Research article Topical Sections

Software defined network implementation of multi-node adaptive novel quantum key distribution protocol


  • Received: 17 May 2024 Revised: 25 August 2024 Accepted: 09 September 2024 Published: 13 September 2024
  • Access to information can destroy nations and change the course of history altogether. Communication is very important, and in today's internet age, nothing moves without real-time information support. For securing communication, a commonly know technique is to use cryptography and public channels. Engineers have been working to create a better and more secure cryptographic system. Quantum key distribution stands at the top of this security system. Although QKD, based on principles of physics, provides a near-perfect security solution. It has a few drawbacks of its own, like low key generation rates and vulnerability to cyberattacks. Owning to these limitations, authors propose an adaptive quantum key distribution system based on software-defined networks. The authors propose to introduce redundancy in the key generation, thereby increasing the key generation rate and improving the resilience to cyberattacks. A performance comparison of novel quantum key distribution was done with BB84 and B92 quantum key distribution protocols.

    Citation: Hardeer Kaur, Jai Sukh Paul Singh. Software defined network implementation of multi-node adaptive novel quantum key distribution protocol[J]. AIMS Electronics and Electrical Engineering, 2024, 8(4): 410-430. doi: 10.3934/electreng.2024020

    Related Papers:

  • Access to information can destroy nations and change the course of history altogether. Communication is very important, and in today's internet age, nothing moves without real-time information support. For securing communication, a commonly know technique is to use cryptography and public channels. Engineers have been working to create a better and more secure cryptographic system. Quantum key distribution stands at the top of this security system. Although QKD, based on principles of physics, provides a near-perfect security solution. It has a few drawbacks of its own, like low key generation rates and vulnerability to cyberattacks. Owning to these limitations, authors propose an adaptive quantum key distribution system based on software-defined networks. The authors propose to introduce redundancy in the key generation, thereby increasing the key generation rate and improving the resilience to cyberattacks. A performance comparison of novel quantum key distribution was done with BB84 and B92 quantum key distribution protocols.



    加载中


    [1] Wiesner S (1983) Conjugate Coding. ACM Sigact News 15: 78-88. https://doi.org/10.1145/1008908.1008920 doi: 10.1145/1008908.1008920
    [2] Bennett CH, Brassard G (2014) Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science 560: 7-11. https://doi.org/10.1016/j.tcs.2014.05.025 doi: 10.1016/j.tcs.2014.05.025
    [3] Ekert AK (1991) Quantum cryptography based on Bell's theorem. Phys Rev Lett 67: 661-663. https://doi.org/10.1103/PhysRevLett.67.661 doi: 10.1103/PhysRevLett.67.661
    [4] Bennett CH (1992) Quantum cryptography using any two non-orthogonal states. Phys Rev Lett 68: 3121–3124. https://doi.org/10.1103/PhysRevLett.68.3121 doi: 10.1103/PhysRevLett.68.3121
    [5] Bechmann-Pasquinucci H, Gisin N (1999) Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Physical Review 59: 4238-4248. https://doi.org/10.1103/PhysRevA.59.4238 doi: 10.1103/PhysRevA.59.4238
    [6] Stucki D, Fasel S, Gisin N, Thoma Y, Zbinden H (2007) Coherent one-way quantum key distribution. Photon Counting Applications, Quantum Optics, and Quantum Cryptography 6583: 194–197. https://doi.org/10.1117/12.722952 doi: 10.1117/12.722952
    [7] Scarani V, Acin A, Ribordy G, Gisin N (2004) Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations. Phys Rev Lett 92: 057901. https://doi.org/10.1103/PhysRevLett.92.057901 doi: 10.1103/PhysRevLett.92.057901
    [8] Scarani V, Acin A, Ribordy G, Gisin N (2004) Quantum cryptography protocols robust against photon number splitting attacks. Phys Rev Lett 92: 197901. https://doi.org/10.1103/PhysRevLett.92.197901 doi: 10.1103/PhysRevLett.92.197901
    [9] Lütkenhaus N (1999) Estimates for practical quantum cryptography. Phys Rev A 59: 3301-3319. https://doi.org/10.1103/PhysRevA.59.3301 doi: 10.1103/PhysRevA.59.3301
    [10] Bruß D, Lütkenhaus N (2000) Quantum Key Distribution: from Principles to Practicalities. Applicable Algebra in Engineering, Communication and Computing 10: 383-399. https://doi.org/10.1007/s002000050137 doi: 10.1007/s002000050137
    [11] Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) Experimental Quantum Cryptography. J Cryptol 5: 3-28. https://doi.org/10.1007/BF00191318 doi: 10.1007/BF00191318
    [12] Aggarwal R, Sharma H, Gupta D (2011) Analysis of Various Attacks over BB84 Quantum Key Distribution Protocol. International Journal of Computer Applications 20: 28-31. https://doi.org/10.5120/2454-3313 doi: 10.5120/2454-3313
    [13] Sniedovich M (2006) Dijkstra's algorithm revisited: the dynamic programming connexion. Control and Cybernetics 35: 599–620.
    [14] Dijkstra EW (1959) A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1: 269-271. https://doi.org/10.1007/BF01386390 doi: 10.1007/BF01386390
    [15] Bechmann-Pasquinucci H (2006) Eavesdropping without quantum memory. Phys Rev A 73: 044305. https://doi.org/10.1103/PhysRevA.73.044305 doi: 10.1103/PhysRevA.73.044305
    [16] Lütkenhaus N (1996) Anosov flows with stable and unstable differentiable distributions. Phys Rev A 54: 97-111.
    [17] Slutsky BA, Rao R, Sun PC, Fainman Y (1998) Security of quantum cryptography against individual attacks. Phys Rev A 57: 2383-2398. https://doi.org/10.1103/PhysRevA.57.2383 doi: 10.1103/PhysRevA.57.2383
    [18] Zhao B, Zha X, Chen Z, Shi R, Wang D, Peng T, et al. (2020) Performance Analysis of Quantum Key Distribution Technology for Power Business. Applied Sciences 10: 2906. https://doi.org/10.3390/app10082906 doi: 10.3390/app10082906
    [19] Bruss D, Erdélyi G, Meyer T, Riege T, Rothe J (2007) Quantum cryptography: A survey. ACM Computing Surveys 39: 6–es. https://doi.org/10.1145/1242471.1242474 doi: 10.1145/1242471.1242474
    [20] Fei YY, Meng XD, Gao M, Wang H, Ma Z (2018) Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Scientific Reports 8: 4283. https://doi.org/10.1038/s41598-018-22700-3 doi: 10.1038/s41598-018-22700-3
    [21] Mehic M, Rass S, Dervisevic E, Voznak M (2022) Tackling Denial of Service Attacks on Key Management in Software-Defined Quantum Key Distribution Networks. IEEE Access 10: 110512-110520. https://doi.org/10.1109/ACCESS.2022.3214511 doi: 10.1109/ACCESS.2022.3214511
    [22] H.-K. Lo, X. Ma, and K. Chen (2005) Decoy state quantum key distribution. Phys Rev Lett 94: 230504. https://doi.org/10.1103/PhysRevLett.94.230504 doi: 10.1103/PhysRevLett.94.230504
    [23] SujayKumar Reddy M, Chandra Mohan B (2023) Comprehensive Analysis of BB84, A Quantum Key Distribution Protocol. quant-ph eprint=2312.05609.
    [24] Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE 103: 14-76. https://doi.org/10.1109/JPROC.2014.2371999 doi: 10.1109/JPROC.2014.2371999
    [25] Jain R, Paul S (2013) Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun Mag 51: 24-31. https://doi.org/10.1109/MCOM.2013.6658648 doi: 10.1109/MCOM.2013.6658648
    [26] Casado M, Freedman MJ, Pettit J, Luo J, McKeown N, Shenker S (2007) ETHANE: Taking Control of the Enterprise. Computer Communication Review - CCR 37: 1-12. https://doi.org/10.1145/1282380.1282382 doi: 10.1145/1282380.1282382
    [27] Barabasi S, Barrera J, Bhalani P, Dalvi P, Dimiecik R, Leider A, et al. (2020) Student User Experience with the IBM QISKit Quantum Computing Interface. Lecture Notes in Networks and Systems, 547-563. https://doi.org/10.1007/978-3-030-12385-7_41
    [28] Kaur K, Singh J, Ghumman NS (2014) Mininet as Software Defined Networking Testing Platform. International conference on communication, computing & systems (ICCCS), 139–142.
    [29] Curty M, Azuma K, Lo HK (2019) Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Information 5: 64. https://doi.org/10.1038/s41534-019-0175-6 doi: 10.1038/s41534-019-0175-6
    [30] Lo HK, Curty M, Qi B (2012) Measurement-Device-Independent Quantum Key Distribution. Phys Rev Lett 108: 130503. https://doi.org/10.1103/PhysRevLett.108.130503 doi: 10.1103/PhysRevLett.108.130503
    [31] Cerf NJ, Levy M, Van Assche G (2001) Quantum distribution of Gaussian keys using squeezed states. Phys Rev A 63: 052311. https://doi.org/10.1103/PhysRevA.63.052311 doi: 10.1103/PhysRevA.63.052311
    [32] Charles H. Bennett, Gilles Brassard, and N. David Mermin (1992) Quantum cryptography without Bell's theorem. Phys Rev Lett 68: 557. DOI:https://doi.org/10.1103/PhysRevLett.68.557 doi: 10.1103/PhysRevLett.68.557
    [33] Bai JL, Xie YM, Fu Y, Yin HL, Chen ZB (2022) Asynchronous Measurement-Device-Independent Quantum Key Distribution with hybrid source. Opt Lett 48: 3551–3554.
    [34] Lo HK, Ma X, Chen K (2005) Decoy State Quantum Key Distribution. Phys Rev Lett 94: 230504. https://doi.org/10.1103/PhysRevLett.94.230504 doi: 10.1103/PhysRevLett.94.230504
    [35] Gottesman D, Lo HK, Lutkenhaus N, Preskill J (2004) Security of quantum key distribution with imperfect devices. International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings, 136. https://doi.org/10.1109/ISIT.2004.1365172
    [36] Liu WB, Li CL, Xie YM, Weng CX, Gu J, Cao XY, et al. (2021) Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum Key Distribution with High Excess Noise Tolerance. PRX Quantum 2: 040334. https://doi.org/10.1103/PRXQuantum.2.040334 doi: 10.1103/PRXQuantum.2.040334
    [37] Sim DH, Shin J, Kim MH (2023) Software-Defined Networking Orchestration for Interoperable Key Management of Quantum Key Distribution Networks. Entropy 25: 943. https://doi.org/10.3390/e25060943 doi: 10.3390/e25060943
    [38] Shirko O, Askar S (2023) A Novel Security Survival Model for Quantum Key Distribution Networks Enabled by Software-Defined Networking. IEEE Access 11: 21641–21654. https://doi.org/10.1109/ACCESS.2023.3251649 doi: 10.1109/ACCESS.2023.3251649
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(543) PDF downloads(90) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog