002/adfm.202105304 doi: 10.1002/adfm.202105304
    [73] Sharma R, Lee H, Seifrid M, et al. (2020) Performance enhancement of conjugated polymer-small molecule-non fullerene ternary organic solar cells by tuning recombination kinetics and molecular ordering. Sol Energy 201: 499-507. https://doi.org/10.1016/j.solener.2020.03.008 doi: 10.1016/j.solener.2020.03.008
    [74] Wan J, Zhang L, He Q, et al. (2020) High-Performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor. Adv Funct Mater 30: 1909760. https://doi.org/10.1002/adfm.201909760 doi: 10.1002/adfm.201909760
    [75] Liu T, Guo Y, Yi Y, et al. (2016) Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency > 10%. Adv Mater 28: 10008-10015. https://doi.org/10.1002/adma.201602570 doi: 10.1002/adma.201602570
    [76] Kumari T, Lee SM, Yang C (2018) Cubic-Like bimolecular crystal evolution and over 12% efficiency in halogen-free ternary solar cells. Adv Funct Mater 28: 1707278. https://doi.org/10.1002/adfm.201707278 doi: 10.1002/adfm.201707278
    [77] Xie L, Yang C, Zhou R, et al. (2020) Ternary organic solar cells BasedonTwoNon-fullerene acceptors with complimentary absorption and balanced crystallinity. Chin J Chem 38: 935-940. https://doi.org/10.1002/cjoc.201900554 (2020) doi: 10.1002/cjoc.201900554(2020)
    [78] Xu R, Zhang K, Liu X, et al. (2018) Alkali Salt-Doped highly transparent and Thickness-Insensitive Electron-Transport layer for High-Performance polymer solar cell. ACS Appl Mater Interfaces 10: 1939-1947. https://doi.org/10.1021/acsami.7b17076 doi: 10.1021/acsami.7b17076
    [79] Singh A, Dey A, Das D, et al. (2016) Effect of dual cathode buffer layer on the charge carrier dynamics of rrP3HT: PCBM based bulk heterojunction solar cell. ACS Appl Mater Interfaces 8: 10904-10910. https://doi.org/10.1021/acsami.6b03102 doi: 10.1021/acsami.6b03102
    [80] Kageyama H, Kajii H, Ohmori Y, et al. (2011) MoO3 as a cathode buffer layer material for the improvement of planar pn-heterojunction organic solar cell performance. Appl Phys Express 4: 032301. https://doi.org/10.1143/APEX.4.032301 doi: 10.1143/APEX.4.032301
    [81] Sachdeva S, Kaur J, Sharma K, et al. (2018) Performance improvements of organic solar cell using dual cathode buffer layers. Curr Appl Phys 18: 1592-1599. https://doi.org/10.1016/j.cap.2018.10.009 doi: 10.1016/j.cap.2018.10.009
    [82] Yu X, Yu X, Zhang J, et al. (2015) Gradient Al-doped ZnO multi-buffer layers: Effect on the photovoltaic properties of organic solar cells. Mater Lett 161: 624-627. https://doi.org/10.1016/j.matlet.2015.09.017 doi: 10.1016/j.matlet.2015.09.017
    [83] Pandey R, Lim JW, Kim JH, et al. (2018) Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM). Appl Surf Sci 444: 97-104. https://doi.org/10.1016/j.apsusc.2018.03.012 doi: 10.1016/j.apsusc.2018.03.012
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4492) PDF downloads(613) Cited by(13)

Article outline

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog