Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Review Special Issues

Value recovery from spent lithium-ion batteries: A review on technologies, environmental impacts, economics, and supply chain

  • # These authors contributed equally
  • The demand for lithium-ion batteries (LIBs) has surged in recent years, owing to their excellent electrochemical performance and increasing adoption in electric vehicles and renewable energy storage. As a result, the expectation is that the primary supply of LIB materials (e.g., lithium, cobalt, and nickel) will be insufficient to satisfy the demand in the next five years, creating a significant supply risk. Value recovery from spent LIBs could effectively increase the critical materials supply, which will become increasingly important as the number of spent LIBs grows. This paper reviews recent studies on developing novel technologies for value recovery from spent LIBs. The existing literature focused on hydrometallurgical-, pyrometallurgical-, and direct recycling, and their advantages and disadvantages are evaluated in this paper. Techno-economic analysis and life cycle assessment have quantified the economic and environmental benefits of LIB reuse over recycling, highlighting the research gap in LIB reuse technologies. The study also revealed challenges associated with changing battery chemistry toward less valuable metals in LIB manufacturing (e.g., replacing cobalt with nickel). More specifically, direct recycling may be impractical due to rapid technology change, and the economic and environmental incentives for recycling spent LIBs will decrease. As LIB collection constitutes a major cost, optimizing the reverse logistics supply chain is essential for maximizing the economic and environmental benefits of LIB recovery. Policies that promote LIB recovery are reviewed with a focus on Europe and the United States. Policy gaps are identified and a plan for sustainable LIB life cycle management is proposed.

    Citation: Majid Alipanah, Apurba Kumar Saha, Ehsan Vahidi, Hongyue Jin. Value recovery from spent lithium-ion batteries: A review on technologies, environmental impacts, economics, and supply chain[J]. Clean Technologies and Recycling, 2021, 1(2): 152-184. doi: 10.3934/ctr.2021008

    Related Papers:

    [1] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
    [2] Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim . Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Mathematics, 2023, 8(10): 23635-23654. doi: 10.3934/math.20231202
    [3] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [4] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [5] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [6] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [7] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
    [8] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [9] Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140
    [10] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
  • The demand for lithium-ion batteries (LIBs) has surged in recent years, owing to their excellent electrochemical performance and increasing adoption in electric vehicles and renewable energy storage. As a result, the expectation is that the primary supply of LIB materials (e.g., lithium, cobalt, and nickel) will be insufficient to satisfy the demand in the next five years, creating a significant supply risk. Value recovery from spent LIBs could effectively increase the critical materials supply, which will become increasingly important as the number of spent LIBs grows. This paper reviews recent studies on developing novel technologies for value recovery from spent LIBs. The existing literature focused on hydrometallurgical-, pyrometallurgical-, and direct recycling, and their advantages and disadvantages are evaluated in this paper. Techno-economic analysis and life cycle assessment have quantified the economic and environmental benefits of LIB reuse over recycling, highlighting the research gap in LIB reuse technologies. The study also revealed challenges associated with changing battery chemistry toward less valuable metals in LIB manufacturing (e.g., replacing cobalt with nickel). More specifically, direct recycling may be impractical due to rapid technology change, and the economic and environmental incentives for recycling spent LIBs will decrease. As LIB collection constitutes a major cost, optimizing the reverse logistics supply chain is essential for maximizing the economic and environmental benefits of LIB recovery. Policies that promote LIB recovery are reviewed with a focus on Europe and the United States. Policy gaps are identified and a plan for sustainable LIB life cycle management is proposed.



    Over the past decades, the study of nonlinear problems has been the interest of many researchers [5,10,11,14,19,24,25,26]. Also, study of fractional calculus has recently gained great momentum, and has emerged as a significant research area [5,7,15,20,21,30]. Fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes; see, for instance, the contribution [2,3,4,6,16,22,23,28,29] and references therein.

    The authors in [8] focused on the study of nonlinear jerk problems due to its various physical applications, as form

    d3ydt3=T(y,dydt,d2ydt2).

    In 2020, the authors investigated the existence and uniqueness of solutions for the following nonlocal generalized fractional Sturm-Liouville and Langevin equations:

    {cDαι+1([p(t)cDγι+1+q(t)]y(t))=T(t,y(t)),t[0,T],α,γ(0,1],y(0)+ϰ1(y)=y1R,cDγι+1y(T)+ϰ2(y)=y2R,

    where cDαι+1, cDγι+1 are the Caputo fractional derivatives, p,qC([0,T]) with |p|K>0, ϰ1,ϰ2:C(J)R are continuous functions and TC([0,T]×R) [27]. The second derivative of the accelaration (fourth derivative of position) is a physical quantity called a snap or jounce, which can be modeled as

    {dy1dt=y2(t),dv2dt=y3(t),dy3dt=y4(t),dy4dt=T(y1,y2,y3,y4). (1.1)

    It is obvious that the model (1.1) can be reduced to the following equation:

    d4y1dt4=T(y1,dy1dt,d2y1dt2,d3y1dt3). (1.2)

    Scientifically, jerk and snap are the third and fourth derivatives of our position with regard to time, respectively. The Eq (1.1) contains a 4th-order derivative of the variable y1, and it describes a 4th-order dynamical vibration model.

    The corresponding fractional model is achieved by using the fractional derivative (of order less than or equal 1) instead of the standard deivative ddt. Many types of fractional derivatives can be used here, such as Riemann-Liouville, Caputo, Hadamard, etc. We prefer to use the generalized fractional derivative (GFD), with respect to differentiable increasing function G. In 2020, Liu {et al.}, developed two iterative algorithms to determine the periods, and then the periodic solutions of nonlinear jerk equations for two possible cases with initial values unknown and initial values given [13]. The authors in a recent article [23] considered the G-fractional snap model (GFSM) with constant, initial conditions

    {cDα;Gι+1y(t)=y1(t),y(ι1)=v0,cDβ;Gι+1y1(t)=y2(t),y1(ι1)=v1,cDγ;Gι+1y2(t)=y3(t),y2(ι1)=v2,cDδ;Gι+1y3(t)=T(t,y,y1,y2,y3),y3(ι1)=v3, (1.3)

    where the G-Caputo derivatives are illustrated by the symbol

    cDη;Gι+1,η{α,β,γ,δ},0<η<1,

    here and the increasing function GC1([ι1,ι2]) is such that G(t)0, for each t[ι1,ι2] and continuous function T belongs to C([ι1,ι2]×R4) and y0,y1,y2,y3R. Abbas {et al.} studied the following coupled system of fractional differential equations:

    {RLDα1;ϱι+1y1(t)=T1(t,y1(t),y2(t)),RLDα2;ϱι+1y2(t)=T2(t,y1(t),y2(t)),

    for t[ι1,ι2] equipped with the generalized fractional integral boundary conditions

    {y1(τ1)=0,y1(ι2)=Iζ1;ϱι+1y1(η1),y2(τ2)=0,y2(ι2)=Iζ2;ϱι+1y2(η2),

    where ϱ(0,1], RLDαi;ϱι+1 denotes the generalized proportional fractional derivatives of Riemann-Liouville type of order 1<αi2, Iζi;ϱι+1 that denotes the generalized proportional fractional integrals of order 0<ζi<1 and τi,ηi(ι1,ι2) and TiC([ι1,ι2]×R2) [1].

    We center our consideration on the problem of the existence and uniqueness along with the Hyers-Ulam stability (U-H-S) of solutions for fractional nonlinear couple snap system (CSS) in the G-Caputo sense (GC) with initial conditions

    {cDq1;Gι+1v1(t)=u1(t),cDq2;Gι+1v2(t)=u2(t),cDp1;Gι+1u1(t)=w1(t),cDp2;Gι+1u2(t)=w2(t),cDr1;Gι+1w1(t)=x1(t),cDr2;Gι+1w2(t)=x2(t),cDs1;Gι+1x1(t)=h1(t,v1,v2,u1,u2,w1,w2,x1,x2),cDs2;Gι+1x2(t)=h2(t,v1,v2,u1,u2,w1,w2,x1,x2), (1.4)

    subject to the following integral boundary conditions

    v1(ι1)=ι2ι1g10(s)ds,v2(ι1)=ι2ι1g20(s)ds,u1(ι1)=ι2ι1g11(s)ds,u2(ι1)=ι2ι1g21(s)ds,w1(ι1)=ι2ι1g12(s)ds,w2(ι1)=ι2ι1g22(s)ds,x1(ι1)=ι2ι1g13(s)ds,x2(ι1)=ι2ι1g23(s)ds, (1.5)

    where the GC derivatives are illustrated by symbol

    cDη;Gι+1,η{qk,pk,rk,sk},0<qk,pk,rk,sk1,

    here the function GC1(Σ) is increasing with G(t)0, for all tΣ=[ι1,ι2] and the functions hkC(Σ×R8),(k=1,2) and gkjC(Σ,R),(j=0,1,2,3;k=1,2) are continuous functions. It is obvious that the CSS (1.4) and (1.5) can be rewritten as

    {cDsk;Gι+1(cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t))))=hk(t)vk(ι1)=ι2ι1gk0(s)ds,cDqk;Gι+1vk(t)|t=ι1=ι2ι1gk1(s)ds,cDpk;Gι+1(cDqk;Gι+1vk(t))|t=ι1=ι2ι1gk2(s)ds,cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))|t=ι1=ι2ι1gk3(s)ds,k=1,2, (1.6)

    where

    hv1,v2,k(t)=hk(t,v1(t),v2(t),cDq1;Gι+1v1(t),cDq2;Gι+1v2(t),cDp1;Gι+1(cDq1;Gι+1v1(t)),cDp2;Gι+1(cDq2;Gι+1v2(t)),cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t))),cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))).

    The main novelty of this work is that we establish our results with the help of the technique of fixed point theorems for a fractional nonlinear CSS furnished with generalized operators, which leads to some general theoretical findings involving the following special cases: G as G1(ι)=2ι, G2(ι)=ι (Caputo derivative), G3(ι)=lnι (Caputo-Hadamard derivative), G4(ι)=ι (Katugampola derivative).

    This paper is organized as follows: In Section 2, we present some necessary definitions and lemmas that are needed in the subsequent sections. In Section 3, we adopt some fixed point theorems to prove the existence and uniqueness of solutions for problem (1.4). The stability results are extensively discussed in Section 3.2. An illustrative example is presented in Section 4.

    Some primitive notions, definitions and notations, which will be utilized throughout the manuscript, are recalled here. Consider the function G with assumptions in system (1.4). We start this part by defining G-Riemann-Liouville fractional (GF-RL) integrals and derivatives [17]. For η>0, the ηth-GF-RL integral for an integrable function v:ΣR w.r.t G is illustrated as follows

    Iη;Gι+1v(t)=1Γ(η)tι1(G(t)G(σ))η1G(σ)v(σ)dσ, (2.1)

    where Γ(η)=+0ettη1dt,η>0. Let nN and G,vCn(Σ) be such that G has the same properties mentioned above. The ηth-GF-RL derivative of v is defined by

    Dη;Gι+1v(t)=A(n)Inη;Gι+1v(t)=1Γ(nη)A(n)tι1(G(t)G(σ))nη1G(σ)v(σ)dσ,

    in which n=[η]+1, where A=1G(t)ddt. The ηth-G-fractional-Caputo derivative of v is defined by cDη;Gι+1v(t)=Inη;Gι+1A(n)v(t), in which n=[η]+1, (ηN), n=η for ηN [17]. In other words,

    cDη;Gι+1v(t)={tι1(G(t)G(ξ))nη1Γ(nη)G(n)v(ξ)dξ,ηN,Anv(t),η=nN. (2.2)

    This extension (2.2) gives the Caputo derivative when G(t)=t [17]. Also, in the case G(t)=lnt, it yields the Caputo-Hadamard derivative. If vCn(Σ), the ηth-G-fractional-Caputo derivative of v is specified as [18]

    cDη;Gι+1v(t)=Dη;Gι+1(v(t)n1j=0A(j)v(ι1)j!(G(t)G(ι1))j).

    The composition rules for above G-operators are recalled in this lemma.

    Lemma 2.1. [18] Let n1<η<n and vCn(Σ). Then the following holds

    Iη;Gι+1cDη;Gι+1v(t)=v(t)n1j=0A(j)v(ι1)j![G(t)G(ι1)]j,

    for all tΣ. Moreover, if mN and vCn+m(Σ), then, the following holds

    A(m)(cDη;Gι+1v)(t)=cDη+m;Gι+1v(t)+m1j=0[G(t)G(ι1)]j+nηmΓ(j+nηm+1)A(j+n)v(ι1). (2.3)

    Observe that from Eq (2.3) if A(j)v(ι1)=0, for j=n,n+1,,n+m1, we can get the following relation

    A(m)(cDη;Gι+1v)(t)=cDη+m;Gι+1v(t),tΣ.

    Lemma 2.2. [12] Let η,ν>0, and vC(Σ). Then for each tΣ and by assuming

    Fι1(t)=G(t)G(ι1), (2.4)

    we have

    (1) Iη;Gι+1(Iν;Gι+1v)(t)=Iη+ν;Gι+1v(t);

    (2) cDη;Gι+1(Iη;Gι+1v)(t)=v(t);

    (3) Iη;Gι+1(Fι1(t))ν1=Γ(ν)Γ(ν+η)(Fι1(t))ν+η1;

    (4) cDη;Gι+1(Fa(t))ν1=Γ(ν)Γ(νη)(Fι1(t))νη1;

    (5) cDη;Gι+1(Fι1(t))j=0,n1ηn,nN,j=0,1,,n1.

    Theorem 2.3. [9] (Banach's fixed point theorem) Consider Π:YY to be a contraction operator, such that Y is a Banach space. Then, there are only one yY, such that Π(y)=y.

    Lemma 2.4. [9] (Krasnoselskii's fixed point theorem) Assume that BX is a closed convex and nonempty, and L1, L2:BX nonlinear operators, such that:

    (ⅰ) L1u+L2vB whenever u,vB;

    (ⅱ) L1 is a contraction mapping;

    (ⅲ) L2 is compact and continuous.

    Then, there exists wB, such that w=L1w+L2w.

    Definition 2.5. [29] Let X1,X2 be Banach spaces and Λ1,Λ2:X1×X2X1×X2 be two operators. Then, the operational equations system provided by

    {u1(t)=Λ1(u1,u2)(t),u2(t)=Λ2(u1,u2)(t), (2.5)

    is called U-H-S, if there exist αi>0,(i=1,,4), such that, ρ1,ρ2>0, and each solution (u1,u2)X1×X2 of the identities

    {u1Λ1(u1,u2)ρ1,u2Λ2(u1,u2)ρ2,

    there exists (v1,v2)X1×X2 a solution of system (2.5), such that

    {u1v1α1ρ1+α2ρ2,u2v2α3ρ1+α4ρ2.

    Theorem 2.6. [29] Let X1,X2 be Banach spaces and Λ1,Λ2:X1×X2X1×X2 be two operators that satisfy

    {Λ1(u1,u2)Λ1(u1,u2)α1u1u1+α2u2u2,Λ2(u1,u2)Λ2(u1,u2)α3u1u1+α4u2u2, (2.6)

    for each (u1,u2),(u1,u2)X1×X2 and if the matrix

    Ξ=(α1α2α3α4),

    it converges to zero. Then, the system (2.6) is U-H-S.

    Here, we analyze the existence properties of solutions, and their uniqueness for the proposed fractional G-CSS (1.6) using Krasnoselskii and Banach fixed point theorems. We need after lemma, which indicate the corresponding integral equation.

    Lemma 3.1. For given continuous mappings h,gk(k=0,1,2,3) belongs to C(Σ), and the solution of the linear G-snap problem is

    {cDs;Gι+1(cDr;Gι+1(cDp;Gι+1( cDq;Gι+1v(t))))=h(t),v(ι1)=bι1g0(ξ)dξ,cDq;Gι+1v(ι1)=bι1g1(ξ)dξ,cDp;Gι+1(cDq;Gι+1v(ι1))=ι2ι1g2(ξ)dξ,cDr;Gι+1(cDp;Gι+1(cDq;Gι+1v(ι1)))=ι2ι1g3(ξ)dξ, (3.1)

    where q,p,r,s(0,1], are formulated by

    v(t)=ι2ι1g0(ξ)dξ+ι2ι1(Fι1(t))qg1(ξ)Γ(q+1)dξ+ι2ι1(Fι1(t))q+pg2(ξ)Γ(q+p+1)dξ+ι2ι1(Fι1(t))q+p+rg3(ξ)Γ(q+p+r+1)dξ+tι1G(ξ)(Fξ(t))q+p+r+s1Γ(q+p+r+k)h(ξ)dξ.

    Define the vector space

    Xk={vkC(Σ,R):cDqk;Gι+1vk,cDpk;Gι+1(cDqk;Gι+1vk),cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))C(Σ,R)}.

    Then, Xk,k=1,2, are Banach spaces via the norm

    vk=suptΣ|vk(t)|+suptΣ|cDqk;Gι+1vk(t)|+suptΣ|cDpk;Gι+1(cDqk;Gι+1vk(t))|+suptΣ|cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))|.

    Hence, the product space X1×X2 is a Banach space with the norm

    (v1,v2)=max{v1,v2}.

    In view of Lemma 3.1, the solution of the coupled system (1.6) can be given as

    vk(t)=ι2ι1gk0(ξ)dξ+ι2ι1(Fι1(t))qkgk1(ξ)Γ(qk+1)dξ+ι2ι1(Fι1(t))qk+pkgk2(ξ)Γ(qk+pk+1)dξ+ι2ι1vk3(Fι1(t))qk+pk+rkgk3(ξ)Γ(qk+pk+rk+1)dξ+tι1G(ξ)(Fξ(t))qk+pk+rk+sk1Γ(qk+pk+rk+sk)hv1,v2,k(ξ)dξ.

    Define the functional Λk:XkR, such that

    (Λkvk)(t)=ι2ι1gk0(ξ)dξ+ι2ι1(Fι1(t))qkgk1(ξ)Γ(qk+1)dξ+ι2ι1(Fι1(t))qk+pkgk2(ξ)Γ(qk+pk+1)dξ+ι2ι1(Fι1(t))qk+pk+rkgk3(ξ)Γ(qk+pk+rk+1)dξ+tι1G(ξ)(Fξ(t))qk+pk+rk+sk1hv1,v2,k(ξ)Γ(qk+pk+rk+sk)dξ. (3.2)

    Under some conditions, we show next that the functional Λ:X1×X2R2 is a contraction, where Λ is given as

    Λ(v1,v2)=(Λ1(v1,v2),Λ2(v1,v2)).

    Theorem 3.2. Let hkC(Σ×R8),(k=1,2) be continuous functions. Moreover, assume that

    (H1) there exist real constants k>0,(k=1,2), so that

    |hk(t,v1,v2,,v8)hk(t,v1,v2,,v8)|k8i=1|vivi|, (3.3)

    for any tΣ, vi,viC([a,b]) and i=1,2,,8.

    Then, the fractional G-CSS (1.6) admits a unique solution on Σ if Φ<1, whenever =max{1,2}, Φ=max{Φ1,Φ2} and

    Φk=(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)+(Fι1(ι2))skΓ(sk+1), (3.4)

    with Φkk<1.

    Proof. First of all, we define a closed bounded ball

    Bε={(v1,v2)X1×X2:(v1,v2)ε},

    satisfying

    εmax{Δ1+h01Φ1(11Φ1),Δ2+h02Φ2(12Φ2)}, (3.5)

    where

    Δk=Mk0+Mk1(1+(Fι1(ι2))qkΓ(qk+1))+Mk2(1+(Fι1(ι2))pkΓ(pk+1)+(Fι1(ι2))qk+pkΓ(qk+pk+1))+Mk3(1+(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1)), (3.6)

    and

    Mkj=suptΣι2ι1|gkj(ξ)|dξ,(j=0,1,2,3),h0k=suptΣ|hk(t,0,0,0,0,0,0,0,0)|,(k=1,2).

    Now, define the operator

    Λ(v1,v2)=(Λ1(v1,v2),Λ2(v1,v2)),(v1,v2)X1×X2, (3.7)

    where Λk is given in (3.2). To show that Λ(Bε)Bε, by using hypotheses (H1), for (v1,v2)Bε and tΣ, we get

    |Λk(v1,v2)(t)|ι2ι1|gk0(ξ)|dξ+ι2ι1(Fι1(t))qk|gk1(ξ)|Γ(qk+1)dξ+ι2ι1(Fι1(t))qk+pk|gk2(ξ)|Γ(qk+pk+1)dξ+ι2ι1(Fι1(t))qk+pk+rk|gk3(ξ)|Γ(qk+pk+rk+1)dξ+Iqk+pk+rk+sk;Gι+1(|hv1,v2,k(t)hk(t,0,0,0,0,0,0,0,0)|+|hk(t,0,0,0,0,0,0,0,0)|)ba|gk0(ξ)|dξ+ι2ι1(Fι1(t))qk|gk1(ξ)|Γ(qk+1)dξ+ι2ι1(Fι1(t))qk+pk|gk2(ξ)|Γ(qk+pk+1)d+ι2ι1(Fι1(t))qk+pk+rk|gk3(ξ)|Γ(qk+pk+rk+1)dξ+Iqk+pk+rk+sk;Gι+1(k(|v1(t)|+|v2(t)|+|cDq1;Gι+1v1(t)|+|cDq2;Gι+1v2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Ga+v1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))|)+|hk(t,0,0,0,0,0,0,0,0)|)Mk0+Mk1(Fι1(ι2))qkΓ(qk+1)+Mk2(Fι1(ι2))qk+pkΓ(qk+pk+1)+Mk3(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1)+(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)(k(v1+v2)+h0k). (3.8)

    Also,

    |cDqk;Gι+1(Λk(v1,v2)(t))|ι2ι1|gk1(ξ)|dξ+ι2ι1(Fι1(t))pk|gk2(ξ)|Γ(pk+1)dξ+ι2ι1(Fι1(t))pk+rk|gk3(ξ)|Γ(pk+rk+1)dξ+Ipk+rk+sk;Gι+1(|hv1,v2,k(t)hk(t,0,0,0,0,0,0,0,0)|+|hk(t,0,0,0,0,0,0,0,0)|)ι2ι1|gk1(ξ)|dξ+ι2ι1(Fι1(t))pk|gk2(ξ)|Γ(pk+1)dξ+ι2ι1(Fι1(t))pk+rk|gk3(ξ)|Γ(pk+rk+1)dξ+Ipk+rk+sk;Gι+1(k(|v1(t)|+|v2(t)|+|cDq1;Gι+1v1(t)|+|cDq2;Gι+1v2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))|)+|hk(t,0,0,0,0,0,0,0,0)|)Mk1+Mk2(Fι1(ι2))pkΓ(pk+1)+Mk3(Fι1(ι2))pk+rkΓ(pk+rk+1)+Ipk+rk+sk;Gι+1(k(v1+v2)+h0k)Mk1+Mk2(Fι1(ι2))pkΓ(pk+1)+Mk3(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)(k(v1+v2)+h0k), (3.9)
    |cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2)(t)))|Mk2+Mk3(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)(k(v1+v2)+h0k), (3.10)

    and

    |cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2)(t))))|Mk3+(Fι1(ι2))skΓ(sk+1)(k(v1+v2)+h0k). (3.11)

    Thus, due to (3.8)–(3.11) and (3.5), we obtain

    Λk(v1,v2)=suptΣ|Λk(v1,v2)(t)|+suptΣ|cDqk;Gι+1(Λk(v1,v2))(t)|+suptΣ|cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2))(t))|+suptΣ|cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1(Λk(v1,v2))(t)))|[Mk0+Mk1(1+(Fι1(ι2))qkΓ(qk+1))+Mk2(1+(Fι1(ι2))pkΓ(pk+1)+(Fι1(ι2))qk+pkΓ(qk+pk+1))+Mk3(1+(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1))]+(k(v1,v2)+h0k)[(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)+(Fι1(ι2))skΓ(sk+1)][Mk0+Mk1(1+(Fι1(ι2))qkΓ(qk+1))+Mk2(1+(Fι1(ι2))pkΓ(pk+1)+(Fι1(ι2))qk+pkΓ(qk+pk+1))+Mk3(1+(Fι1(ι2))rkΓ(rk+1)+(Fι1(ι2))pk+rkΓ(pk+rk+1)+(Fι1(ι2))qk+pk+rkΓ(qk+pk+rk+1))]+(kε+h0k)[(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)+(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)+(Fι1(ι2))rk+skΓ(rk+sk+1)+(Fι1(ι2))skΓ(sk+1)]Δk+(kε+h0k)Φkε.

    Hence, we deduce that Λ(v1,v2)ε, for (v1,v2)Bε, so Λ(Bε)Bε. Next, we prove that Λ is a contraction operator, by using (H1), for (v1,v2),(u1,u2)Bε and tΣ, we have

    |Λk(v1,v2)(t)Λk(u1,u2)(t)|Iqk+pk+rk+sk;Gι+1|hv1,v2,k(t)hu1,u2,k(t)|Iqk+pk+rk+sk;Gι+1(k(|v1(t)u1(t)|+|v2(t)u2(t)|+|cDq1;Gι+1v1(t)cDq1;Gι+1u1(t)|+|cDq2;Gι+1v2(t)cDq2;Gι+1u2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))cDp1;Gι+1(cDq1;Gι+1u1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))cDp2;Gι+1(cDq2;Gι+1u2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t)))cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1u1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))cDr2;Ga+(cDp2;Gι+1(cDq2;Gι+1u2(t)))|))Iqk+pk+rk+sk;Gι+1(k(v1u1+v2u2))(Fι1(ι2))qk+pk+rk+skΓ(qk+pk+rk+sk+1)(k(v1u1+v2u2)), (3.12)
    |cDqk;Gι+1(Λk(v1,v2))(t)cDqk;Gι+1(Λk(u1,u2))(t)|Ipk+rk+sk;Gι+1|hv1,v2,k(t)hu1,u2,k(t)|Ipk+rk+sk;Gι+1(k(|v1(t)u1(t)|+|v2(t)u2(t)|+|cDq1;Gι+1v1(t)cDq1;Gι+1u1(t)|+|cDq2;Gι+1v2(t)cDq2;Gι+1u2(t)|+|cDp1;Gι+1(cDq1;Gι+1v1(t))cDp1;Gι+1(cDq1;Gι+1u1(t))|+|cDp2;Gι+1(cDq2;Gι+1v2(t))cDp2;Gι+1(cDq2;Gι+1u2(t))|+|cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t)))cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1u1(t)))|+|cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1u2(t)))|))Ipk+rk+sk;Gι+1(k(v1u1+v2u2))(Fι1(ι2))pk+rk+skΓ(pk+rk+sk+1)(k(v1u1+v2u2)), (3.13)
    (3.14)

    and

    (3.15)

    Therefore, due to (3.12)–(3.15), we get

    Consequently,

    Since , therefore, is a contraction operator. Thus, by Banach's fixed point Theorem 2.3, the operator has a unique fixed point, which is the unique solution of fractional G-snap system (1.6) and the proof is finished.

    Next, we are ready to study the existence of solution of fractional - (1.6). For this regaed, we define the operators , such that , where

    (3.16)

    and

    (3.17)

    Theorem 3.3. Let be continuous functions. Moreover, assume that

    (H2) there exist real constants , so that

    Then, the fractional - (1.6) has at least one solution on .

    Proof. At the beginning, we define a closed bounded ball

    which satisfying

    (3.18)

    where

    Firstly, we will prove . By using , for and , we have

    (3.19)

    and

    (3.20)

    Hence, from (3.19) and (3.20), we have

    Then,

    this implying that .

    Secondly, we will prove that the operator is a contraction mapping. It is clearly that is a contraction with the constant zero. Thus, is a contraction operator.

    Third, we will prove that the operator is a continuous. Let be a sequence of a bounded ball , such that as in , we find that

    By continuity of , we have

    as . So, is a continuous operator.

    Fourth, we will prove that the operator is a compact operator. By using , for and with , we have

    As , we obtain

    impling that is equicontinuous. Furthermore, in view of (3.19), is uniformly bounded. Hence, due to the Arzelá-Ascoli theorem, we deduce that is a compact operator. Then, all the conditions of Theorem 2.4 are holding. Thus, fractional - (1.6) has at least one solution . The proof is completed.

    In this part, we review the stability criterion in the context of the -- for solutions of the fractional - (1.6).

    Theorem 3.4. Let and hold. Then, the fractional - (1.6) is --.

    Proof. According to Theorem 3.2, we have

    which yields that

    where

    Since and each geometric sequences hence as Therefore, due to Theorem 2.6, the fractional - (1.6) is -.

    We allow here a few illustrations of the fractional -, based on numerical recreation to analyze their solutions. In these cases, we consider distinctive cases of the function to cover the Caputo, Caputo-Hadamard and Katugampola adaptations.

    Example 4.1. Based on the system (1.6), by assuming ,

    we consider a fractional as

    (4.1)

    for and

    Clearly,

    and

    Thus, we can rewrite the above system as Eq (1.6). At present, we will have

    with and

    with . So . Now, from (3.6), we consider four cases for as:

    ,

    (Caputo derivative),

    (Caputo-Hadamard derivative),

    (Katugampola derivative).

    Thus,

    (4.2)

    and

    (4.3)

    Hence,

    and we have

    On the other hand, by using equations in (3.7), we get

    for and

    for . By employing Eq (3.6), we obtain

    and so we can choose

    We define the Algorithm 1 for obtaining the values of , and , which is shown in the MATLAB commands. One can check numerical results of , and in Tables 1 and 2 for , and in Figure 1. Accordingly, all requirements of Theorem 3.2 hold, and so the fractional nonlinear couple snap system in the -Caputo sense with initial conditions (4.1) has one unique solution on the .

    Table 1.  Numerical values of and in Example 4.1 when and .

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical values of and in Example 4.1 when and .

     | Show Table
    DownLoad: CSV
    Figure 1.  Graphical representation of and for in Example 4.1.

    In this paper, we defined a new fractional mathematical model of a BVP consisting of a coupled snap equation with integral boundary conditions in the framework of the generalized sequential -operators, and turned to the investigation of the qualitative behaviors of its solutions, including existence, uniqueness, stability and inclusion version. To confirm the existence criterion, we used the Krasnoselskii theorem, and to confirm the uniqueness criterion, we utilized the Banach theorem. Different kinds of stability criteria were studied based on the standard definitions of these notions. In the final step, we designed examples, and, by assuming different cases for the function and order , we obtained numerical results of these two suggested fractional coupled snap systems in some versions, such as Caputo, Caputo-Hadamard and Katugampola.

    We declare that no competing interests.

    Table Algorithm A1.  MATLAB lines for Example 4.1.
    1   clear;
    2   format short;
    3   syms v e;
    4   q_1=0.83; q_2=0.36; p_1=0.92; p_2=0.45;
    5   r_1=0.12; r_2=0.87; s_1=0.54; s_2=0.27;
    6   iota_1=0.05; iota_2=0.95;
    7   G1=2^v; G2=v; G3=log(v); G4=sqrt(v);
    8   g_10=v/2; g_20=sqrt(v);
    9   g_11=v^2/5; g_21=3*v/2;
    10   g_12=v/sqrt(2); g_22=sqrt(v)/7;
    11   g_13=sin(v*pi); g_23=cos(v*pi);
    12   mathrmv_1=int(g_10, v, iota_1, iota_2);
    13   mathrmv_2=int(g_20, v, iota_1, iota_2);
    14   mathrmu_1=int(g_11, v, iota_1, iota_2);
    15   mathrmu_2=int(g_21, v, iota_1, iota_2);
    16   mathrmw_1=int(g_12, v, iota_1, iota_2);
    17   mathrmw_2=int(g_22, v, iota_1, iota_2);
    18   mathrmx_1=int(g_13, v, iota_1, iota_2);
    19   mathrmx_2=int(g_23, v, iota_1, iota_2);
    20   ell_1=5/36; ell_2=1/(5*sqrt(3));
    21   ell=max(ell_1, ell_2);
    22   h_1_0=5/36+1/(36*(1+sqrt(7)));
    23   h_2_0=1/(5*sqrt(3))+1/(18*(1+sqrt(15)));
    24   %G1
    25   t=iota_1;
    26   column=1;
    27   nn=1;
    28   while t < =iota_2+0.08
    29       MI(nn, column) = nn;
    30       MI(nn, column+1) = t;
    31       Phi_1=(eval(subs(G1, {v}, {iota_2}))...
    32           -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    33           /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))...
    34           -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1+s_1)...
    35            /gamma(p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))...
    36           -eval(subs(G1, {v}, {iota_1})))^(r_1+s_1)...
    37           /gamma(r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))...
    38           -eval(subs(G1, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    39       MI(nn, column+2)=Phi_1*ell_1;
    40       MI(nn, column+3)=Phi_1*ell_1 < 1;
    41       Phi_2=(eval(subs(G1, {v}, {iota_2}))...
    42             -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    43             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))...
    44             -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2+s_2)...
    45             /gamma(p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))...
    46             -eval(subs(G1, {v}, {iota_1})))^(r_2+s_2)...
    47             /gamma(r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))...
    48             -eval(subs(G1, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    49       MI(nn, column+4)=Phi_2*ell_2;
    50       MI(nn, column+5)=Phi_2*ell_2 < 1;
    51       Phi=max(Phi_1, Phi_2);
    52       MI(nn, column+6)=Phi;
    53       MI(nn, column+7)=Phi*ell;
    54       MI(nn, column+8)=Phi*ell < 1;
    55       M_10=int(abs(g_10), v, iota_1, t);
    56       MI(nn, column+9)=M_10;
    57       M_11=int(abs(g_11), v, iota_1, t);
    58       MI(nn, column+10)=M_11;
    59       M_12=int(abs(g_12), v, iota_1, t);
    60       MI(nn, column+11)=M_12;
    61       M_13=int(abs(g_13), v, iota_1, t);
    62       MI(nn, column+12)=M_13;
    63       M_20=int(abs(g_20), v, iota_1, iota_2);
    64       MI(nn, column+13)=M_20;
    65       M_21=int(abs(g_21), v, iota_1, t);
    66       MI(nn, column+14)=M_21;
    67       M_22=int(abs(g_22), v, iota_1, t);
    68       MI(nn, column+15)=M_22;
    69       M_23=int(abs(g_23), v, iota_1, t);
    70       MI(nn, column+16)=M_23;
    71       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    72       MI(nn, column+17)=M_1j;
    73       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    74       MI(nn, column+18)=M_2j;
    75       Delta_1=M_10+M_11*(1+(eval(subs(G1, {v}, {iota_2}))...
    76             -eval(subs(G1, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    77             +M_12*(1+(eval(subs(G1, {v}, {iota_2}))...
    78             -eval(subs(G1, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    79             +(eval(subs(G1, {v}, {iota_2}))...
    80             -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))...
    81             +M_13*(1+(eval(subs(G1, {v}, {iota_2}))...
    82             -eval(subs(G1, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    83             +(eval(subs(G1, {v}, {iota_2}))...
    84             -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)...
    85             +(eval(subs(G1, {v}, {iota_2}))...
    86             -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1)...
    87             /gamma(q_1+p_1+r_1+1));
    88       MI(nn, column+19)=Delta_1;
    89       Delta_2=M_20+M_21*(1+(eval(subs(G1, {v}, {iota_2}))...
    90             -eval(subs(G1, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    91             +M_22*(1+(eval(subs(G1, {v}, {iota_2}))...
    92             -eval(subs(G1, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    93             +(eval(subs(G1, {v}, {iota_2}))...
    94             -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    95             +M_23*(1+(eval(subs(G1, {v}, {iota_2}))...
    96             -eval(subs(G1, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    97             +(eval(subs(G1, {v}, {iota_2}))...
    98             -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    99             +(eval(subs(G1, {v}, {iota_2}))...
    100             -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2)...
    101             /gamma(q_2+p_2+r_2+1));
    102       MI(nn, column+20)=Delta_2;
    103       D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    104       MI(nn, column+21)=D1;
    105       D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    106       MI(nn, column+22)=D2;
    107       MI(nn, column+23)=max(D1, D2);
    108       t=t+0.08;
    109       nn=nn+1;
    110   end;
    111   %G2
    112   t=iota_1;
    113   column=25;
    114   nn=1;
    115   while t < =iota_2+0.08
    116       MI(nn, column) = nn;
    117       MI(nn, column+1) = t;
    118       Phi_1=(eval(subs(G2, {v}, {iota_2}))...
    119             -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    120             /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    121             -eval(subs(G2, {v}, {iota_1})))^(p_1+r_1+s_1)...
    122             /gamma(p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    123             -eval(subs(G2, {v}, {iota_1})))^(r_1+s_1)...
    124             /gamma(r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    125             -eval(subs(G2, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    126       MI(nn, column+2)=Phi_1*ell_1;
    127       MI(nn, column+3)=Phi_1*ell_1 < 1;
    128       Phi_2=(eval(subs(G2, {v}, {iota_2}))...
    129             -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    130             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))...
    131             -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2+s_2)...
    132             /gamma(p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))...
    133             -eval(subs(G2, {v}, {iota_1})))^(r_2+s_2)...
    134             /gamma(r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))...
    135             -eval(subs(G2, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    136       MI(nn, column+4)=Phi_2*ell_2;
    137       MI(nn, column+5)=Phi_2*ell_2 < 1;
    138       Phi=max(Phi_1, Phi_2);
    139       MI(nn, column+6)=Phi;
    140       MI(nn, column+7)=Phi*ell;
    141       MI(nn, column+8)=Phi*ell < 1;
    142       M_10=int(abs(g_10), v, iota_1, t);
    143       MI(nn, column+9)=M_10;
    144       M_11=int(abs(g_11), v, iota_1, t);
    145       MI(nn, column+10)=M_11;
    146       M_12=int(abs(g_12), v, iota_1, t);
    147       MI(nn, column+11)=M_12;
    148       M_13=int(abs(g_13), v, iota_1, t);
    149       MI(nn, column+12)=M_13;
    150       M_20=int(abs(g_20), v, iota_1, iota_2);
    151       MI(nn, column+13)=M_20;
    152       M_21=int(abs(g_21), v, iota_1, t);
    153       MI(nn, column+14)=M_21;
    154       M_22=int(abs(g_22), v, iota_1, t);
    155       MI(nn, column+15)=M_22;
    156       M_23=int(abs(g_23), v, iota_1, t);
    157       MI(nn, column+16)=M_23;
    158       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    159       MI(nn, column+17)=M_1j;
    160       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    161       MI(nn, column+18)=M_2j;
    162       Delta_1=M_10+M_11*(1+(eval(subs(G2, {v}, {iota_2}))...
    163             -eval(subs(G2, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    164             +M_12*(1+(eval(subs(G2, {v}, {iota_2}))...
    165             -eval(subs(G2, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    166             +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(q_1+p_1)...
    167             /gamma(q_1+p_1+1))+M_13*(1+(eval(subs(G2, {v}, {iota_2}))...
    168             -eval(subs(G2, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    169             +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(p_1+r_1)...
    170             /gamma(p_1+r_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    171             -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1)/gamma(q_1+p_1+r_1+1));
    172       MI(nn, column+19)=Delta_1;
    173       Delta_2=M_20+M_21*(1+(eval(subs(G2, {v}, {iota_2}))...
    174             -eval(subs(G2, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    175             +M_22*(1+(eval(subs(G2, {v}, {iota_2}))...
    176             -eval(subs(G2, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    177             +(eval(subs(G2, {v}, {iota_2}))...
    178             -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    179             +M_23*(1+(eval(subs(G2, {v}, {iota_2}))...
    180             -eval(subs(G2, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    181             +(eval(subs(G2, {v}, {iota_2}))...
    182             -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    183             +(eval(subs(G2, {v}, {iota_2}))...
    184             -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2)...
    185             /gamma(q_2+p_2+r_2+1));
    186       MI(nn, column+20)=Delta_2;
    187       D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    188       MI(nn, column+21)=D1;
    189       D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    190       MI(nn, column+22)=D2;
    191       MI(nn, column+23)=max(D1, D2);
    192       t=t+0.08;
    193       nn=nn+1;
    194   end;
    195   %G3
    196   t=iota_1;
    197   column=49;
    198   nn=1;
    199   while t < =iota_2+0.08
    200       MI(nn, column) = nn;
    201       MI(nn, column+1) = t;
    202       Phi_1=(eval(subs(G3, {v}, {iota_2}))...
    203             -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    204             /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))...
    205             -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1+s_1)...
    206             /gamma(p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))...
    207             -eval(subs(G3, {v}, {iota_1})))^(r_1+s_1)...
    208             /gamma(r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))...
    209             -eval(subs(G3, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    210       MI(nn, column+2)=Phi_1*ell_1;
    211       MI(nn, column+3)=Phi_1*ell_1 < 1;
    212       Phi_2=(eval(subs(G3, {v}, {iota_2}))...
    213             -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    214             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))...
    215             -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2+s_2)...
    216             /gamma(p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))...
    217             -eval(subs(G3, {v}, {iota_1})))^(r_2+s_2)...
    218             /gamma(r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))...
    219             -eval(subs(G3, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    220       MI(nn, column+4)=Phi_2*ell_2;
    221       MI(nn, column+5)=Phi_2*ell_2 < 1;
    222       Phi=max(Phi_1, Phi_2);
    223       MI(nn, column+6)=Phi;
    224       MI(nn, column+7)=Phi*ell;
    225       MI(nn, column+8)=Phi*ell < 1;
    226       M_10=int(abs(g_10), v, iota_1, t);
    227       MI(nn, column+9)=M_10;
    228       M_11=int(abs(g_11), v, iota_1, t);
    229       MI(nn, column+10)=M_11;
    230       M_12=int(abs(g_12), v, iota_1, t);
    231       MI(nn, column+11)=M_12;
    232       M_13=int(abs(g_13), v, iota_1, t);
    233       MI(nn, column+12)=M_13;
    234       M_20=int(abs(g_20), v, iota_1, iota_2);
    235       MI(nn, column+13)=M_20;
    236       M_21=int(abs(g_21), v, iota_1, t);
    237       MI(nn, column+14)=M_21;
    238       M_22=int(abs(g_22), v, iota_1, t);
    239       MI(nn, column+15)=M_22;
    240       M_23=int(abs(g_23), v, iota_1, t);
    241       MI(nn, column+16)=M_23;
    242       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    243       MI(nn, column+17)=M_1j;
    244       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    245       MI(nn, column+18)=M_2j;
    246       Delta_1=M_10+M_11*(1+(eval(subs(G3, {v}, {iota_2}))...
    247             -eval(subs(G3, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    248             +M_12*(1+(eval(subs(G3, {v}, {iota_2}))...
    249             -eval(subs(G3, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    250             +(eval(subs(G3, {v}, {iota_2}))...
    251             -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))...
    252             +M_13*(1+(eval(subs(G3, {v}, {iota_2}))...
    253             -eval(subs(G3, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    254             +(eval(subs(G3, {v}, {iota_2}))...
    255             -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)...
    256             +(eval(subs(G3, {v}, {iota_2}))...
    257             -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1)...
    258             /gamma(q_1+p_1+r_1+1));
    259       MI(nn, column+19)=Delta_1;
    260       Delta_2=M_20+M_21*(1+(eval(subs(G3, {v}, {iota_2}))...
    261             -eval(subs(G3, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    262             +M_22*(1+(eval(subs(G3, {v}, {iota_2}))...
    263             -eval(subs(G3, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    264             +(eval(subs(G3, {v}, {iota_2}))...
    265             -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    266             +M_23*(1+(eval(subs(G3, {v}, {iota_2}))...
    267             -eval(subs(G3, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    268             +(eval(subs(G3, {v}, {iota_2}))...
    269             -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    270             +(eval(subs(G3, {v}, {iota_2}))...
    271             -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2)...
    272             /gamma(q_2+p_2+r_2+1));
    273             MI(nn, column+20)=Delta_2;
    274             D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    275             MI(nn, column+21)=D1;
    276             D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    277             MI(nn, column+22)=D2;
    278             MI(nn, column+23)=max(D1, D2);
    279             t=t+0.08;
    280             nn=nn+1;
    281   end;
    282   %G4
    283   t=iota_1;
    284   column=73;
    285   nn=1;
    286   while t < =iota_2+0.08
    287       MI(nn, column) = nn;
    288       MI(nn, column+1) = t;
    289       Phi_1=(eval(subs(G4, {v}, {iota_2}))...
    290             -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    291             /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))...
    292             -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1+s_1)...
    293             /gamma(p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))...
    294             -eval(subs(G4, {v}, {iota_1})))^(r_1+s_1)...
    295             /gamma(r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))...
    296             -eval(subs(G4, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    297       MI(nn, column+2)=Phi_1*ell_1;
    298       MI(nn, column+3)=Phi_1*ell_1 < 1;
    299       Phi_2=(eval(subs(G4, {v}, {iota_2}))...
    300             -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    301             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))...
    302             -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2+s_2)...
    303             /gamma(p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))...
    304             -eval(subs(G4, {v}, {iota_1})))^(r_2+s_2)...
    305             /gamma(r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))...
    306             -eval(subs(G4, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    307       MI(nn, column+4)=Phi_2*ell_2;
    308       MI(nn, column+5)=Phi_2*ell_2 < 1;
    309       Phi=max(Phi_1, Phi_2);
    310       MI(nn, column+6)=Phi;
    311       MI(nn, column+7)=Phi*ell;
    312       MI(nn, column+8)=Phi*ell < 1;
    313       M_10=int(abs(g_10), v, iota_1, t);
    314       MI(nn, column+9)=M_10;
    315       M_11=int(abs(g_11), v, iota_1, t);
    316       MI(nn, column+10)=M_11;
    317       M_12=int(abs(g_12), v, iota_1, t);
    318       MI(nn, column+11)=M_12;
    319       M_13=int(abs(g_13), v, iota_1, t);
    320       MI(nn, column+12)=M_13;
    321       M_20=int(abs(g_20), v, iota_1, iota_2);
    322       MI(nn, column+13)=M_20;
    323       M_21=int(abs(g_21), v, iota_1, t);
    324       MI(nn, column+14)=M_21;
    325       M_22=int(abs(g_22), v, iota_1, t);
    326       MI(nn, column+15)=M_22;
    327       M_23=int(abs(g_23), v, iota_1, t);
    328       MI(nn, column+16)=M_23;
    329       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    330       MI(nn, column+17)=M_1j;
    331       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    332       MI(nn, column+18)=M_2j;
    333       Delta_1=M_10+M_11*(1+(eval(subs(G4, {v}, {iota_2}))...
    334             -eval(subs(G4, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    335             +M_12*(1+(eval(subs(G4, {v}, {iota_2}))...
    336             -eval(subs(G4, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    337             +(eval(subs(G4, {v}, {iota_2}))...
    338             -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))...
    339             +M_13*(1+(eval(subs(G4, {v}, {iota_2}))...
    340             -eval(subs(G4, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    341             +(eval(subs(G4, {v}, {iota_2}))...
    342             -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)...
    343             +(eval(subs(G4, {v}, {iota_2}))...
    344             -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1)...
    345             /gamma(q_1+p_1+r_1+1));
    346       MI(nn, column+19)=Delta_1;
    347       Delta_2=M_20+M_21*(1+(eval(subs(G4, {v}, {iota_2}))...
    348             -eval(subs(G4, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    349             +M_22*(1+(eval(subs(G4, {v}, {iota_2}))...
    350             -eval(subs(G4, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    351             +(eval(subs(G4, {v}, {iota_2}))...
    352             -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    353             +M_23*(1+(eval(subs(G4, {v}, {iota_2}))...
    354             -eval(subs(G4, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    355             +(eval(subs(G4, {v}, {iota_2}))...
    356             -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    357             +(eval(subs(G4, {v}, {iota_2}))...
    358             -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2)...
    359             /gamma(q_2+p_2+r_2+1));
    360       MI(nn, column+20)=Delta_2;
    361       D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    362       MI(nn, column+21)=D1;
    363       D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    364       MI(nn, column+22)=D2;
    365       MI(nn, column+23)=max(D1, D2);
    366       t=t+0.08;
    367       nn=nn+1;
    368   end;

     | Show Table
    DownLoad: CSV


    [1] Grand view research (2020) Lithium-ion battery market Size, Share & Trends analysis report by product (LCO, LFP, NCA, LMO, lithium nickel manganese cobalt), by application, by region, and segmented forecasts, 2020-2027.
    [2] Lithium ion battery Market, Size, Share, COVID impact analysis and forecast to 2027. ResearchAndMarket, 2021.
    [3] Boudette NE, Davenport C (2021) GM announcement Shakes Up U.S, Automakers' transition to electric cars. New York Times. Available from: https://www.nytimes.com/2021/01/29/business/general-motors-electric-cars.html.
    [4] Deng J, Bae C, Denlinger A, et al. (2020) Electric vehicles batteries: requirements and challenges. Joule 4: 511-515. doi: 10.1016/j.joule.2020.01.013
    [5] Yu A, Sumangil M (2021) Top electric vehicle markets dominate lithium-ion battery capacity growth. S & P glob mark Intell. Available from: https://www.spglobal.com/marketintelligence/en/news-insights/blog/top-electric-vehicle-markets-dominate-lithium-ion-battery-capacity-growth.
    [6] Roskill (2020) The resurgence of LFP cathodes: A safe and cost-efficient battery active material to support the EV revolution.
    [7] Yan W, Cao H, Zhang Y, et al. (2020) Rethinking Chinese supply resilience of critical metals in lithium-ion batteries. J Clean Prod 256: 120719. doi: 10.1016/j.jclepro.2020.120719
    [8] Forecasts (2021) Lithium, cobalt, graphite, and nickel. Benchmark Mineral Intelligence.
    [9] Tolomeo R, De Feo G, Adami R, et al. (2020) Application of life cycle assessment to lithium ion batteries in the automotive Sector. Sustainability 12: 4628. doi: 10.3390/su12114628
    [10] Melin HE (2019) The lithium-ion battery end-of-life market - A basesline study. Glob Batter Alliance 1-11.
    [11] Arshad F, Li L, Amin K, et al. (2020) A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries. ACS Sustainable Chem Eng 8: 13527-13554. doi: 10.1021/acssuschemeng.0c04940
    [12] Li L, Qu W, Zhang X, et al. (2015) Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources 282: 544-551. doi: 10.1016/j.jpowsour.2015.02.073
    [13] Melin HE (2018) The lithium-ion battery end-of-life market 2018-2025. Circular Energy Storage. United Kingdom 6.
    [14] Campagnol N, Eddy J, Hagenbruch T, et al. (2018) Metal mining constraints on the electric mobility horizon, McKinsey Company.
    [15] Roskill (2021) Cathode and precursor materials: outlook to 2030, 1st ed 2021.
    [16] Merriman D, Liang L, Shang KG, et al. (2021) VW Power Day: A roadmap for e-mobility, battery manufacturing and smart grid rollout.
    [17] Gaines L, Dai Q, Vaughey JT, et al. (2021) Direct recycling R & D at the ReCell center. Recycling 6: 31. doi: 10.3390/recycling6020031
    [18] Ding Y, Cano ZP, Yu A, et al. (2019) Automotive Li-ion batteries: current status and future perspectives. Electrochem Energ Rev 2: 1-28. doi: 10.1007/s41918-018-0022-z
    [19] EFORE. Comparison of lithium-ion batteries 2020. Available from: https://www.efore.com/content/uploads/2020/12/Comparison_of_lithium_batteries_20201209.pdf.
    [20] The White House (2021) Building resilient supply chains, revitalizing american manufacturing, and fostering broad-based growth: 100-day reviews under executive order 14017.
    [21] FCAB (2021) National blueprint for lithium batteries 2021-2030. Available from: https://www.energy.gov/sites/default/files/2021-06/FCAB%20National%20Blueprint%20Lithium%20Batteries%200621_0.pdf.
    [22] NAATBatt (2021) Developing a supply chain for lithium-ion batteries in north America. NAATBatt - webinar.
    [23] Gaines L (2018) Lithium-ion battery recycling processes: research towards a sustainable course. Sustain Mater Technol 17: e00068.
    [24] Huang Y, Han G, Liu J, et al. (2016) A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. J Power Sources 325: 555-564. doi: 10.1016/j.jpowsour.2016.06.072
    [25] Wang L, Wang X, Yang W (2020) Optimal design of electric vehicle battery recycling network - From the perspective of electric vehicle manufacturers. Appl Energy 275.
    [26] Vieceli N, Nogueira CA, Guimarães C, et al. (2018) Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Waste Manag 71: 350-361. doi: 10.1016/j.wasman.2017.09.032
    [27] Zhang X, Xie Y, Cao H, et al. (2014) A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries. Waste Manag 34: 1715-1724. doi: 10.1016/j.wasman.2014.05.023
    [28] Rothermel S, Evertz M, Kasnatscheew J, et al. (2016) Graphite recycling from spent lithium-ion batteries. ChemSusChem 9: 3473-3484. doi: 10.1002/cssc.201601062
    [29] Ahmadi L, Young SB, Fowler M, et al. (2017) A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int J Life Cycle Assess 22: 111-124. doi: 10.1007/s11367-015-0959-7
    [30] Pesaran A (2021) Supporting the Li-ion battery supply chain via PEV battery reuse, developing a supply chain for lithium-ion batteries in north America. NAATBatt - webinar.
    [31] Neubauer J, Smith K, Wood E, et al. (2015) Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries. Natl Renew Energy Lab 23-62.
    [32] Heymans C, Walker SB, Young SB, et al. (2014) Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 71: 22-30. doi: 10.1016/j.enpol.2014.04.016
    [33] Dai Q, Spangenberger J, Ahmed S, et al. (2019) EverBatt: A closed-loop battery recycling cost and environmental impacts model. Argonne Natl Lab 1-88.
    [34] Alfaro-Algaba M, Ramirez FJ (2020) Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour Conserv Recycl 154.
    [35] Gentilini L, Mossali E, Angius A, et al. (2020) A safety oriented decision support tool for the remanufacturing and recycling of post-use H & EVs lithium-ion batteries. Procedia CIRP 90: 73-78. doi: 10.1016/j.procir.2020.01.090
    [36] Rallo H, Benveniste G, Gestoso I, et al. (2020) Economic analysis of the disassembling activities to the reuse of electric vehicles Li-ion batteries. Resour Conserv Recycl 159.
    [37] Wegener K, Andrew S, Raatz A, et al. (2014) Disassembly of electric vehicle batteries using the example of the Audi Q5 hybrid system. Procedia CIRP 23: 155-160. doi: 10.1016/j.procir.2014.10.098
    [38] Herrmann C, Raatz A, Mennenga M, et al. (2012) Assessment of automation potentials for the disassembly of automotive lithium ion battery systems. In: Leveraging Technolnology for a sustainable world, Springer, Berlin, Heidelberg, 149-154.
    [39] McIntyre TJ, Harter JJ, Roberts TA (2019) Development and Operation of a High Throughput Computer Hard Drive Recycling Enterprise, 1-18.
    [40] Xia W, Jiang Y, Chen X, et al. (2021) Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Manag Res 2021: 34269157.
    [41] European Parliament (2021) EU Legislation in Progress New EU regulatory framework for batteries Setting sustainability requirements.
    [42] Zheng R, Wang W, Dai Y, et al. (2017) A closed-loop process for recycling LiNixCoyMn(1-x−y)O2 from mixed cathode materials of lithium-ion batteries. Green Energy Environ 2: 42-50. doi: 10.1016/j.gee.2016.11.010
    [43] Liang HJ, Hou BH, Li WH, et al. (2019) Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ Sci 12: 3575-3584. doi: 10.1039/C9EE02759A
    [44] Sloop S, Crandon L, Allen M, et al. (2020) A direct recycling case study from a lithium-ion battery recall. Sustain Mater Technol 25: e00152.
    [45] Shi Y, Chen G, Chen Z (2018) Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles. Green Chem 20: 851-862. doi: 10.1039/C7GC02831H
    [46] Ji Y, Edwin E, Kpodzro CTJ, et al. (2021) Direct recycling technologies of cathode in spent lithium-ion batteries. Clean Technol Recycl 1: 124-151. doi: 10.3934/ctr.2021007
    [47] Zhang X, Bian Y, Xu S, et al. (2018) Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries. ACS Sustainable Chem Eng 6: 5959-5968. doi: 10.1021/acssuschemeng.7b04373
    [48] Träger T, Friedrich B, Weyhe R (2015) Recovery concept of value metals from automotive lithium-ion batteries. Chem Ing Tech 87: 1550-1557. doi: 10.1002/cite.201500066
    [49] Zhou M, Li B, Li J, et al. (2021) Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge. ACS ES & T Eng 1: 1369-1382
    [50] Velázquez-Martínez O, Valio J, Santasalo-Aarnio A, et al. (2019) A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5: 5-7. doi: 10.3390/batteries5010005
    [51] Accurec Recycling GmbH (2021) Available from: https://accurec.de/lithium.
    [52] Lv W, Wang Z, Cao H, et al. (2018) A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chem Eng 6: 1504-1521. doi: 10.1021/acssuschemeng.7b03811
    [53] Hu J, Zhang J, Li H, et al. (2017) A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources 351: 192-199. doi: 10.1016/j.jpowsour.2017.03.093
    [54] Fan E, Li L, Zhang X, et al. (2018) Selective recovery of Li and fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach. ACS Sustainable Chem Eng 6: 11029-11035. doi: 10.1021/acssuschemeng.8b02503
    [55] Yang Y, Song S, Lei S, et al. (2019) A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Manag 85: 529-537. doi: 10.1016/j.wasman.2019.01.008
    [56] Wang B, Lin XY, Tang Y, et al. (2019) Recycling LiCoO2 with methanesulfonic acid for regeneration of lithium-ion battery electrode materials. J Power Sources 436.
    [57] Yang Y, Xu S, He Y (2017) Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag 64: 219-227. doi: 10.1016/j.wasman.2017.03.018
    [58] Nayaka GP, Zhang Y, Dong P, et al. (2019) An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. J Environ Chem Eng 7.
    [59] Gao W, Zhang X, Zheng X, et al. (2017) Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: A closed-loop process. Environ Sci Technol 51: 1662-1669. doi: 10.1021/acs.est.6b03320
    [60] Golmohammadzadeh R, Rashchi F, Vahidi E (2017) Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects. Waste Manag 64: 244-254. doi: 10.1016/j.wasman.2017.03.037
    [61] Ghassa S, Farzanegan A, Gharabaghi M, et al. (2021) Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: an environmentally friendly method to treating waste with waste. Resour Conserv Recycl 166: 105348. doi: 10.1016/j.resconrec.2020.105348
    [62] Wang F, Sun R, Xu J, et al. (2016) Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction. RSC Adv 6: 85303-85311. doi: 10.1039/C6RA16801A
    [63] Chan KH, Anawati J, Malik M, et al. (2021) Closed-loop recycling of lithium, cobalt, Nickel, and manganese from waste lithium-ion batteries of electric vehicles. ACS Sustainable Chem Eng 9: 4398-4410. doi: 10.1021/acssuschemeng.0c06869
    [64] Zeng X, Li J, Shen B (2015) Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J Hazard Mater 295: 112-118. doi: 10.1016/j.jhazmat.2015.02.064
    [65] Li L, Fan E, Guan Y, et al. (2017) Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustainable Chem Eng 5: 5224-5233. doi: 10.1021/acssuschemeng.7b00571
    [66] Li L, Bian Y, Zhang X, et al. (2018) Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. J Power Sources 377: 70-79. doi: 10.1016/j.jpowsour.2017.12.006
    [67] Ning P, Meng Q, Dong P, et al. (2020) Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system. Waste Manag 103: 52-60. doi: 10.1016/j.wasman.2019.12.002
    [68] Tanong K, Coudert L, Mercier G, et al. (2016) Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. J Environ Manage 181: 95-107. doi: 10.1016/j.jenvman.2016.05.084
    [69] Natarajan S, Boricha AB, Bajaj HC (2018) Recovery of value-added products from cathode and anode material of spent lithium-ion batteries. Waste Manag 77: 455-465. doi: 10.1016/j.wasman.2018.04.032
    [70] Esmaeili M, Rastegar SO, Beigzadeh R, et al. (2020) Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere 254: 126670. doi: 10.1016/j.chemosphere.2020.126670
    [71] Montgomery DC (2017) Design and analysis of experiments, 8th ed., John Wiley & Sons.
    [72] Tapani VM (2012) Experimental optimization and response surfaces. Chemom Pract Appl 91-138.
    [73] Gaines L (2019) Profitable recycling of low-cobalt lithium-ion batteries will depend on new process developments. One Earth 1: 413-415. doi: 10.1016/j.oneear.2019.12.001
    [74] Zheng X, Zhu Z, Lin X, et al. (2018) A mini-review on metal recycling from spent lithium ion batteries. Engineering 4: 361-370. doi: 10.1016/j.eng.2018.05.018
    [75] GEM (2021) Available from: http://en.gem.com.cn/en/AboutTheGroup/index.html.
    [76] Brunp (2021) Available from: https://www.catl.com/en/solution/recycling/.
    [77] Putsche V, Witter E, Santhanagopalan S, et al. (2021) NAATBatt lithium-ion battery supply chain database. National Renewable Energy Laboratory. Version 1.
    [78] Larouche F, Tedjar F, Amouzegar K, et al. (2020) Progress and status of hydrometallurgical and direct recycling of Li-Ion batteries and beyond. Materials (Basel) 13.
    [79] Redwood materials (2021) Available from: https://www.redwoodmaterials.com/.
    [80] Intertek (2019) The future of battery technologies-part V environmental considerations for lithium batteries.
    [81] U.S. geological survey (2021) Mineral commodity summaries. Available from: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-cobalt.pdf.
    [82] Zeuner B (2018) An Obsolescing Bargain in a Rentier State: multinationals, artisanal miners, and cobalt in the Democratic Republic of Congo. Front Energy Res 6: 1-6. doi: 10.3389/fenrg.2018.00001
    [83] Tsurukawa N, Prakash S, Manhart A (2011) Social impacts of artisanal cobalt mining in Katanga, Democratic Republic of Congo. Ö ko-Inst EV - Inst Appl Ecol Freibg 49: 65.
    [84] Huijbregts MAJ, Steinmann ZJN, Elshout PMF, et al. (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22: 138-147. doi: 10.1007/s11367-016-1246-y
    [85] Richa K, Babbitt CW, Nenadic NG, et al. (2017) Environmental trade-offs across cascading lithium-ion battery life cycles. Int J Life Cycle Assess 22: 66-81. doi: 10.1007/s11367-015-0942-3
    [86] Ciez RE, Whitacre JF (2019) Examining different recycling processes for lithium-ion batteries. Nat Sustain 2: 148-156. doi: 10.1038/s41893-019-0222-5
    [87] Wang S, Yu J (2021) A comparative life cycle assessment on lithium-ion battery: case study on electric vehicle battery in China considering battery evolution. Waste Manag Res 39: 156-164. doi: 10.1177/0734242X20966637
    [88] Richa K, Babbitt CW, Gaustad G (2017) Eco-efficiency analysis of a lithium-ion battery waste hierarchy inspired by circular economy. J Ind Ecol 21: 715-730. doi: 10.1111/jiec.12607
    [89] Jin H, Frost K, Sousa I, et al. (2020) Life cycle assessment of emerging technologies on value recovery from hard disk drives. Resour Conserv Recycl 104781.
    [90] EUR-Lex (2006) Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC. L 266.
    [91] Wang G, Zhao G, Wu W, et al, (2018) Cascade utilization and recycling of driving LiB, 2nd ed. Beijing: China Electric Power Press.
    [92] CBEA Summary of waste driving battery recycling technology and their profits 2018. Available from: http://www.cbea.com/dianchihuishou/201810/274400.html.
    [93] Green & low carbon development foundation. Research on the power battery recycling mechanism and policy for Shenzhen, 2018.
    [94] Wang X, Gaustad G, Babbitt CW, et al. (2014) Economies of scale for future lithium-ion battery recycling infrastructure. Resour Conserv Recycl 83: 53-62. doi: 10.1016/j.resconrec.2013.11.009
    [95] Electric vehicles revolution, China leads the global boom 2017. Available from: https://www.televisory.com/blogs/-/blogs/electric-vehicles-revolution-china-leads-the-global-boom.
    [96] EU (European Union) (2000) Directive 2000/53/EC of the European Parliament and of the council (2000.9.18), Brussels: European Union.
    [97] GPO (1996) US. Public Law 104-142-Mercury Containing and Rechargeable Battery Management Act.
    [98] CA Code (2006) Rechargeable battery recycling act of 2006.
    [99] New York State rechargeable battery law. New York environmental conservation law. In: Title 18. Rechargeable battery recycling, New York, 2010.
    [100] MN PCA (2015) Product stewardship for rechargeable batteries. St. Paul, MN, USA: Minnesota Pollution Control Agency.
    [101] Call2Recycle (2021) Available from: https://www.call2recycle.org/what-can-i-recycle/.
    [102] Mikolajczak C, Kahn M, White K, et al. (2012) Lithium-ion batteries hazard and use assessment. Springer Science & Business Media.
    [103] European Commission (2020) Regulation of the European Parliament and of the Council concerning batteries and waste batteries, repealing. Directive 2006/66/EC and amending Regulation (EU) No 2019/1020;0353.
    [104] Li L, Dababneh F, Zhao J (2018) Cost-effective supply chain for electric vehicle battery remanufacturing. Appl Energy 226: 277-286. doi: 10.1016/j.apenergy.2018.05.115
    [105] Hoyer C, Kieckhäfer K, Spengler TS (2015) Technology and capacity planning for the recycling of lithium-ion electric vehicle batteries in Germany. J Bus Econ 85: 505-544.
    [106] Tadaros M, Migdalas A, Samuelsson B, et al. (2020) Location of facilities and network design for reverse logistics of lithium-ion batteries in Sweden. Oper Res Int J.
    [107] Hendrickson TP, Kavvada O, Shah N, et al. (2015) Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California. Environ Res Lett 10.
    [108] Zhalechian M, Torabi SA, Mohammadi M (2018) Hub-and-spoke network design under operational and disruption risks. Transp Res E 109: 20-43. doi: 10.1016/j.tre.2017.11.001
    [109] Paul SK, Sarker R, Essam D (2017) A quantitative model for disruption mitigation in a supply chain. Eur J Oper Res 257: 881-895. doi: 10.1016/j.ejor.2016.08.035
    [110] Paul SK, Sarker R, Essam D (2014) Real time disruption management for a two-stage batch production-inventory system with reliability considerations. Eur J Oper Res 237: 113-128. doi: 10.1016/j.ejor.2014.02.005
    [111] Lücker F, Seifert RW, Biçer I (2019) Roles of inventory and reserve capacity in mitigating supply chain disruption risk. Int J Prod Res 57: 1238-1249. doi: 10.1080/00207543.2018.1504173
    [112] Li Q, Zeng B, Savachkin A (2013) Reliable facility location design under disruptions. Comput Oper Res 40: 901-909. doi: 10.1016/j.cor.2012.11.012
    [113] Saha AK, Paul A, Azeem A, et al. (2020) Mitigating partial-disruption risk: A joint facility location and inventory model considering customers' preferences and the role of substitute products and backorder offers. Comput Oper Res 117.
    [114] Li-cycle. Spoke & hub technologies, mechanical & hydrometallurgical process, Li-cycle 2021. Available from: https://li-cycle.com.
    [115] Gao G, Luo X, Lou X, et al. (2019) Efficient sulfuric acid-vitamin C leaching system: Towards enhanced extraction of cobalt from spent lithium-ion batteries. J Mater Cycles Waste Manag 21: 942-949. doi: 10.1007/s10163-019-00850-4
    [116] Cheng Q, Chirdon WM, Lin M, et al. (2019) Characterization, modeling, and optimization of a single-step process for leaching metallic ions from LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathodes for the recycling of spent lithium-ion batteries. Hydrometallurgy 185: 1-11. doi: 10.1016/j.hydromet.2019.01.003
    [117] Xie J, Huang K, Nie Z, et al. (2021) An effective process for the recovery of valuable metals from cathode material of lithium-ion batteries by mechanochemical reduction. Resour Conserv Recycl 168: 105261. doi: 10.1016/j.resconrec.2020.105261
    [118] Chen X, Ma H, Luo C, et al. (2017) Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J Hazard Mater 326: 77-86. doi: 10.1016/j.jhazmat.2016.12.021
    [119] Musariri B, Akdogan G, Dorfling C, et al. (2019) Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries. Miner Eng 137: 108-117. doi: 10.1016/j.mineng.2019.03.027
    [120] Fan E, Yang J, Huang Y, et al. (2020) Leaching mechanisms of recycling valuable metals from spent lithium-ion batteries by a malonic acid-based leaching system. ACS Appl Energy Mater 3: 8532-8542. doi: 10.1021/acsaem.0c01166
    [121] Roshanfar M, Golmohammadzadeh R, Rashchi F (2019) An environmentally friendly method for recovery of lithium and cobalt from spent lithium-ion batteries using gluconic and lactic acids. J Environ Chem Eng 7.
    [122] Sun LY, Liu BR, Wu T. et al. (2021) Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride. Int J Miner Metall Mater 28: 991-1000
  • ctr-01-02-008-Supplementary.pdf
  • This article has been cited by:

    1. Pradip Ramesh Patle, Moosa Gabeleh, Vladimir Rakočević, Mohammad Esmael Samei, New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of -Hilfer fractional differential equations, 2023, 117, 1578-7303, 10.1007/s13398-023-01451-5
    2. Shahram Rezapour, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Mehran Ghaderi, A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps, 2023, 8, 2473-6988, 27241, 10.3934/math.20231394
    3. Amjad Ali, Khezer Hayat, Abrar Zahir, Kamal Shah, Thabet Abdeljawad, Qualitative Analysis of Fractional Stochastic Differential Equations with Variable Order Fractional Derivative, 2024, 23, 1575-5460, 10.1007/s12346-024-00982-5
    4. Sabri T. M. Thabet, Imed Kedim, An investigation of a new Lyapunov-type inequality for Katugampola–Hilfer fractional BVP with nonlocal and integral boundary conditions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03070-5
    5. Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, M. Iadh Ayari, Aziz Khan, A higher-order extension of Atangana–Baleanu fractional operators with respect to another function and a Gronwall-type inequality, 2023, 2023, 1687-2770, 10.1186/s13661-023-01736-z
    6. Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Efficient results on unbounded solutions of fractional Bagley-Torvik system on the half-line, 2024, 9, 2473-6988, 5071, 10.3934/math.2024246
    7. Anil Chavada, Nimisha Pathak, Transmission dynamics of breast cancer through Caputo Fabrizio fractional derivative operator with real data, 2024, 4, 2767-8946, 119, 10.3934/mmc.2024011
    8. Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim, Analytical study of -fractional pantograph implicit differential equation with respect to another function, 2023, 8, 2473-6988, 23635, 10.3934/math.20231202
    9. Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour, Analysis study on multi-order -Hilfer fractional pantograph implicit differential equation on unbounded domains, 2023, 8, 2473-6988, 18455, 10.3934/math.2023938
    10. Kottakkaran Sooppy Nisar, Efficient results on Hilfer pantograph model with nonlocal integral condition, 2023, 80, 11100168, 342, 10.1016/j.aej.2023.08.061
    11. R.N. Premakumari, Chandrali Baishya, Mohammad Esmael Samei, Manisha Krishna Naik, A novel optimal control strategy for nutrient–phytoplankton–zooplankton model with viral infection in plankton, 2024, 137, 10075704, 108157, 10.1016/j.cnsns.2024.108157
    12. Sabri T. M. Thabet, Thabet Abdeljawad, Imed Kedim, M. Iadh Ayari, A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law, 2023, 2023, 1687-2770, 10.1186/s13661-023-01790-7
    13. Xinguang Zhang, Peng Chen, Hui Tian, Yonghong Wu, The Iterative Properties for Positive Solutions of a Tempered Fractional Equation, 2023, 7, 2504-3110, 761, 10.3390/fractalfract7100761
    14. Latif Ur Rahman, Muhammad Arshad, Sabri T. M. Thabet, Imed Kedim, Xiaolong Qin, Iterative Construction of Fixed Points for Functional Equations and Fractional Differential Equations, 2023, 2023, 2314-4785, 1, 10.1155/2023/6677650
    15. Ava Sh. Rafeeq, Sabri T.M. Thabet, Mohammed O. Mohammed, Imed Kedim, Miguel Vivas-Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, 2024, 86, 11100168, 386, 10.1016/j.aej.2023.11.081
    16. Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, Loay Alkhalifa, Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions, 2024, 8, 2504-3110, 510, 10.3390/fractalfract8090510
    17. Deepesh Kumar Patel, Moosa Gabeleh, Mohammad Esmael Samei, On existence of solutions for -Hilfer type fractional BVP of generalized higher order, 2024, 43, 2238-3603, 10.1007/s40314-024-02681-y
    18. R. Poovarasan, Mohammad Esmael Samei, V. Govindaraj, Study of three-point impulsive boundary value problems governed by -Caputo fractional derivative, 2024, 70, 1598-5865, 3947, 10.1007/s12190-024-02122-3
    19. Yanfang Li, Donal O’Regan, Jiafa Xu, Nontrivial Solutions for a First-order Impulsive Integral Boundary Value Problem on Time Scales, 2024, 23, 1575-5460, 10.1007/s12346-024-00954-9
    20. Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim, Mohammad Esmael Samei, M. Iadh Ayari, Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains, 2023, 7, 2504-3110, 607, 10.3390/fractalfract7080607
    21. M. Lavanya, B. Sundara Vadivoo, Kottakkaran Sooppy Nisar, Controllability Analysis of Neutral Stochastic Differential Equation Using -Hilfer Fractional Derivative with Rosenblatt Process, 2025, 24, 1575-5460, 10.1007/s12346-024-01178-7
    22. Said Zibar, Brahim Tellab, Abdelkader Amara, Homan Emadifar, Atul Kumar, Sabir Widatalla, Existence, uniqueness and stability analysis of a nonlinear coupled system involving mixed ϕ-Riemann-Liouville and ψ-Caputo fractional derivatives, 2025, 2025, 1687-2770, 10.1186/s13661-025-01994-z
    23. R. Poovarasan, Mohammad Esmael Samei, V. Govindaraj, Analysis of existence, uniqueness, and stability for nonlinear fractional boundary value problems with novel integral boundary conditions, 2025, 1598-5865, 10.1007/s12190-025-02378-3
    24. Abderrahman Elgmairi, M’hamed Elomari, Said Melliani, Hybrid Fractional Differential Equations Involving the -Caputo Derivative, 2025, 11, 2349-5103, 10.1007/s40819-025-01856-3
    25. Kalimuthu Ramalakshmi, Mohammad Esmael Samei, Behnam Mohammadaliee, A prominent optimal control strategy for soil-transmitted helminth infections via generalized mathematical model of fractional differential equation, 2025, 3, 30505178, 100023, 10.1016/j.nls.2025.100023
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10845) PDF downloads(1528) Cited by(26)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog