Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Topical Sections

Software defined network implementation of multi-node adaptive novel quantum key distribution protocol


  • Received: 18 May 2024 Revised: 26 August 2024 Accepted: 10 September 2024 Published: 14 September 2024
  • Access to information can destroy nations and change the course of history altogether. Communication is very important, and in today's internet age, nothing moves without real-time information support. For securing communication, a commonly know technique is to use cryptography and public channels. Engineers have been working to create a better and more secure cryptographic system. Quantum key distribution stands at the top of this security system. Although QKD, based on principles of physics, provides a near-perfect security solution. It has a few drawbacks of its own, like low key generation rates and vulnerability to cyberattacks. Owning to these limitations, authors propose an adaptive quantum key distribution system based on software-defined networks. The authors propose to introduce redundancy in the key generation, thereby increasing the key generation rate and improving the resilience to cyberattacks. A performance comparison of novel quantum key distribution was done with BB84 and B92 quantum key distribution protocols.

    Citation: Hardeer Kaur, Jai Sukh Paul Singh. Software defined network implementation of multi-node adaptive novel quantum key distribution protocol[J]. AIMS Electronics and Electrical Engineering, 2024, 8(4): 420-440. doi: 10.3934/electreng.2024020

    Related Papers:

    [1] Zihan Zheng, Juan Wang, Liming Cai . Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219
    [2] Chang-Jian Wang, Yu-Tao Yang . Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015
    [3] Chun Huang . Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29(5): 3261-3279. doi: 10.3934/era.2021037
    [4] Kai Gao . Global boundedness of classical solutions to a Keller-Segel-Navier-Stokes system involving saturated sensitivity and indirect signal production in two dimensions. Electronic Research Archive, 2023, 31(3): 1710-1736. doi: 10.3934/era.2023089
    [5] Jikun Guo, Qing Zhao, Lixuan Guo, Shize Guo, Gen Liang . An improved signal detection algorithm for a mining-purposed MIMO-OFDM IoT-based system. Electronic Research Archive, 2023, 31(7): 3943-3962. doi: 10.3934/era.2023200
    [6] Yan Xia, Songhua Wang . Global convergence in a modified RMIL-type conjugate gradient algorithm for nonlinear systems of equations and signal recovery. Electronic Research Archive, 2024, 32(11): 6153-6174. doi: 10.3934/era.2024286
    [7] Rong Zhang, Liangchen Wang . Global dynamics in a competitive two-species and two-stimuli chemotaxis system with chemical signalling loop. Electronic Research Archive, 2021, 29(6): 4297-4314. doi: 10.3934/era.2021086
    [8] Ailing Xiang, Liangchen Wang . Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator. Electronic Research Archive, 2022, 30(5): 1954-1972. doi: 10.3934/era.2022099
    [9] Hankang Ji, Yuanyuan Li, Xueying Ding, Jianquan Lu . Stability analysis of Boolean networks with Markov jump disturbances and their application in apoptosis networks. Electronic Research Archive, 2022, 30(9): 3422-3434. doi: 10.3934/era.2022174
    [10] Lingling Zhang . Vibration analysis and multi-state feedback control of maglev vehicle-guideway coupling system. Electronic Research Archive, 2022, 30(10): 3887-3901. doi: 10.3934/era.2022198
  • Access to information can destroy nations and change the course of history altogether. Communication is very important, and in today's internet age, nothing moves without real-time information support. For securing communication, a commonly know technique is to use cryptography and public channels. Engineers have been working to create a better and more secure cryptographic system. Quantum key distribution stands at the top of this security system. Although QKD, based on principles of physics, provides a near-perfect security solution. It has a few drawbacks of its own, like low key generation rates and vulnerability to cyberattacks. Owning to these limitations, authors propose an adaptive quantum key distribution system based on software-defined networks. The authors propose to introduce redundancy in the key generation, thereby increasing the key generation rate and improving the resilience to cyberattacks. A performance comparison of novel quantum key distribution was done with BB84 and B92 quantum key distribution protocols.



    The chemotaxis models, introduced by Keller and Segel in 1970 [1], have cast a long and profound shadow across the disciplines of mathematics and biology alike. Based on the biological background, the cells move toward the chemical signal, which is secreted by the cells themselves, and many researchers have studied the chemotaxis-production system

    {ut=Δuχ(uv)+f(u)xΩ,t>0,vt=Δuv+u,xΩ,t>0, (1.1)

    where u(x,t) denotes the density of cells and v(x,t) signifies the concentration of the chemical signal. The cross-diffusion term χ(uv) means the cells are moving toward the high concentration of chemical signal. Moreover, f(u) is the logistic source; it represents the rate of the cells reproduction and death. Many particular cases and derivatives of this system have been successfully investigated up to now (see the surveys [2,3,4,5,6] and references therein for details).

    Furthermore, in order to explain more complex biological phenomena, some researchers have proposed the following models with signal-dependent motility [7,8,9]:

    {ut=Δ(γ(v)u)+f(u)xΩ,t>0,vt=Δuv+u,xΩ,t>0. (1.2)

    The model was developed based on an experimental study of Escherichia coli (E. coli), which revealed the formation of a stripe pattern through a mechanism known as "self-trapping". Here, u(x,t) signifies the density of E. coli, while v(x,t) denotes the concentration of acyl-homoserine lactone(AHL), which secreted by E. coli. The motility function γ(v) is a sufficiently smooth and positive function with the property γ(v)0. Since the first equation of (1.2) can be rewritten as ut=(γ(v)u)+(γ(v)uv)+f(u), it can be regarded as a chemotaxis model of Keller-Segel type, where both the diffusion rate of the cells and the chemotactic sensitivity depend nonlinearly on the concentration of the chemical signal. When f(u)0, if the positive function γ(v) is bounded, Tao and Winkler [10] demonstrated that (1.2) admits a global classical solution in two dimensions and global weak solutions in higher dimensional settings. For the particular cases γ(v)=c0vk, γ(v)=ev, or γ(v)=1c0+vk, the existence of global solutions to (1.2) has been detected in [11,12,13,14,15,16], respectively.

    In the presence of the logistic source (i.e. f(u)=λuμul), Jin et al. [17] established the existence of a global classical solution to (1.2) in two-dimensional settings in the case l=2; when l>2, many interesting results on the existence of global classical solutions to (1.2) have been demonstrated by Lv and Wang in [18,19,20]. Furthermore, when the second equation in (1.2) is replaced by vt=Δuv+uβ, Tao and Fang [21] showed that the system (1.2) has a global classical solution for n2 and lβ>n+22. Similarly, under the same conditions, the system with nonlinear signal consumption has also been studied by Tian and Xie in [22].

    In the classical Keller-Segel model, the chemical signal is directly produced by the cells themselves. However, signal generation is often a complex process, which may involve external factors or the interplay of multiple signals generated through diverse mechanisms. Inspired by the spread and aggregative behaviors of the mountain pine beetle (MPB) in forest habitats, Strohm et al. [23] proposed a chemotaxis-growth system with indirect signal generation

    {ut=Δ(u)χ(uv)+μ(uul),xΩ,t>0,vt=Δvv+w,xΩ,t>0,wt=δw+u,xΩ,t>0. (1.3)

    Here, u(x,t) and w(x,t) denote the density of flying MPB and nesting MPB, respectively. v(x,t) stands for the concentration of MPB pheromone, which is secreted only by those nesting MPB. When l=2, Hu and Tao [24] employed the coupled Lp estimate method to demonstrate that, under sufficiently regular initial conditions, model (1.3) admits a unique global smooth solution in three-dimensional spaces. Similar results were considered in higher dimensions [25]. For l>n2, Li and Tao [26] established the existence of a classical solution for model (1.3). Additionally, when l=n2, Ren and Liu [27] confirmed the existence of a global bounded classical solution to (1.3) under the critical parameter condition. For more related research, readers can refer to [28,29,30] etc.

    To the best of our knowledge, the following chemotaxis production system with both signal-dependent motility and nonlinear indirect signal production only has very little research so far:

    {ut=Δ(γ(v)u)+ruμul,xΩ,t>0,vt=Δvv+wβ,xΩ,t>0,wt=δw+u,xΩ,t>0,uυ=vυ=0,xΩ,t>0,u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x),xΩ, (1.4)

    where ΩRn is a smooth bounded domain. The initial data u0, v0, and w0 satisfy

    u0C0(¯Ω),v0W1,(Ω),w0W1,(Ω),u00,v00,w00, (1.5)

    and

    γC3([0,)),γ(v)>0 is bounded ,γ(v)<0 and γ(v)γ(v) is bounded . (1.6)

    When the signal production is linear (i.e., β=1), the dynamical behaviors of (1.4) were investigated in [31]. Motivated by the aforementioned works, we continue to explore the global dynamics for (1.4) with nonlinear signal production, that is, β1. The purpose of our paper is to clarify the global existence and large time behavior of (1.4) under the conditions

    r,μ,β,δ>0,l>1 and lβ>n2. (1.7)

    Our main results are as follows.

    Theorem 1.1. Let ΩRn(n2) be a bounded domain with smooth boundary. Assume that the initial data (u0,v0,w0), the motility function γ, and the parameters satisfy (1.5), (1.6), and (1.7), respectively. Then, model (1.4) possesses a global bounded classical solution (u,v,w) in the sense that

    u(,t)L(Ω)+v(,t)W1,(Ω)+w(,t)L(Ω)Cfor allt>0,

    where C is a positive constant independent of t.

    Remark 1.1. Theorem 1.1 shows that the propagation of signal is much weaker than the death of the cells, i.e., β<2nl is conducive to ensuring the existence of global bounded classical solutions to (1.4). Inspired by this, it is interesting to consider whether there is a critical exponent a. That is, if β<al, (1.4) has a global solution, while blow-up occurs when β>al. However, for (1.4), the exact value of a remains unknown.

    Theorem 1.2. Let ΩRn(n2) be a bounded domain with smooth boundary. Assume that the initial data (u0,v0,w0), the motility function γ, and the parameters satisfy (1.5), (1.6), and (1.7), respectively. Moreover, l2 and 0<β1, then there exist some positive constants τ, C, T, and μ0>0 such that if μ>μ0,

    u(rμ)1l1L(Ω)+v(1δ)β(rμ)βl1L(Ω)+w1δ(rμ)1l1L(Ω)Ceτt

    for all t>T.

    The structure of the paper is as follows. In Section 2, we address the local existence of solution to (1.1) and some preliminary estimates which are essential for proving Theorem 1.1. In Section 3, we prove the global existence of the solution to (1.4) by using a priori estimates, some important inequalities, and the standard Alikakos-Moser iteration. In Section 4, we study the large time behavior of system (1.4) with the aid of a Lyapunov function.

    In order to prove the main result, we will introduce some useful lemmata. Initially, we begin by establishing the local existence of solution, which can be referenced in [32].

    Lemma 2.1. (Local existence) Let ΩRn(n2) be a bounded domain with a smooth boundary. Assume that the initial data (u0,v0,w0), the motility function γ, and the parameters satisfy the conditions (1.5), (1.6), and (1.7), respectively. Then, there exists Tmax and a uniquely determined non-negative triple of functions (u, v, w)

    u\in C^{0}(\overline{\Omega}\times[0, T_{max}))\bigcap C^{2, 1}(\overline{\Omega}\times(0, T^{max})),
    v\in\bigcap\limits_{\theta > n}C^{0}([0, T_{\max});W^{1, \theta}(\Omega))\bigcap C^{2, 1}(\overline{\Omega}\times(0, T_{max})),
    w\in C^{0}(\overline{\Omega}\times[0, T_{\max}))\bigcap C^{0, 1}(\overline{\Omega}\times(0, T_{\max})),

    which solves (1.4) in the classical sense. If T_{\max} < \infty , we have

    \lim\limits_{t\rightarrow T_{max}}sup(\|u(., t)\|_{L^{\infty}(\Omega)}+{\|v(., t)\|_{W^{1, \infty}(\Omega)}}+\|w(., t)\|_{L^{\infty}(\Omega)}) = \infty.

    In addition, we also need to utilize the L^{p}-L^{q} estimate.

    Lemma 2.2. ([5] Lemma 1.3) Let {(e^{t\Delta})}_{t\geq0} be the Neumann heat semigroup in \Omega , and \lambda_{1} > 0 denote the first nonzero eigenvalue of -\Delta in \Omega under the homogeneous Neumann boundary condition. Then, we obtain the following estimates with positive constants k_{1} , k_{2} depending only on \Omega .

    (i) If 1\leq q\leq p\leq \infty , then

    \begin{equation} \parallel{ \nabla e^{t\Delta} u} \parallel_{L^{p}(\Omega)} \leq{k_{1}(1+t^{{-\frac{1}{2}-{\frac{n}{2}}(\frac{1}{q}-\frac{1}{p})}}) e^{-\lambda_{1}t} {\parallel u \parallel_{L^{q}(\Omega)}}} \end{equation} (2.1)

    for all u\in {L^{q}(\Omega)} and t > 0 .

    (ii) If 2\leq p < \infty , then

    \begin{equation} \parallel{ \nabla e^{t\Delta} u} \parallel_{L^{p}(\Omega)} \leq k_{2}e^{-\lambda_{1}t}{\parallel \nabla u \parallel_{L^{p}(\Omega)}} \end{equation} (2.2)

    for all u\in {W^{1, p}(\Omega)} and t > 0 .

    Furthermore, the subsequent inequality is crucial for our proof.

    Lemma 2.3. For all q > 1 , there exists k_{3} = k_{3}(q) > 0 such that

    \begin{equation} \parallel{ \nabla e^{t\Delta} \phi} \parallel_{L^{q}(\Omega)} \leq k_{3}{\parallel \nabla \phi \parallel_{L^{\infty}(\Omega)}} \end{equation} (2.3)

    for all \phi\in {W^{1, \infty}(\Omega)} and t > 0 .

    Proof. We can easily obtain (2.3) by Lemma 2.2 and Hölder's inequality.

    Finally, we introduce the lemma related to the comparison principle, as referred to in [33].

    Lemma 2.4. Let T > 0 , {t_0} \in ({0, T}) , a > 0 , and b > 0 . Assume that y:[{0, T}) \to [{0, \infty }) is uniformly continuous and satisfies

    \begin{equation*} y^{\prime}(t)+a y(t) \leq h(t) \quad \mathit{\text{for a.e.}}\quad t \in(0, T), \end{equation*}

    where h is a nonnegative function in L_{loc}^l({ [{0, T})}) satisfying

    \begin{equation*} \int_t^{t+t_0} h(s) d s \leq b \quad \mathit{\text{for all}}\quad t \in [0, T-t_0 ). \end{equation*}

    Then, we obtain

    \begin{equation*} y(t) \leq \max \left\{y(0)+b, \frac{b}{a t_0}+2 b\right\} \quad \mathit{\text{for all}}\quad t \in(0, T). \end{equation*}

    In this section, we aim to demonstrate the global existence and boundedness of the classical solution of (1.4). At first, it is essential to verify the L^{1} boundedness of u(x, t) .

    Lemma 3.1. Let (1.5), (1.6), and (1.7) hold, then there exist constants C_{1} > 0 and C_{2} > 0 such that

    \begin{equation} \int_{\Omega}u \leq C_{1} \end{equation} (3.1)

    for all t \in(0, T_{\max }) and

    \begin{equation} \int_t^{t+\tau} \int_{\Omega} u^l \leq C_{2} \end{equation} (3.2)

    for all t \in(0, T_{\max }-\tau) , where \tau : = \min \left\{ {1, \frac{1}{2}{T_{\max }}} \right\} .

    Proof. Integrating the first equation of (1.4), we have

    \begin{equation} \begin{aligned} \frac{d}{{dt}}\int_\Omega u & = r \int_\Omega u - \mu\int_\Omega {{u^l}} \\ &\le r \int_\Omega u - \mu|\Omega {|^{1 - l}}{\left( {\int_\Omega u } \right)^l}\\ \end{aligned} \end{equation} (3.3)

    for all t \in(0, T_{\max }) . Subsequently, utilizing an ODE comparison argument leads us to deduce (3.1).

    Integrating (3.3) from t to t+\tau , we obtain

    \begin{equation} \int_t^{t+\tau} {\frac{d}{dt}}\int_{\Omega} u = r \int_t^{t+\tau} \int_{\Omega} u -\mu \int_t^{t+\tau} \int_{\Omega} u^l \end{equation} (3.4)

    Therefore, we have

    \begin{equation} \begin{aligned} \int_t^{t+\tau} \int_{\Omega} u^l & = \frac{r}{\mu} \int_t^{t+\tau} \int_{\Omega} u+ \frac{1}{\mu}{\int_{\Omega}u(., t)} - \frac{1}{\mu}{\int_{\Omega}u(., t+\tau)}\\ &\leq\frac{r}{\mu}\int_t^{t+\tau} \int_{\Omega} u+ \frac{1}{\mu}{\int_{\Omega}u(., t)}\\ &\leq\frac{C_{1}}{\mu}(r\tau+1): = C_{2}\\ \end{aligned} \end{equation} (3.5)

    for all t \in(0, T_{\max }-\tau) , where \tau : = \min \left\{ {1, \frac{1}{2}{T_{\max }}} \right\} . Thus, we get (3.2)

    Due to (3.1), we can obtain the L^{q} boundedness of w .

    Lemma 3.2. If 1\leq q\leq l and \delta > 0 , then there exists a constant C_{3} > 0 such that

    \begin{equation} \int_\Omega {{w^q(\cdot, t)}} \le C_{3} \end{equation} (3.6)

    for all t \in(0, T_{\max }) .

    Proof. Multiplying the w-equation of (1.4) by qw^{q-1} , we obtain

    \begin{equation} \frac{d}{{dt}}\int_\Omega {{w^q}} = - q \delta \int_\Omega {{w^q}} + q \int_\Omega {uw^{q-1}} \end{equation} (3.7)

    for all t \in(0, T_{\max }) . Now, we will prove (3.6) in two cases: q = 1 and q > 1 .

    If {q = 1} , we can get

    \begin{equation} \frac{d}{{dt}}\int_\Omega {w} = - \delta \int_\Omega {w} + \int_\Omega {u} \end{equation} (3.8)

    for all t \in(0, T_{\max }) . Combining (3.1) and an ODE comparison argument, we can obtain (3.6).

    If {q > 1} , by using Young's inequality, we can find there exists a constant c_{1} > 0 such that

    \begin{equation} \frac{d}{{dt}}\int_\Omega {{w^q}} \le - \frac{q \delta }{2}\int_\Omega {{w^q}} + c_1 \int_\Omega {{u^q}} \end{equation} (3.9)

    for all t \in(0, T_{\max }) , where c_{1} = (\frac{2(q-1)}{\delta q})^{q-1} . Combining Lemma 2.4 and (3.2), we complete the proof of Lemma 3.2.

    Based on Lemma 3.2, we can get the L^{1} boundedness of v .

    Lemma 3.3. Let \Omega\subset R^{n} be a bounded domain with smooth boundary. Assume that the initial data (u_{0}, v_{0}, w_{0}) , the motility function \gamma , and the parameters satisfy the conditions (1.5), (1.6), and (1.7), respectively. Then, we have

    \begin{equation} {\int_{\Omega}v}\leq C_{4} \end{equation} (3.10)

    for all t \in(0, T_{\max }) , where C_{4} is some positive constant.

    Proof. We will also prove (3.10) in two cases: 0 < \beta < 1 and {1\leq \beta < \frac{2}{n}l \leq l} .

    In case of {0 < \beta < 1} , integrating the second equation of (1.4), combining Hölder's inequality and (3.6), we can obtain

    \begin{equation} \begin{aligned} \frac{d}{dt}\int_{\Omega}v+\int_{\Omega}v & = \int_{\Omega}w^{\beta}\\ & \leq {(\int_{\Omega} w^{q})^{\frac{\beta}{q}}}\cdot (\int_{\Omega} 1^{\frac{q}{q-\beta}})^{\frac{q-\beta}{q}}\\ & \leq C^{\frac{\beta}{q}}\cdot |\Omega|^{\frac{q-\beta}{q}} \end{aligned} \end{equation} (3.11)

    for all t \in(0, T_{\max }) . The ODE comparsion argument leads to (3.10).

    In case of {1\leq \beta < \frac{2}{n}l \leq l} , integrating the second equation of (1.4) and combining (3.6), we have

    \begin{equation} \frac{d}{dt}\int_{\Omega}v+\int_{\Omega}v = \int_{\Omega}w^{\beta}\leq C \end{equation} (3.12)

    for all t \in(0, T_{\max }) . Thus, we get (3.10).

    To prove the global existence and boundedness of the classical solution to (1.4), we need to calculate the boundedness of \| \nabla v(., t) \|_{{L^{q}}(\Omega)} .

    Lemma 3.4. Let conditions (1.5), (1.6), and (1.7) hold. Then, for all

    \begin{equation*} q \in\left\{\begin{array}{lll} {\left[1, \frac{n l}{n\beta -l }\right)} & \frac{l}{\beta} \leq n, \\ {[1, \infty]} & \frac{l}{\beta} > n, \end{array}\right. \end{equation*}

    there exists C_{5} = C_{5}(q) > 0 such that

    \begin{equation} \| \nabla v(., t) \|_{{L^{q}}(\Omega)}\leq C_{5} \end{equation} (3.13)

    for all t \in(0, T_{\max }) .

    Proof. Applying the variation-of-constants formula for v , we have

    \begin{equation} v(., t) = e^{t(\Delta-1)} v_{0} + \int^{t}_{0} {e^{(t-s)(\Delta-1)}}{w^{\beta}(., s)}ds \end{equation} (3.14)

    for all t \in(0, T_{\max }) . Without losing the generality, we suppose q > \frac{l}{\beta} . Combining Lemma 2.2, Lemma 2.3, and Hölder's inequality, we can find a constant c_{1} > 0 such that

    \begin{equation} \begin{aligned} \| \nabla v(., t) \|_{{L^{q}}(\Omega)} & \leq \| \nabla e^{t(\Delta-1)} v_{0} \|_{{L^{q}}(\Omega)}+ \int^{t}_{0}\|\nabla {e^{(t-s)(\Delta-1)}}{w^{\beta}(., s)}\|_{{L^{q}}(\Omega)} ds\\ & \leq c_{1}\|\nabla v_{0} \|_{{L^{\infty}}(\Omega)}+ \int^{t}_{0}\|\nabla {e^{(t-s)(\Delta-1)}}{w^{\beta}(., s)}\|_{{L^{q}}(\Omega)} ds \end{aligned} \end{equation} (3.15)

    and

    \begin{equation} \begin{aligned} &\int^{t}_{0}\|\nabla {e^{(t-s)(\Delta-1)}}{w^{\beta}(., s)}\|_{{L^{q}}(\Omega)} ds\\ &\leq k_{1}\int^{t}_{0}\left (1+(t-s)^{-\frac{1}{2}-\frac{n}{2}(\frac{\beta}{l}-\frac{1}{q})}\right)e^{-\lambda_{1}(t-s)}\|{w^{\beta}(., s)}\|_{{L^{\frac{l}{\beta}}}(\Omega)}ds\\ & = k_{1}\int^{t}_{0}\left(1+(t-s)^{-\frac{1}{2}-\frac{n}{2}(\frac{\beta}{l}-\frac{1}{q})}\right) e^{-\lambda_{1}(t-s)}\|w(., s)\|^{\beta}_{L^{l}(\Omega)} ds\\ \end{aligned} \end{equation} (3.16)

    for all t \in(0, T_{\max }) . Due to (3.6), we can choose c_{1} fulfilling

    \begin{equation} \|w(., s)\|^{\beta}_{L^{l}(\Omega)} \leq c_{1} \end{equation} (3.17)

    for all t \in(0, T_{\max }) .

    If \mathit{\boldsymbol{\frac{l}{\beta}\leq n}} , we have

    \begin{equation} \begin{aligned} -\frac{1}{2}-\frac{n}{2}\left(\frac{\beta}{l}-\frac{1}{q}\right) & > -\frac{1}{2}-\frac{n}{2}\left(\frac{\beta}{l}-\frac{n\beta-l}{nl}\right)\\ & = -1\\ \end{aligned} \end{equation} (3.18)

    If \mathit{\boldsymbol{\frac{l}{\beta} > n}} , we have

    \begin{equation} \begin{aligned} -\frac{1}{2}-\frac{n}{2}\left(\frac{\beta}{l}-\frac{1}{q}\right) & > \frac{1}{2}-\frac{n}{2}\left(\frac{1}{n} -\frac{1}{q}\right)\\ &\geq -\frac{1}{2}-\frac{n}{2}\cdot \frac{1}{n}\\ & = -1 \end{aligned} \end{equation} (3.19)

    Thus, combining (3.18) and (3.19), we can find a constant c_{2} > 0 such that

    \begin{equation} \int^{t}_{0}\left(1+(t-s)^{-\frac{1}{2}-\frac{n}{2}(\frac{\beta}{l}-\frac{1}{q})}\right) e^{-\lambda_{1}(t-s)}ds \leq c_{2} \end{equation} (3.20)

    for all t \in(0, T_{\max }) . Inserting (3.17) and (3.20) into (3.16), there exists a constant c_{3} > 0 such that

    \begin{equation} \int^{t}_{0}\|\nabla {e^{(t-s)(\Delta-1)}}{w^{\beta}(., s)}\|_{{L^{q}}(\Omega)} ds\leq c_{3} \end{equation} (3.21)

    for all t \in(0, T_{\max }) . Thus, combining (3.15) and (3.21), we can get (3.13).

    Owing to (3.13), we can use an Ehrling-type inequality to demonstrate the boundedness of v .

    Lemma 3.5. Suppose that (1.5), (1.6), and (1.7) are valid. Then there exists C_{6} > 0 such that

    \begin{equation} \| v(., t) \|_{L^{\infty}(\Omega)} \leq C_{6} \end{equation} (3.22)

    for all t \in(0, T_{\max }) .

    Proof. We see that \frac{\beta}{l} < \frac{2}{n} ensures that \frac{nl}{n\beta-l} > n , which allows us to select q_{1}\in(n, \frac{nl}{n\beta-l}) . We can use Lemma 3.4 to choose a positive constant c_{1} such that

    \begin{equation} \| \nabla v(., t) \|_{L^{q_{1}}(\Omega)} \leq c_{1} \end{equation} (3.23)

    for all t \in(0, T_{\max }) . Combining (3.10), (3.23), and the Gagliardo-Nirenberg inequality, we can find some constants c_{2} > 0 and c_{3} > 0 such that

    \begin{equation} \begin{aligned} \| v(., t) \|_{L^{q_{1}}(\Omega)} & \leq c_{2} \| \nabla v(., t) \|_{L^{q_{1}}(\Omega)}^{\frac{1-\frac{1}{q_{1}}}{\frac{1}{n}+1-\frac{1}{q_{1}}}} \| v(., t) \|_{L^{1}(\Omega)}^{\frac{\frac{1}{n}}{\frac{1}{n}+1-\frac{1}{q_{1}}}} +c_{2}\| v(., t) \|_{L^{1}(\Omega)}\\ & \leq c_{3}\\ \end{aligned} \end{equation} (3.24)

    for all t \in(0, T_{\max }) . Combining (3.23) and (3.24), we have

    \begin{equation} \| v(., t) \|_{W^{1, q_{1}}(\Omega)} \leq c_{4} \end{equation} (3.25)

    for all t \in(0, T_{\max }) , where c_{4}: = c_{1}+c_{3} . Consequently, by using the Sobolev embedding theorem, we can conclude (3.22).

    Drawing on Lemma 3.4 and a series of important inequalities, we estimate the L^{p} boundedness of u .

    Lemma 3.6. Assume that conditions (1.5), (1.6), and (1.7) exist. Then, for any p\geq2 , there exists a positive constant C_{7} such that

    \begin{equation} \int_{\Omega} u^{p}\leq C_{7} \end{equation} (3.26)

    for all t \in(0, T_{\max }) .

    Proof. Multiplying the u-equation of (1.4) by u^{p-1} , integrating by parts in \Omega , and using Young's inequality, we have

    \begin{equation} \begin{aligned} \frac{d}{dt}\int_{\Omega} u^{p} & = -p(p-1)\int_{\Omega} u^{p-2} \gamma(v) |\nabla u|^{2} - {p(p-1)} \int_{\Omega} u^{p-1}\gamma^{'}(v)|\nabla u||\nabla v|\\ &+ rp\int_{\Omega} u^{p} -\mu p\int_{\Omega} u^{p+l-1}\\ &\leq -\frac{p(p-1)}{2}\int_{\Omega} u^{p-2} |\nabla u|^{2}\gamma(v) + \frac{p(p-1)}{2}\int_{\Omega} u^{p} \frac{|\gamma^{'}(v)|^{2}}{\gamma(v)} |\nabla v|^{2}\\ +& rp\int_{\Omega} u^{p} -\mu p\int_{\Omega} u^{p+l-1}\\ \end{aligned} \end{equation} (3.27)

    for all t \in(0, T_{\max }) . Because of Lemma 3.5 and (1.6), we can find some positive constants c_{1} and c_{2} such that

    \begin{equation} \gamma(v) \geq c_{1} \ \ \text {and} \ \ \frac{|\gamma^{'}(v)|^{2}}{\gamma(v)}\leq c_{2} \end{equation} (3.28)

    for all t \in(0, T_{\max }) . Inserting (3.28) into (3.27), and using Young's inequality, we can find some positive constants c_{3} , c_{4} , and c_{5} such that

    \begin{equation} \begin{aligned} \frac{d}{dt}\int_{\Omega} u^{p} +c_{3}\int_{\Omega} |\nabla u^{\frac{p}{2}}|^{2} + \int_{\Omega} u^{p} & \leq c _{4}\int_{\Omega} u^{p} |\nabla v|^{2} +(rp+1) \int_{\Omega} u^{p} -\mu p\int_{\Omega} u^{p+l-1}\\ & \leq c _{4}\int_{\Omega} u^{p} |\nabla v|^{2} -\frac{\mu p}{2}\int_{\Omega} u^{p+l-1} +c_{5}\\ \end{aligned} \end{equation} (3.29)

    for all t \in(0, T_{\max }) . Next, we will prove (3.26) in two cases.

    In the case of \mathit{\boldsymbol{\frac{l}{\beta} > n}} , for some positive constants c_{6} and c_{7} , combining Lemma 3.4 and Young's inequality, we have

    \begin{equation} \begin{aligned} c _{4}\int_{\Omega} u^{p} |\nabla v|^{2} & \leq {c_{6}}^{2} c _{4} \int_{\Omega} u^{p}\\ & \leq \frac{\mu p}{4}\int_{\Omega} u^{p+l-1} +c_{7} \end{aligned} \end{equation} (3.30)

    for all t \in(0, T_{\max }) . Inserting (3.30) into (3.29), we can obtain

    \begin{equation} \frac{d}{dt}\int_{\Omega} u^{p} +c_{3}\int_{\Omega} |\nabla u^{\frac{p}{2}}|^{2}+\int_{\Omega} u^{p}+\frac{\mu p}{4}\int_{\Omega} u^{p+l-1} \leq c_{5}+c_{7} \end{equation} (3.31)

    for all t \in(0, T_{\max }) , which completes the proof of (3.26).

    In the case of \mathit{\boldsymbol{\frac{n}{2} < \frac{l}{\beta}\leq n}} , fixing q_{0}\in(n, \frac{nl}{n\beta-l}) and using Lemma 3.4, we can find a positive constants c_{8} such that

    \begin{equation} \| \nabla v(., t) \|_{L^{q_{0}}(\Omega)} \leq c_{8} \end{equation} (3.32)

    for all t \in(0, T_{\max }) . Now, using Hölder's inequality, the Gagliardo-Nirenberg inequality, and (3.32), we can choose some positive constants c_{9} and c_{10} such that

    \begin{equation} \begin{aligned} c _{4}\int_{\Omega} u^{p} |\nabla v|^{2} & \leq c_{4}\left(\int_{\Omega} |\nabla v|^{q_{0}}\right)^{\frac{2}{q_{0}}} \left(\int_{\Omega} u^{\frac{pq_{0}}{q_{0}-2}} \right)^{\frac{q_{0}-2}{q_{0}}} \\ & \leq c_{4} c{_{8}}^{2}\| u^{\frac{p}{2}} \|^{2}{_{L^{\frac{2q_{0}}{q_{0}-2}}(\Omega)} } \\ & \leq c_{9} \left( \|\nabla u^{\frac{p}{2}} \|{^{\frac{2n}{q_{0}}}}_{L^{2}(\Omega)} \|u^{\frac{p}{2}} \|{^{\frac{2(q_{0}-n)}{q_{0}}} }_{L^{2}(\Omega)} + \|u^{\frac{p}{2}} \|{^{2}}_{L^{2}(\Omega)} \right ) \\ & \leq \frac{c_{3}}{2} \|\nabla u^{\frac{p}{2}} \|{^{2}} _{L^{2}(\Omega)} + \frac{\mu p}{4}\int_{\Omega} u^{p+l-1} +c_{10} \\ \end{aligned} \end{equation} (3.33)

    for all t \in(0, T_{\max }) . Therefore, (3.29) can be changed to

    \begin{equation} \frac{d}{dt}\int_{\Omega} u^{p} + \frac{c_{3}}{2}\int_{\Omega} |\nabla u^{\frac{p}{2}}|^{2} + \int_{\Omega} u^{p} +\frac{\mu p}{4}\int_{\Omega} u^{p+l-1} \leq c_{5}+ c_{10} \end{equation} (3.34)

    for all t \in(0, T_{\max }) . Hence, we complete the proof of (3.26).

    To sum up, we can easily prove Theorem 1.1.

    Proof of Theorem 1.1. With the help of Lemma 3.6 and a standard Alikakos-Moser iteration ([34] Lemma A.1), we can find a positive constant C_{1} independent of t such that

    \begin{equation} \| u(., t) \|_{L{^{\infty}}(\Omega)} \leq C_{1} \end{equation} (3.35)

    for all t \in(0, T_{\max }) . Applying the variation-of-constants formula for w , we conclude

    \begin{equation*} w(\cdot, t) = e^{-\delta t} w_0+\int_0^t e^{-\delta(t-s)} u(\cdot, s) \mathrm{\; d} s \end{equation*}

    for all t \in(0, T_{\max }) , which implies that there exists C_{2} > 0 such that

    \begin{equation} {\| w(\cdot, t) \|_{{L^\infty } ( \Omega )}} \leq C_{2} \end{equation} (3.36)

    for all t \in(0, T_{\max }) . Besides, by using the heat semigroup theorem on the v -equation of (1.4), we can find a constant C_{3} > 0 such that

    \begin{equation} {\| \nabla v(\cdot, t) \|_{{L^\infty } ( \Omega )}} \leq C_{3} \end{equation} (3.37)

    for all t \in(0, T_{\max }) . Combining (3.22), we deduce that there exists a positive constant C_{4} > 0 such that

    \begin{equation} {\| v(\cdot, t) \|_{{W^{1, \infty} } ( \Omega )}} \leq C_{4} \end{equation} (3.38)

    for all t \in(0, T_{\max }) . Thus, Theorem 1.1 is proved due to (3.35), (3.36), (3.38), and the extensibility criterion from Lemma 2.1.

    In this section, we will construct a Lyapunov function, which will serve as the cornerstone in our proof of Theorem 1.2. First of all, we shall present a few auxiliary lemmas.

    Lemma 4.1. ([21] Lemma 2.4) Let A > 0 , B > 0 , and 0 < p < 1 . Then,

    \begin{equation*} |A^{p}-B^{p}|\leq 2^{1-p}min \left\{A^{p-1}, B^{p-1}\right\}|A-B| \end{equation*}

    Lemma 4.2. Assume that (u, v, w) is the classical solution of system (1.4) in Theorem 1.1. Then, there exist C > 0 and \delta\in(0, 1) such that

    \begin{equation} \| u \|_{C^{2+\delta, 1+\frac{\delta}{2}}{(\Omega\times[t, t+1])}} \leq C \end{equation} (4.1)

    for all t > 1 .

    Proof. we rewrite the u-equation of (1.4) as follows:

    \begin{equation} u_{t} = \nabla \cdot \nabla(\gamma (v) u) + ru- \mu u^{l} = \nabla \cdot (\nabla u \gamma(v) + u \gamma^{'}(v) \nabla v)+ru-\mu u^{l} \end{equation} (4.2)

    According to (1.6), we can find some positive constants k_{1} , k_{2} , and k_{3} such that

    \begin{equation} k_{1}\leq \gamma(v) \leq k_{2} \quad \text{and} \quad |\gamma^{'}(v)|\leq k_{3} \end{equation} (4.3)

    for all t \in(0, T_{\max }) . Obviously, Theorem 1.1 ensures that u , v , and \nabla v are bounded. Now, by applying Young's inequality, we can find some positive constants c_{1} , c_{2} , and c_{3}

    \begin{equation} \begin{aligned} \nabla u \cdot (\nabla u \gamma(v) + u \gamma^{'}(v) \nabla v) & = | \nabla u |^{2} \gamma(v) + u \gamma^{'}(v) \nabla v \nabla u\\ & \geq k_{1}| \nabla u |^{2}- k_{3}u |\nabla v | |\nabla u|\\ & \geq\frac{k_{1}}{2} | \nabla u |^{2}-\frac{k_{3}^{2} c_{1}}{2 k_{1}}\\ \end{aligned} \end{equation} (4.4)

    and

    \begin{equation} ru-\mu u^{l}\leq c_{2} \end{equation} (4.5)

    as well as

    \begin{equation} \nabla u \gamma(v) + u \gamma^{'}(v) \nabla v \leq c_{3} \end{equation} (4.6)

    From (4.4)–(4.6), according to Hölder's regularity, there exists a positive constant c_{4} , and we can deduce that

    \begin{equation} \| u \|_{C^{\delta, \frac{\delta}{2}}{(\Omega\times[t, t+1])}} \leq c_{4} \end{equation} (4.7)

    for all t > 1 . Thus, applying the standard parabolic Schauder theory [35], we can obtain (4.1).

    Lemma 4.3. Assume that (u, v, w) is the global bounded classical solution of (1.4). Let (1.5), (1.6), and (1.7) hold. The energy functions defined by

    \begin{equation} E(t) = \int_{\Omega}{ \left(u-u_{*}-u_{*} ln\frac{u}{u_{*}}\right)+\frac{B_{1}}{2}\int_{\Omega} (v-v_{*})^{2} +\frac{B_{2}}{2}\int_{\Omega} (w-w_{*})^{2} } \end{equation} (4.8)

    with u_{*} = (\frac{r}{\mu})^{\frac{1}{l-1}} , v_{*} = (\frac{1}{\delta})^{\beta}(\frac{r}{\mu})^{\frac{\beta}{l-1}} , w_{*} = \frac{1}{\delta}(\frac{r}{\mu})^{\frac{1}{l-1}} , B_{1} = \frac{1}{4}k u_{*} and B_{2} = \delta \mu u_{*}^{l-2} , and

    \begin{equation} F(t) = \left(\int_{\Omega} (u-u_{*})^{2}+ \int_{\Omega} (v-v_{*})^{2} + \int_{\Omega} (w-w_{*})^{2} \right) \end{equation} (4.9)

    for all t > 0 . We have

    \begin{equation} E(t)\geq 0 \end{equation} (4.10)

    for all t > 0 . When l\geq 2 and 0 < \beta\leq 1 , there exist some positive constants \varepsilon and \mu_0 such that if \mu > \mu_0

    \begin{equation} \frac{d}{dt}E(t)\leq -\varepsilon F(t) \end{equation} (4.11)

    for all t\geq 0 .

    Proof. We note that

    \begin{equation} E(t) = A(t)+B(t)+C(t)\\ \end{equation} (4.12)

    where

    \begin{equation*} \begin{split} A(t): = \int_{\Omega} \left(u-u_{*}-u_{*} ln\frac{u}{u_{*}}\right), \\ B(t): = \frac{B_{1}}{2}\int_{\Omega} (v-v_{*})^{2}, \\ C(t): = \frac{B_{2}}{2}\int_{\Omega} (w-w_{*})^{2}. \end{split} \end{equation*}

    We let \varphi:(0, \infty)\rightarrow R be defined by

    \begin{equation*} \varphi(x): = x-u_{*}-u_{*}ln\frac{x}{u_{*}}, \quad x > 0. \end{equation*}

    Due to \varphi is convex with \varphi(u_{*}) = \varphi^{'}(u_{*}) = 0 , so \varphi(x)\geq0 for all x > 0 , we have E(t)\geq0 . Using the first equation in (1.4) and Young's inequality, we can obtain

    \begin{equation} \begin{aligned} \frac{d}{dt}A(t) & = \int_{\Omega} u_{t}\left(1-\frac{u_{*}}{u}\right )\\ & = -\mu \int_{\Omega} (u-u_{*}) \left( u^{l-1}-\frac{r}{\mu} \right) - u_{*} \int_{\Omega} \gamma(v) \frac{| \nabla u |^{2}}{u^{2}} - u_{*} \int_{\Omega} \frac{\gamma^{'}(v)}{u} |\nabla u| |\nabla v|\\ & = -\mu \int_{\Omega} (u-u_{*}) \left( u^{l-1}-u_{*}^{l-1} \right) - u_{*} \int_{\Omega} \gamma(v) \frac{| \nabla u |^{2}}{u^{2}} - u_{*} \int_{\Omega} \frac{\gamma^{'}(v)}{u} |\nabla u| |\nabla v|\\ & \leq \frac{1}{4} u_{*} \int_{\Omega} \frac{|\gamma^{'}(v)|^{2}}{\gamma(v)} |\nabla v|^{2}- \mu \int_{\Omega} (u-u_{*}) \left( u^{l-1}-u_{*}^{l-1} \right) \end{aligned} \end{equation} (4.13)

    for all t > 0 . Accoring to hypothesis (1.6), we can choose k > 0 , fulfilling

    \begin{equation} \frac{|\gamma^{'}(v)|^{2}}{\gamma(v)} \leq k \end{equation} (4.14)

    for all t > 0 . With the help of the elementary inequality: if \zeta \geq1 , then for all x\geq0 , y\geq0 , and x\neq y , we can see that

    \begin{equation} \frac{x^{\zeta}-y^{\zeta}}{x-y}\geq y^{\zeta-1} \end{equation} (4.15)

    Hence, since l\geq 2 , combining (4.13)–(4.15), we have

    \begin{equation} \frac{d}{dt}A(t) \leq \frac{1}{4} u_{*}k \int_{\Omega} |\nabla v|^{2}-\mu u_{*}^{l-2}\int_{\Omega} (u-u_{*})^{2} \end{equation} (4.16)

    for all t > 0 . We use the second equation in (1.4) and Young's inequality to obtain

    \begin{equation} \begin{aligned} \frac{d}{dt}B(t)& = B_{1}\int_{\Omega} (v-v_{*})v_{t}\\ & = B_{1}\int_{\Omega} (v-v_{*})(\triangle v-v+w^{\beta})\\ & = -B_{1}\int_{\Omega} |\nabla v|^{2} - B_{1}\int_{\Omega} (v-v_{*})^{2}+B_{1}\int_{\Omega} (v-v_{*})(w^{\beta}-v_{*})\\ & \leq -B_{1}\int_{\Omega} |\nabla v|^{2}-\frac{B_{1}}{2}\int_{\Omega} (v-v_{*})^{2}+\frac{B_{1}}{2}\int_{\Omega} (w^{\beta}-v_{*})^{2} \end{aligned} \end{equation} (4.17)

    for all t > 0 . Also, using the third equation in (1.4) and Young's inequality, we have

    \begin{equation} \begin{aligned} \frac{d}{dt}C(t)& = B_{2}\int_{\Omega} (w-w_{*})w_{t}\\ & = B_{2}\int_{\Omega} (w-w_{*})(-\delta w+u)\\ & = -\delta B_{2}\int_{\Omega} (w-w_{*})^{2}+ B_{2}\int_{\Omega} (w-w_{*})(u-\delta w_{*})\\ & \leq -\frac{\delta}{2}B_{2}\int_{\Omega} (w-w_{*})^{2}+\frac{B_{2}}{2\delta}\int_{\Omega} (u-\delta w_{*})^{2}\\ & = -\frac{\delta}{2}B_{2}\int_{\Omega} (w-w_{*})^{2}+\frac{B_{2}}{2\delta}\int_{\Omega} (u-u_{*})^{2}\\ \end{aligned} \end{equation} (4.18)

    for all t > 0 . Next, we will prove (4.11).

    Let

    \begin{equation*} \mu_{0} : = \left( \frac{k}{4^{\beta} \delta^{2\beta} r^{\frac{l-2\beta-1}{l-1}}} \right)^{\frac{l-1}{2\beta}}, \end{equation*}

    and \mu > \mu_{0} , then

    \begin{equation*} \begin{aligned} & \frac{1}{2}(\delta B_{2}-B_{1} 4^{1-\beta} \delta^{2-2\beta} u_{*}^{2\beta -2}) \\ & = \frac{1}{2}\left(\delta^{2}\mu u_{*}^{l-2}- k 4^{-\beta} \delta^{2-2\beta} u_{*}^{2\beta-1} \right) \\ & = \frac{1}{2}\left( \delta^{2}\mu \left({\frac{r}{\mu}}\right)^{\frac{l-2}{l-1}} - \frac{k r^{\frac{2\beta-1}{l-1}} \delta^{2-2\beta} }{4^{\beta} \mu^{\frac{2\beta-1}{l-1}} } \right) > 0 \end{aligned} \end{equation*}

    Since 0 < \beta\leq 1 , using Lemma 4.1, we have

    \begin{equation} \begin{aligned} \frac{B_{1}}{2}\int_{\Omega} (w^{\beta}-w^{\beta}_{*})^{2}& \leq \frac{B_{1}}{2} 2^{2(1-\beta)} w^{2(\beta-1)}_{*}\int_{\Omega} (w-w_{*})^{2}\\ & = \frac{B_{1}}{2} 4^{1-\beta} \delta^{2-2\beta} u^{2\beta-2}_{*}\int_{\Omega} (w-w_{*})^{2}\\ \end{aligned} \end{equation} (4.19)

    for all t > 0 . Combining (4.16)–(4.19), we can get

    \begin{equation*} \begin{aligned} \frac{d}{dt}E(t) & \leq \left( \frac{1}{4} u_{*}k - B_{1} \right)\int_{\Omega} |\nabla v|^{2}- \left( \mu u_{*}^{l-2} - \frac{B_{2}}{2\delta} \right) \int_{\Omega} (u-u_{*})^{2} -\frac{B_{1}}{2}\int_{\Omega} (v-v_{*})^{2} \\ & - \frac{1}{2}\left( \delta B_{2}-B_{1} 4^{1-\beta} \delta^{2-2\beta} u_{*}^{2\beta -2} \right)\int_{\Omega} (w-w_{*})^{2}\\ & \leq -\varepsilon \left(\int_{\Omega} (u-u_{*})^{2}+ \int_{\Omega} (v-v_{*})^{2} + \int_{\Omega} (w-w_{*})^{2} \right)\\ \end{aligned} \end{equation*}

    with \mu > \mu_0 and \varepsilon = min\left\{\frac{1}{2}\mu u_{*}^{l-2}, \frac{1}{8}k u_{*}, \frac{1}{2}\left(\delta^{2}\mu u_{*}^{l-2}- k 4^{-\beta} \delta^{2-2\beta} u_{*}^{2\beta-1} \right) \right\} , for all t > 0 . So, we complete the proof of Lemma 4.3.

    In the following discussion, let \mu > \mu_{0} , l\geq 2 , and 0 < \beta\leq 1 hold, where \mu_{0} is defined in Lemma 4.3.

    Proof of Theorem 1.2. Building upon the functional inequality (4.11), the proof of Theorem 1.2 can be approached in the same way as in [36]. To avoid redundancy, we do not recount the entire proof here. However, for the reader's convenience, we outline the main ideas of the proof.

    Step 1. First, by taking E(t) and F(t) as defined in Lemma 4.3, and integrating (4.11) from 1 to t , we deduce

    \begin{equation} {E(t)+\varepsilon \int_{1}^{t}F(s)ds\leq E(1)} \end{equation} (4.20)

    for all t > 1 . Since E(t) is nonnegative by Lemma 4.3, this entails that \int_{1}^{\infty}F(s)ds is finite. According to the definition (4.9) of F , we have

    \begin{equation} \int_{1}^{\infty}\int_{\Omega} (u-u_{*})^{2} < \infty, \quad \int_{1}^{\infty} \int_{\Omega} (v-v_{*})^{2} < \infty \quad\text{and}\quad \int_{1}^{\infty} \int_{\Omega} (w-w_{*})^{2} < \infty \end{equation} (4.21)

    The weak convergence information (4.21) along with uniform Hölder's bounds of solutions implies

    \begin{equation} {\parallel u-(\frac{r}{\mu})^{\frac{1}{l-1}}\parallel_{L^{\infty}(\Omega)}}+\parallel {v-(\frac{1}{\delta})^{\beta}(\frac{r}{\mu})^{\frac{\beta}{l-1}}\parallel_{L^{\infty}(\Omega)}}\parallel+{\parallel w-\frac{1}{\delta}(\frac{r}{\mu})^{\frac{1}{l-1}}\parallel_{L^{\infty}(\Omega)}}\rightarrow 0\quad{as}\quad t\rightarrow \infty. \end{equation} (4.22)

    Step 2. Based on L'H \hat{o} pital's rule, we can obtain

    \begin{equation*} {\lim\limits_{u\to u_{*}}\frac{u-u_{*}-u_{*}ln\frac{u}{u_{*}}}{(u-u_{*})^{2}} } = {\lim\limits_{u\to u_{*}}\frac{1-\frac{u_{*}}{u}}{2(u-u_{*})} } = \frac{1}{2u_{*}} \end{equation*}

    According to (4.22), we can pick a positive constant t_{0} such that

    \begin{equation} \frac{1}{4u_{*}}\int_{\Omega}(u-u_{*})^{2}\leq \int_{\Omega} \left(u-u_{*}-u_{*} ln\frac{u}{u_{*}}\right) \leq \frac{1}{u_{*}}\int_{\Omega}(u-u_{*})^{2} \end{equation} (4.23)

    for all t > t_{0} .

    Step 3. In order to estimate the rate of convergence in (4.22), combining (4.11) and (4.23), then there exists a constant C_{1} > 0 such that

    \begin{equation} \frac{d}{dt}E(t)\leq -\varepsilon F(t) \leq -C_{1}E(t) \end{equation} (4.24)

    for all t > t_{0} . (4.24) means there exist some positive constants C_{2} and k such that

    \begin{equation} E(t)\leq C_{2}e^{-kt} \end{equation} (4.25)

    for all t > t_{0} . From the definitions of E(t) and F(t) , (4.23) and (4.25) allow us to choose a constant C_{3} > 0 such that

    \begin{equation} \left(\int_{\Omega} (u-u_{*})^{2}+ \int_{\Omega} (v-v_{*})^{2} + \int_{\Omega} (w-w_{*})^{2} \right)\leq C_{3}e^{-kt} \end{equation} (4.26)

    for all t > t_{0} .

    Step 4. By using Lemma 4.2 and the Gagliardo-Nirenberg inequality, we get

    \begin{equation*} \| \phi \|_{L^{\infty}(\Omega)} \leq C_{GN}\| \phi \|^{\frac{n}{n+2}}_{W^{1, \infty}(\Omega)} \| \phi \|^{\frac{2}{n+2}}_{L^{2}(\Omega)} \end{equation*}

    for all \phi\in {W^{1, \infty}(\Omega)} . So, we can find some constants C_{4} > 0 and C_{5} > 0 such that

    \begin{equation} \begin{aligned} \| u(., t)-u_{*} \|_{L^{\infty}(\Omega)} &\leq C_{4}\|u(., t)-u_{*}\|^{\frac{n}{n+2}}_{W^{1, \infty}(\Omega)} \| u(., t)-u_{*} \|^{\frac{2}{n+2}}_{L^{2}(\Omega)}\\\ &\leq C_{5} \| u(., t)-u_{*} \|^{\frac{2}{n+2}}_{L^{2}(\Omega)}\\ \end{aligned} \end{equation} (4.27)

    for all t > t_{0} . Together with (4.26), we can find some positive constants C_{6} and \lambda such that

    \begin{equation} \| u(., t)-u_{*} \|_{L^{\infty}(\Omega)}\leq C_{6}e^{-\lambda t} \end{equation} (4.28)

    for all t > t_{0} . Similarly, according to (3.38) and the Gagliardo-Nirenberg inequality, we can find a constant C_{7} > 0 such that

    \begin{equation} \| v(., t)-v_{*} \|_{L^{\infty}(\Omega)}\leq C_{7}e^{-\lambda t} \end{equation} (4.29)

    for all t > t_{0} .

    Applying the ODE theorem for the third equation of (1.4), we have

    \begin{equation} \begin{aligned} w(\cdot, t)& = e^{-\delta (t-t_{0}) } w(., t_{0})+\int_{t_{0}}^t e^{-\delta(t-s)} u(\cdot, s) \mathrm{\; d} s\\ & = e^{-\delta (t-t_{0}) } w(., t_{0})+\int_{t_{0}}^t e^{-\delta(t-s)}( u(\cdot, s)-u_{*})\mathrm{\; d} s+\int_{t_{0}}^t e^{-\delta(t-s)}u_{*}\mathrm{\; d} s\\ & = e^{\delta t_{0}}w(., t_{0})e^{-\delta t}+\int_{t_{0}}^t e^{-\delta(t-s)}( u(\cdot, s )-u_{*})\mathrm{\; d} s +\frac{u_{*}}{\delta}e^{-\delta t}(e^{\delta t}-e^{\delta t_{0}})\\ \end{aligned} \end{equation} (4.30)

    for all t > t_{0} . From (1.5), (4.28), and (4.30), there exist some positive constants C_{8} , C_{9} , and C_{10} such that

    \begin{equation} \begin{aligned} \|w-w_{*}\|_{L^{\infty}(\Omega)}&\leq (e^{\delta t_{0}}\|w(., t_{0})\|_{L^{\infty}(\Omega)}+e^{\delta t_{0}}w_{*})e^{-\delta t}+\int_{t_{0}}^t e^{-\delta(t-s)}\| u(\cdot, s )-u_{*}\|_{L^{\infty}(\Omega)}\mathrm{\; d} s\\ &\leq C_{8} e^{-\delta t}+ C_{9}e^{-\lambda t}\\ &\leq C_{10} e^{-\tau t}\\ \end{aligned} \end{equation} (4.31)

    for all t > t_{0} , where \tau: = min\{\delta, \lambda\} . Combining (4.28), (4.29), and (4.31), we complete the proof of Theorem 1.2.

    In summary, this paper establishes the global boundedness and stability of the steady-state solution for a chemotactic system with nonlinear indirect signal production in a bounded domain, defined under a specific parameter range. This contrasts with previous studies on chemotactic systems of this nature that utilize linear signal production. Our next goal is to extend these results to heterogeneous environments (see for example [37]), drawing on concepts from this work.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are very grateful to the editors and reviewers for their helpful and constructive comments. This work is supported by Natural Science Foundation of Chongqing (No. CSTB2023NSCQ-MSX0099)

    The authors declare that there is no conflict of interest.



    [1] Wiesner S (1983) Conjugate Coding. ACM Sigact News 15: 78-88. https://doi.org/10.1145/1008908.1008920 doi: 10.1145/1008908.1008920
    [2] Bennett CH, Brassard G (2014) Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science 560: 7-11. https://doi.org/10.1016/j.tcs.2014.05.025 doi: 10.1016/j.tcs.2014.05.025
    [3] Ekert AK (1991) Quantum cryptography based on Bell's theorem. Phys Rev Lett 67: 661-663. https://doi.org/10.1103/PhysRevLett.67.661 doi: 10.1103/PhysRevLett.67.661
    [4] Bennett CH (1992) Quantum cryptography using any two non-orthogonal states. Phys Rev Lett 68: 3121–3124. https://doi.org/10.1103/PhysRevLett.68.3121 doi: 10.1103/PhysRevLett.68.3121
    [5] Bechmann-Pasquinucci H, Gisin N (1999) Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Physical Review 59: 4238-4248. https://doi.org/10.1103/PhysRevA.59.4238 doi: 10.1103/PhysRevA.59.4238
    [6] Stucki D, Fasel S, Gisin N, Thoma Y, Zbinden H (2007) Coherent one-way quantum key distribution. Photon Counting Applications, Quantum Optics, and Quantum Cryptography 6583: 194–197. https://doi.org/10.1117/12.722952 doi: 10.1117/12.722952
    [7] Scarani V, Acin A, Ribordy G, Gisin N (2004) Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Phys Rev Lett 92: 057901. https://doi.org/10.1103/PhysRevLett.92.057901 doi: 10.1103/PhysRevLett.92.057901
    [8] Scarani V, Acin A, Ribordy G, Gisin N (2004) Quantum cryptography protocols robust against photon number splitting attacks. Phys Rev Lett 92: 197901. https://doi.org/10.1103/PhysRevLett.92.197901 doi: 10.1103/PhysRevLett.92.197901
    [9] Lütkenhaus N (1999) Estimates for practical quantum cryptography. Phys Rev A 59: 3301-3319. https://doi.org/10.1103/PhysRevA.59.3301 doi: 10.1103/PhysRevA.59.3301
    [10] Bruß D, Lütkenhaus N (2000) Quantum Key Distribution: from Principles to Practicalities. Applicable Algebra in Engineering, Communication and Computing 10: 383-399. https://doi.org/10.1007/s002000050137 doi: 10.1007/s002000050137
    [11] Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) Experimental Quantum Cryptography. J Cryptol 5: 3-28. https://doi.org/10.1007/BF00191318 doi: 10.1007/BF00191318
    [12] Aggarwal R, Sharma H, Gupta D (2011) Analysis of Various Attacks over BB84 Quantum Key Distribution Protocol. International Journal of Computer Applications 20: 28-31. https://doi.org/10.5120/2454-3313 doi: 10.5120/2454-3313
    [13] Sniedovich M (2006) Dijkstra's algorithm revisited: the dynamic programming connexion. Control and Cybernetics 35: 599–620.
    [14] Dijkstra EW (1959) A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1: 269-271. https://doi.org/10.1007/BF01386390 doi: 10.1007/BF01386390
    [15] Bechmann-Pasquinucci H (2006) Eavesdropping without quantum memory. Phys Rev A 73: 044305. https://doi.org/10.1103/PhysRevA.73.044305 doi: 10.1103/PhysRevA.73.044305
    [16] Lütkenhaus N (1996) Anosov flows with stable and unstable differentiable distributions. Phys Rev A 54: 97-111.
    [17] Slutsky BA, Rao R, Sun PC, Fainman Y (1998) Security of quantum cryptography against individual attacks. Phys Rev A 57: 2383-2398. https://doi.org/10.1103/PhysRevA.57.2383 doi: 10.1103/PhysRevA.57.2383
    [18] Zhao B, Zha X, Chen Z, Shi R, Wang D, Peng T, et al. (2020) Performance Analysis of Quantum Key Distribution Technology for Power Business. Applied Sciences 10: 2906. https://doi.org/10.3390/app10082906 doi: 10.3390/app10082906
    [19] Bruss D, Erdélyi G, Meyer T, Riege T, Rothe J (2007) Quantum cryptography: A survey. ACM Computing Surveys 39: 6–es. https://doi.org/10.1145/1242471.1242474 doi: 10.1145/1242471.1242474
    [20] Fei YY, Meng XD, Gao M, Wang H, Ma Z (2018) Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Scientific Reports 8: 4283. https://doi.org/10.1038/s41598-018-22700-3 doi: 10.1038/s41598-018-22700-3
    [21] Mehic M, Rass S, Dervisevic E, Voznak M (2022) Tackling Denial of Service Attacks on Key Management in Software-Defined Quantum Key Distribution Networks. IEEE Access 10: 110512-110520. https://doi.org/10.1109/ACCESS.2022.3214511 doi: 10.1109/ACCESS.2022.3214511
    [22] H.-K. Lo, X. Ma, and K. Chen (2005) Decoy state quantum key distribution. Phys Rev Lett 94: 230504. https://doi.org/10.1103/PhysRevLett.94.230504 doi: 10.1103/PhysRevLett.94.230504
    [23] SujayKumar Reddy M, Chandra Mohan B (2023) Comprehensive Analysis of BB84, A Quantum Key Distribution Protocol. quant-ph eprint=2312.05609.
    [24] Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE 103: 14-76. https://doi.org/10.1109/JPROC.2014.2371999 doi: 10.1109/JPROC.2014.2371999
    [25] Jain R, Paul S (2013) Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun Mag 51: 24-31. https://doi.org/10.1109/MCOM.2013.6658648 doi: 10.1109/MCOM.2013.6658648
    [26] Casado M, Freedman MJ, Pettit J, Luo J, McKeown N, Shenker S (2007) ETHANE: Taking Control of the Enterprise. Computer Communication Review - CCR 37: 1-12. https://doi.org/10.1145/1282380.1282382 doi: 10.1145/1282380.1282382
    [27] Barabasi S, Barrera J, Bhalani P, Dalvi P, Dimiecik R, Leider A, et al. (2020) Student User Experience with the IBM QISKit Quantum Computing Interface. Lecture Notes in Networks and Systems, 547-563. https://doi.org/10.1007/978-3-030-12385-7_41
    [28] Kaur K, Singh J, Ghumman NS (2014) Mininet as Software Defined Networking Testing Platform. International conference on communication, computing & systems (ICCCS), 139–142.
    [29] Curty M, Azuma K, Lo HK (2019) Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Information 5: 64. https://doi.org/10.1038/s41534-019-0175-6 doi: 10.1038/s41534-019-0175-6
    [30] Lo HK, Curty M, Qi B (2012) Measurement-Device-Independent Quantum Key Distribution. Phys Rev Lett 108: 130503. https://doi.org/10.1103/PhysRevLett.108.130503 doi: 10.1103/PhysRevLett.108.130503
    [31] Cerf NJ, Levy M, Van Assche G (2001) Quantum distribution of Gaussian keys using squeezed states. Phys Rev A 63: 052311. https://doi.org/10.1103/PhysRevA.63.052311 doi: 10.1103/PhysRevA.63.052311
    [32] Charles H. Bennett, Gilles Brassard, and N. David Mermin (1992) Quantum cryptography without Bell's theorem. Phys Rev Lett 68: 557. DOI:https://doi.org/10.1103/PhysRevLett.68.557 doi: 10.1103/PhysRevLett.68.557
    [33] Bai JL, Xie YM, Fu Y, Yin HL, Chen ZB (2022) Asynchronous Measurement-Device-Independent Quantum Key Distribution with hybrid source. Opt Lett 48: 3551–3554.
    [34] Lo HK, Ma X, Chen K (2005) Decoy State Quantum Key Distribution. Phys Rev Lett 94: 230504. https://doi.org/10.1103/PhysRevLett.94.230504 doi: 10.1103/PhysRevLett.94.230504
    [35] Gottesman D, Lo HK, Lutkenhaus N, Preskill J (2004) Security of quantum key distribution with imperfect devices. International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings, 136. https://doi.org/10.1109/ISIT.2004.1365172
    [36] Liu WB, Li CL, Xie YM, Weng CX, Gu J, Cao XY, et al. (2021) Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum Key Distribution with High Excess Noise Tolerance. PRX Quantum 2: 040334. https://doi.org/10.1103/PRXQuantum.2.040334 doi: 10.1103/PRXQuantum.2.040334
    [37] Sim DH, Shin J, Kim MH (2023) Software-Defined Networking Orchestration for Interoperable Key Management of Quantum Key Distribution Networks. Entropy 25: 943. https://doi.org/10.3390/e25060943 doi: 10.3390/e25060943
    [38] Shirko O, Askar S (2023) A Novel Security Survival Model for Quantum Key Distribution Networks Enabled by Software-Defined Networking. IEEE Access 11: 21641–21654. https://doi.org/10.1109/ACCESS.2023.3251649 doi: 10.1109/ACCESS.2023.3251649
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1101) PDF downloads(121) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog