Research article

Evaluation of economic feasibility of rooftop solar energy systems under multiple variables

  • Received: 26 May 2024 Revised: 21 July 2024 Accepted: 26 August 2024 Published: 10 September 2024
  • Rooftop harvesting of solar energy is a promising method to provide a great portion of household energy requirements in many parts of the world. However, the cost of solar energy systems sometimes makes the exploration of rooftop solar energy systems not attractive to property owners. This study evaluates the economic factors that could affect the decision on whether to consider the installation of solar energy systems using the estimated time that the cumulative solar savings would become positive. The economic implication of increasing the micro-generation capacity of individual households, and the impact of varied interest rates, and subsidies were also evaluated. Among the three factors that were presented, the result showed that increasing the amount of electricity that is allowed to be generated from individual rooftops will result in the highest economic attractiveness for end-users. This is also expected to move the world closer to the goal of sustainable management of non-renewable resources for present and future generations. Increasing the micro-generation capacity of electricity from photovoltaic (PV) rooftops by individual households without increasing the electricity distribution fees results in a reduction of the time to reach positive solar savings. In addition, increasing the micro-generation capacity of electricity from PV rooftops is expected to contribute to a reduction in the greenhouse gas (GHG) emissions from the electricity grid for the entire community. This study recommends the encouragement of policies that allow for the maximization of electricity generation potential from rooftops of residential and industrial buildings.

    Citation: Adekunle Olubowale Mofolasayo. Evaluation of economic feasibility of rooftop solar energy systems under multiple variables[J]. Clean Technologies and Recycling, 2024, 4(1): 61-88. doi: 10.3934/ctr.2024004

    Related Papers:

  • Rooftop harvesting of solar energy is a promising method to provide a great portion of household energy requirements in many parts of the world. However, the cost of solar energy systems sometimes makes the exploration of rooftop solar energy systems not attractive to property owners. This study evaluates the economic factors that could affect the decision on whether to consider the installation of solar energy systems using the estimated time that the cumulative solar savings would become positive. The economic implication of increasing the micro-generation capacity of individual households, and the impact of varied interest rates, and subsidies were also evaluated. Among the three factors that were presented, the result showed that increasing the amount of electricity that is allowed to be generated from individual rooftops will result in the highest economic attractiveness for end-users. This is also expected to move the world closer to the goal of sustainable management of non-renewable resources for present and future generations. Increasing the micro-generation capacity of electricity from photovoltaic (PV) rooftops by individual households without increasing the electricity distribution fees results in a reduction of the time to reach positive solar savings. In addition, increasing the micro-generation capacity of electricity from PV rooftops is expected to contribute to a reduction in the greenhouse gas (GHG) emissions from the electricity grid for the entire community. This study recommends the encouragement of policies that allow for the maximization of electricity generation potential from rooftops of residential and industrial buildings.



    加载中


    [1] Jahangiri M, Soulouknga MH, Bardei FK, et al. (2019) Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. Int J Hydrog Energy 44: 28613–28628. https://doi.org/10.1016/j.ijhydene.2019.09.130 doi: 10.1016/j.ijhydene.2019.09.130
    [2] Kumar CMS, Sigh S, Gupta MK, et al. (2023) Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain Energy Technol 55: 102905. https://doi.org/10.1016/j.seta.2022.102905 doi: 10.1016/j.seta.2022.102905
    [3] Zhang Y, Ren J, Pu Y, et al. (2019) Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew Energ 149: 577–586. https://doi.org/10.1016/j.renene.2019.12.071 doi: 10.1016/j.renene.2019.12.071
    [4] Narjabadifam N, Fouladvand J, Gul M (2023) Critical review on community-shared solar〞advantages, challenges, and future directions. Energies 16: 3412. https://doi.org/10.3390/en16083412 doi: 10.3390/en16083412
    [5] Chaianong A, Pharina C (2015) Outlook and challenges for promoting solar photovoltaic rooftops in Thailand. Renew Sust Energ Rev 48: 356–372. https://doi.org/10.1016/j.rser.2015.04.042 doi: 10.1016/j.rser.2015.04.042
    [6] Tan L, Ji X, Li M, et al. (2014) The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration. Energy Convers Manag 86: 410–417. https://doi.org/10.1016/j.enconman.2014.05.029 doi: 10.1016/j.enconman.2014.05.029
    [7] Luo W, Khoo YS, Hacke P, et al. (2017) Potential-induced degradation in photovoltaic modules: A critical review. Energy Environ Sci 10: 43. https://doi.org/10.1039/C6EE02271E doi: 10.1039/C6EE02271E
    [8] Olczak P (2023) Evaluation of degradation energy productivity of photovoltaic installations in long-term case study. Appl Energy 343: 121109. https://doi.org/10.1016/j.apenergy.2023.121109 doi: 10.1016/j.apenergy.2023.121109
    [9] Bodis K, Kougias I, Jager-Waldau A, et al. (2019) A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew Sust Energ Rev 114: 109309. https://doi.org/10.1016/j.rser.2019.109309 doi: 10.1016/j.rser.2019.109309
    [10] Aljafari B, Alqaed S, Mustafa J, et al. (2023) Energy-Economic-Environmental (3E) modeling of a near-zero energy community using the solar-power system: A case study of Najran city. J Taiwan Inst Chem Eng 148: 104685. https://doi.org/10.1016/j.jtice.2023.104685 doi: 10.1016/j.jtice.2023.104685
    [11] Atasoy AT, Schmitz H, Madlener R (2021) Mechanisms for rebound effects and solar electricity prosuming in Germany. SSRN https://doi.org/10.2139/ssrn.4706396 doi: 10.2139/ssrn.4706396
    [12] Fang H, Li J, Song W (2018) Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energ Convers Manage 174: 755–768. https://doi.org/10.1016/j.enconman.2018.08.092 doi: 10.1016/j.enconman.2018.08.092
    [13] Grimm M, Lenz L, Peters J, et al. (2020) Demand for off-grid solar electricity: Experimental evidence from Rwanda. J Assoc Environ Resour Econ 7: 417–454. https://doi.org/10.1086/707384 doi: 10.1086/707384
    [14] Ren H, Xu C, Ma Z, et al. (2021) A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities. Appl Energy Part A 306: 117985. https://doi.org/10.1016/j.apenergy.2021.117985 doi: 10.1016/j.apenergy.2021.117985
    [15] Ren H, Sun Y, Tse CFN, et al. (2023) Optimal packing and planning for large-scale distributed rooftop photovoltaic systems under complex shading effects and rooftop availabilities. Energy 274: 127280. https://doi.org/10.1016/j.energy.2023.127280 doi: 10.1016/j.energy.2023.127280
    [16] Goel M (2016) Solar rooftop in India: Policies, challenges and outlook. Green Energy Environ 1: 129–137. https://doi.org/10.1016/j.gee.2016.08.003 doi: 10.1016/j.gee.2016.08.003
    [17] Zheng N, Zhang H, Duan L, et al. (2023) Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage. Appl Energy 331: 120400. https://doi.org/10.1016/j.apenergy.2022.120400 doi: 10.1016/j.apenergy.2022.120400
    [18] Ghose D, Pradhan S, Tamuli P, et al. (2023) Optimal material for solar electric vehicle application using an integrated Fuzzy-COPRAS model. Energ Source Part A 45: 3859–3878. https://doi.org/10.1080/15567036.2019.1668879 doi: 10.1080/15567036.2019.1668879
    [19] Ren H, Ma Z, Fong AML, et al. (2022) Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities. Appl Energy 319: 119274. https://doi.org/10.1016/j.apenergy.2022.119274 doi: 10.1016/j.apenergy.2022.119274
    [20] Kim HJ, Hu J, Kim SM, et al. (2022) A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea. Renew Energy 190: 713–729. https://doi.org/10.1016/j.renene.2022.03.130 doi: 10.1016/j.renene.2022.03.130
    [21] Rooij RV, Dutch Solar Bike Path Solar Road Successful and Expanding. 2017. Available from https://cleantechnica.com/2017/03/12/dutch-solar-bike-path-solaroad-successful-expanding/.
    [22] Singh G, What Are the Disadvantages of Solar Energy? A Full Breakdown. 2024. Available from: https://blog.feniceenergy.com/what-are-the-disadvantages-of-solar-energy-a-full-breakdown/#:~:text=Solar%20panels%20need%20sunlight%20to%20work%20well%2C%20so,cloudy%20days%2C%20are%20expensive%20and%20need%20regular%20upkeep.
    [23] Bisengimana E, Zhou J, Binama M, et al. (2023) Numerical investigation of PVT coverage on an integrated building-solar-heat pump system: Technical and economic study. Sol Energy 249: 507–520. https://doi.org/10.1016/j.solener.2022.12.005 doi: 10.1016/j.solener.2022.12.005
    [24] Duffie JA, Beckman WA (2013) Solar Engineering of Thermal Processes, 4 Eds., Hoboken: Wiley.
    [25] Urban R, Solar Power Alberta (2021 Guide). 2021. Available from: https://www.energyhub.org/alberta/#rebates-tax-breaks.
    [26] Urban R, Solar Energy Maps Canada (Every Province). 2021. Available from: https://www.energyhub.org/solar-energy-maps-canada/.
    [27] Thakur M, Discount Rate Versus Interest Rate. 2023. Available from: https://www.educba.com/discount-rate-vs-interest-rate/.
    [28] Bayat H, The Prime Rate Will Rise to 7.2% As the Bank of Canada Increases the Policy Rate to 5%. 2023. Available from: https://wowa.ca/banks/prime-rates-canada.
    [29] Hseih JS (1986) Solar Energy Engineering, Amsterdam: Elsevier.
    [30] RI, Canadian Inflation Rates: 1990 to 2023. 2023. Available from: https://www.rateinflation.com/inflation-rate/canada-historical-inflation-rate/#:~:text=Historical%20inflation%20rates%20for%20Canada%20%20%20,%20%200.7%25%20%2025%20more%20rows%20.
    [31] Peurifoy RL, Schexnayder CJ, Schmitt RL, et al. (2018) Construction Planning Equipment, and Methods. 9 Eds., New York: McGraw-Hill.
    [32] Marshal A, A Guide to Mortgage Interest Calculations in Canada. Available from: http://www.yorku.ca/amarshal/mortgage.htm.
    [33] Elias G, Nominal Vs. Effective Rates. Available from: https://www.csun.edu/~ghe59995/docs/Interpreting%20Nominal%20&%20Effective%20Interest%20Rates.pdf.
    [34] Natural Resources Canada, Canada Greener Homes Loan. 2023. Available from: https://natural-resources.canada.ca/energy-efficiency/homes/canada-greener-homes-initiative/canada-greener-homes-loan/24286.
    [35] Yoomak S, Patcharoen T, Ngaopitakkul A (2019) Performance and economic evaluation of solar rooftop systems in different regions of Thailand. Sustainability 11: 6647. https://doi.org/10.3390/su11236647 doi: 10.3390/su11236647
    [36] Ren H, Ma Z, Chan AB, et al. (2023) Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities. Energy Part A 263: 125686. https://doi.org/10.1016/j.energy.2022.125686 doi: 10.1016/j.energy.2022.125686
    [37] Mofolasayo A (2024) Evaluating the potential of using solar energy in commercial and residential buildings. SSRN 4599960. https://www.elivabooks.com/en/book/book-191780
    [38] EPCOR, Solar Panel and Solar Power for Home and Business. 2023. Available from: https://www.epcor.com/products-services/power/micro-generation/Pages/solar-power.aspx?gad=1&gclid=EAIaIQobChMIwrWxp5e-_wIVdiqtBh2cVAglEAAYASAAEgJ6h_D_BwE.
    [39] Kannan R, Leong KC, Osman R, et al. (2006) Life cycle assessment study of solar PV systems: An example of a 2.7 kWp distributed solar PV system in Singapore. Sol Energy 80: 555–563. https://doi.org/10.1016/j.solener.2005.04.008 doi: 10.1016/j.solener.2005.04.008
    [40] Sherwani AF, Usmani JA (2010) Life cycle assessment of solar PV based electricity generation systems: A review. Renew Sust Energ Rev 14: 540–544. https://doi.org/10.1016/j.rser.2009.08.003 doi: 10.1016/j.rser.2009.08.003
    [41] Peng J, Lu L, Yang H (2013) Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew Sust Energ Rev 19: 255–274. https://doi.org/10.1016/j.rser.2012.11.035 doi: 10.1016/j.rser.2012.11.035
    [42] Kimura K, Kudo Y, Sato A (2016) Techno-economic analysis of solar hybrid vehicles part 1: Analysis of solar hybrid vehicle potential considering well-to-wheel GHG emissions. SAE Technical Papers 1287. https://doi.org/10.4271/2016-01-1287 doi: 10.4271/2016-01-1287
    [43] Li M, Zhang X, Li G, et al. (2016) A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application. Appl Energy 176: 138–148. https://doi.org/10.1016/j.apenergy.2016.05.070 doi: 10.1016/j.apenergy.2016.05.070
    [44] Marchi M, Niccolucci V, Pulselli RM, et al. (2018) Environmental policies for GHG emissions reduction and energy transition in the medieval historic centre of Siena (Italy): The role of solar energy. J Clean Prod 185: 829–840. https://doi.org/10.1016/j.jclepro.2018.03.068 doi: 10.1016/j.jclepro.2018.03.068
    [45] Awad H (2018) Integrating solar PV systems into residential buildings in cold-climate regions: The impact of energy-efficient homes on shaping the future smart grid. University of Alberta. https://doi.org/10.7939/R3BK17567 doi: 10.7939/R3BK17567
    [46] Kaya O, Klepacka AM, Florkowski WJ (2019) Achieving renewable energy, climate, and air quality policy goals: Rural residential investment in solar panel. J Environ Manage 248: 109309. https://doi.org/10.1016/j.jenvman.2019.109309 doi: 10.1016/j.jenvman.2019.109309
    [47] Farangi M, Soleimani EA, Zahedifar M, et al. (2020) The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran. Energy 202: 117771. https://doi.org/10.1016/j.energy.2020.117771 doi: 10.1016/j.energy.2020.117771
    [48] Canada Energy Regulator, Provincial and Territorial Energy Profiles〞Alberta. 2023. Available from: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-alberta.html#:~:text=Alberta's%20electricity%20sector%20produces%20more,GHG%20emissions%20from%20power%20generation.
    [49] Mofolasayo A (2023) Assessing and managing the direct and indirect emissions from electric and fossil-powered vehicles. Sustainability 15: 1138. https://doi.org/10.3390/su15021138 doi: 10.3390/su15021138
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1474) PDF downloads(308) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog