Review

Electrospun nanofibers for efficient adsorption of heavy metals from water and wastewater

  • Heavy metals (HMs) are persistent and toxic environmental pollutants that pose critical risks toward human health and environmental safety. Their efficient elimination from water and wastewater is essential to protect public health, ensure environmental safety, and enhance sustainability. In the recent decade, nanomaterials have been developed extensively for rapid and effective removal of HMs from water and wastewater and to address the certain economical and operational challenges associated with conventional treatment practices, including chemical precipitation, ion exchange, adsorption, and membrane separation. However, the complicated and expensive manufacturing process of nanoparticles and nanotubes, their reduced adsorption capacity due to the aggregation, and challenging recovery from aqueous solutions limited their widespread applications for HM removal practices. Thus, the nanofibers have emerged as promising adsorbents due to their flexible and facile production process, large surface area, and simple recovery. A growing number of chemical modification methods have been devised to promote the nanofibers' adsorption capacity and stability within the aqueous systems. This paper briefly discusses the challenges regarding the effective and economical application of conventional treatment practices for HM removal. It also identifies the practical challenges for widespread applications of nanomaterials such as nanoparticles and nanotubes as HMs adsorbents. This paper focuses on nanofibers as promising HMs adsorbents and reviews the most recent advances in terms of chemical grafting of nanofibers, using the polymers blend, and producing the composite nanofibers to create highly effective and stable HMs adsorbent materials. Furthermore, the parameters that influence the HM removal by electrospun nanofibers and the reusability of adsorbent nanofibers were discussed. Future research needs to address the gap between laboratory investigations and commercial applications of adsorbent nanofibers for water and wastewater treatment practices are also presented.

    Citation: Maryam Salehi, Donya Sharafoddinzadeh, Fatemeh Mokhtari, Mitra Salehi Esfandarani, Shafieh Karami. Electrospun nanofibers for efficient adsorption of heavy metals from water and wastewater[J]. Clean Technologies and Recycling, 2021, 1(1): 1-33. doi: 10.3934/ctr.2021001

    Related Papers:

    [1] A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628
    [2] Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357
    [3] Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663
    [4] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [5] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [6] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265
    [7] Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
    [8] Omar Kahouli, Saleh Albadran, Zied Elleuch, Yassine Bouteraa, Abdellatif Ben Makhlouf . Stability results for neutral fractional stochastic differential equations. AIMS Mathematics, 2024, 9(2): 3253-3263. doi: 10.3934/math.2024158
    [9] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [10] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
  • Heavy metals (HMs) are persistent and toxic environmental pollutants that pose critical risks toward human health and environmental safety. Their efficient elimination from water and wastewater is essential to protect public health, ensure environmental safety, and enhance sustainability. In the recent decade, nanomaterials have been developed extensively for rapid and effective removal of HMs from water and wastewater and to address the certain economical and operational challenges associated with conventional treatment practices, including chemical precipitation, ion exchange, adsorption, and membrane separation. However, the complicated and expensive manufacturing process of nanoparticles and nanotubes, their reduced adsorption capacity due to the aggregation, and challenging recovery from aqueous solutions limited their widespread applications for HM removal practices. Thus, the nanofibers have emerged as promising adsorbents due to their flexible and facile production process, large surface area, and simple recovery. A growing number of chemical modification methods have been devised to promote the nanofibers' adsorption capacity and stability within the aqueous systems. This paper briefly discusses the challenges regarding the effective and economical application of conventional treatment practices for HM removal. It also identifies the practical challenges for widespread applications of nanomaterials such as nanoparticles and nanotubes as HMs adsorbents. This paper focuses on nanofibers as promising HMs adsorbents and reviews the most recent advances in terms of chemical grafting of nanofibers, using the polymers blend, and producing the composite nanofibers to create highly effective and stable HMs adsorbent materials. Furthermore, the parameters that influence the HM removal by electrospun nanofibers and the reusability of adsorbent nanofibers were discussed. Future research needs to address the gap between laboratory investigations and commercial applications of adsorbent nanofibers for water and wastewater treatment practices are also presented.



    Fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Fractional order differential equations offer a superior framework for capturing the intricate dynamics of real-world phenomena compared to their integer-order counterparts. This superiority stems from the unique ability of fractional integrals and derivatives to account for the inherent hereditary and memory characteristics present in diverse processes and materials. By harnessing these fractional operators, models can more accurately depict the nuanced behaviors observed in nature, thereby enhancing our understanding and predictive capabilities across a wide range of disciplines and applications. Many fractional derivatives, including Caputo derivative, Atangana-Baleanu derivative, Coimbra derivative, and Riemann-Liouville (R-L) derivative, are frequently used to examine FDEs and fractional order stochastic differential equations (SDEs). In a similar vein, the Hilfer fractional derivative (HFD), which was just recently used to do so, was developed by Hilfer [21], which is a generalized version of R-L and Caputo derivatives. In actuality, fractional derivative and integrals indicate greater accuracy than integral models and also depict broader physical applications in seepage, flow in porous media, nanotechnology, fluid dynamics and traffic models [6,7,12,22,24,28,31].

    SDEs are the natural extension of deterministic systems. SDEs with impulses arise from many mathematical models of physical phenomena in different scientific fields for example, technology, physics, biology, economics, etc. They are important from the viewpoint of applications since they incorporate randomness into the mathematical description of the phenomena and provide a more accurate description of it. Certainly, in various fields like economics, bioengineering, chemistry, medicine, and biology, we often encounter situations where things change suddenly at specific points in time [5,23,29,32]. These abrupt changes can be explained by what we call "impulsive effects." These impulsive effects are like sudden pushes that happen at certain moments and have a big impact on the system, being studied. These pushes play a crucial role in understanding and modeling how things change in the aforementioned diverse fields. For the mathematical models of such phenomena, finding their solution is a challenging task. As a result, Boundani et al. [8,9] presented some specific conditions that help us to determine whether certain mathematical equations, involving randomness, can have solutions. These equations involve functional differential equations and a type of random behavior, called fractional Brownian motion.

    In [20], Hernandez and O'Regan introduced non-instantaneous (NI) impulses. Many researchers have utilized these impulses and studied the corresponding dynamical systems [3,4,27,36,39]. To better understand NI impulses, we can think about human blood sugar levels. When they have too much or too little, glucose they get insulin medication through the bloodstream, in fact it doesn't work instantly but takes some time to be absorbed [37]. This gradual effect is like NI, where the impact lasts for a while in many real situations. Sudden changes don't explain things well. For instance, in the treatment of diseases with medication, we need to describe how things change over time more smoothly. That's where NI impulsive differential equations come in handy. They help us to model these gradual changes, like how drugs affect the body in pharmacotherapy.

    Among the qualitative behaviors of different physical systems, different types of stabilities are the essential ones. One of these types of stabilities is Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) stability [11,16,26,30,33].

    In the literature, most of the results related to fractional stochastic differential equations (FSDEs) are given over infinite dimensional spaces [1,2,13,18,19,25,32,35,38], and very few have looked at similar results in finite spaces. There is no prior work on the specific topic of non-integers order impulses in finite-dimensional equations to the problem of fractional neutral SDEs including both noises. In FSDEs incorporating both retarded and advanced arguments, a significant characteristic emerges: The rate of change of the system at the present moment is influenced not only by its past history but also by its anticipated future states. This feature underscores the intricate interplay between past, present, and future dynamics, where the system's behavior is shaped by a combination of its memory effects and anticipatory responses.

    In the current manuscript, we investigate the following ψ-Hilfer fractional stochastic equation (HFSE):

    Dγ,βψ(ε)[Γ(ε)h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε),Dγ,βψ(ε)Γ(ε))+ε0g(s,Γ(s),Dγ,βψ(ε)Γ(ε))dB(s)+ε0λ(s,Γ(s),Dγ,βψ(ε)Γ(ε))dBH(s),ε (sk,εk+1]J:=(0,b],k=0,1,2,,m,Γ(ε)=hk(ε,Γ(ε)),ε(εk,sk],k=1,2,,m,I1v0+Γ(ε)/ε=0=Γ0,v=γ+βγβ,Γ(ε)=ϕ(ε),ε[0r,0],Γ(ε)=φ(ε),ε[b,b+h], (1.1)

    where Dγ,βψ(ε) is the ψ– Hilfer FD of order 0<γ<1 and of type 0<β1. Let J:=[0,b], b>0. The state vector ΓRn, ARn×n and nonlinear functions h : J×RnRn, Δ:J×RnRn, g:J×RnRn×n, λ:J×RnRn×n, and hk:J×RnRn are measurable and bounded functions. Also, Γ0 is F0 measurable Rn-valued stochastic variable and B is an n-dimensional Wiener process.

    Based on the value of H, the following kinds of the fractional Brownian motion (fBm) process exist:

    (1) if H=12, then the process is a Brownian motion or a Wiener process exists;

    (2) if H>12, then the increment of the process is positively correlated;

    (3) if H<12, then the increment of the process is negatively correlated.

    The contributions of this paper are described as below:

    ● Nonlinear ψ-HFSE is considered in Rn.

    ● The existence and uniqueness results are established by using the standard Banach contraction principle.

    ● The weaker sufficient conditions are derived by using the generalized Schaefer FPT for the system with measure of non-compactness (MNC).

    ● UHR stability results are derived for ψ-HFSE with NI impulse.

    ● An example is provided for the theoretical results.

    This paper is structured as follows: In Section 2, we present a number of lemmas and some fundamental definitions for fractional calculus. Section 3 derives the solution representation of ψ-Hilfer fractional SDEs with NI impulses. To demonstrate the key results, the generalized Schaefer's and contraction mapping principles are used in Section 4. In Section 5, UHR stability of a ψ-HFSE is discussed. Example is demonstrated for the validity of theoretical results in Section 6.

    Notations:

    (Ω,F,P) represents the complete probability space along a probability measure P on Ω.

    B(ε) and BH(ε) denote, respectively, the n-dimensional Brownian motion and fBm with Hurst index 12<H<1.

    {Fε|εJ} represents the filtration generated by {B(ε):0sε}.

    L2(Ω,Fε,P,Rn) : = L2(Ω,Rn) is the space of all Fε-measurable square integrable random variables with values in Rn.

    Let Jk = (εk,εk+1], k=1,2,,m be such that impulse times satisfy 0 = ε0 = s0<ε1<s1<ε2<<εmsm<εm+1 = b. Let C(J,L2(Ω,Rn)) denote Cn(J) and be the Banach space of all continuous maps from J into L2(Ω,Rn) of Fε-adapted square integrable functions Γ(ε) and for its norm supE||Γ(ε)||2<.

    Define the space

    Y=PCvn(J)=PCvn(J,L2(Ω,Rn))={Γ:JL2(Ω,Rn),Γ/JkCn(Jk,L2(Ω,Rn)),

    and there exist Γ(εk) and Γ(ε+k) with Γ(εk)=Γ(εk), k=1,,m, endowed with the norm

    ||Γ||2Y=maxk=0,1,,msupεJk{E||(εεk)(1v)Γ(ε)||}}.

    Clearly, Y is a Banach space.

    Lemma 2.1. [39] Let p2 and fLp(J,Rn×n) such that E|b0f(s)dB(s)|p<, then

    E|b0f(s)dB(s)|p(p(p1)2)p2bp22Eb0|f(s)|pds.

    Lemma 2.2. [10] Let φ:JL02 satisfy b0||φ(s)||2L02ds<, then we get

    E||ε0φ(s)dBH(s)||22Hε2H1ε0E||φ(s)||2L02ds.

    Definition 2.1. [17] The generalized ψ-Hilfer FD of order 0<γ<1 and of type 0β1 is represented by

    Dγ,βψ(t)f(t)=Iβ(nγ)ψ(t)(1ψ(t).ddt)mI1β(nγ)ψ(t)f(t).

    Definition 2.2. [10] Let z be a bounded linear operator. The two parameter Mittage-Leffler (M-L) function is defined by

    Mγ,β(z)=r=0zrΓ(rγ+β),γ,β>0,zC.

    One of the interesting properties of the M-L function, related with their Laplace integral, is given by

    0esεεβ1Mγ,β(±aεγ)dε=sγβ(sγIa).

    That is

    L{εβ1Mγ,β(±aεγ)}(s)=sγβ(sγIa).

    Lemma 2.3. [17] For γ(n1,n], β[0,1], the following Laplace formula for the ψ-Hilfer derivative is valid:

    Lψ{0Dγ,βψ(t)f(t)}=sγLψ{f(t)}m1n=0sm(1v)+γβn1(0I(1v)(mβ)nψ(t)f)(0).

    Corollary 2.1. [17] If f is a function whose classical Laplace transform is F(s), then the generalized Laplace transform of the function fψ=f(ψ(t)) is also F(s):

    L{F(s)}=F(s)L{f(ψ(ε))}=F(s).

    Example 2.1. [17]

    (a)Lψ{(ψ(ε)μ)}=Γ(μ+1)sμ+1,fors>0.(b)Lψ{ea(ψ(ε))}=1sa,fors>a.(c)Lψ{Mμ(A(ψ(ε))μ)}=sμ1sμA.(d)Lψ{(ψ(ε))μ1Mμ,μ(A(ψ(ε))μ)}=1sμA,forRe(μ)>0and |Asμ|<1.

    Example 2.2. Assume that Re(μ)>0 and |Asμ|<1. If Mγμ,v denotes the Prabhakar function, then we have

    Lψ{(ψ(ε))v1Mγμ,v(A(ψ(ε))μ)}=L{ψ(ε)v1Mγμ,v(A(ψ(ε)μ))}=sμγv(sμA)γ.

    Consider the linear deterministic system, which is represented in the following form:

    Dγ,βψ(ε)[Γ(ε)h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε)),I1v0+Γ(ε)/ε=0=Γ0,v=γ+βγβ.

    By the Laplace transformation, we get

    sγˆΓ(s)ˆh(s)sβ(1γ)(Γ(0)h(ε,0))=AˆΓ(s)+ˆΔ(s),(sγIA)(ˆΓ(s))=sβ(1γ)(Γ(0)h(ε,0))+ˆh(s)+ˆΔ(s),ˆΓ(s)=sβ(1γ)(sγIA)[Γ(0)h(ε,0)]+1(sγIA)ˆh(s)+1(sγIA)ˆΔ(s),

    where I is the identity matrix.

    Γ(s)=Lψ1sβ(1γ)(sγIA)[Γ(0)h(ε,0)]+Lψ11(sγIA)ˆh(s)+Lψ11(sγIA)ˆΔ(s).

    Substituting the LψT of the M-L function, one can obtain that

    Γ(ε)=ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds.

    Therefore, the solution of (1.1) is given as follows:

    Γ(ε)={Γ(ε)=ϕ(ε),ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(sk,εk+1],Γ(ε)=ϕ(ε),ε[b,b+h].

    Definition 3.1. [40] The set S is called a quasi-equicontinuous in T if, for ε > 0, there exists a δ > 0, such that if ΓS,KN,τ1,τ2TKT, and |τ2τ1|<δ, then |Γ(τ2)Γ(τ1)|<ε.

    Lemma 3.1. [34] The set SPC(J,Rn) is relatively compact if

    (i) S is uniformly bounded, i.e., ||Γ||PCk for each ΓS and some k>0;

    (ii) S is quasi-equicontinous in T.

    Definition 3.2. [14] An operator T : ZZ is said to be χ-condensing of any bounded set B of Z with χ-condensing(B) > 0, χ(T(B))<χ(B), where

    χ(B)=inf{k>0,B is covered by a finite number of sets of diameter k}

    is Kuratowskii MNC of a bounded set B of Z.

    Now, we state the generalized Schaefer's type FPT with χ-condensing operators.

    Theorem 3.1. [15] Let T : ZZ be an operator and Z be a separable Banach space satisfying

    (A1) T is χ-condensing and continuous.

    (A2) The set S = {ΓZ:Γ=δT(Γ) for some 0<δ<1} is bounded, then T has a fixed point.

    For convenience, define the following:

    M1=supξJ||Mγ,v(A(ψ(ε))γ)||2;M2=supξJ||Mγ,γ(A(bψ(ε))γ)||2.

    To derive the existence result, we imposed the following assumptions:

    (H1) The functions Δ,h,g,λ, and hk k=1,2,,m are Lipschitz continuous.

    (1) E||h(ε,u1)h(ε,u2)||2 Mh||u1u2||2Y;

    (2) E||Δ(ε,u1,v1)Δ(ε,u2,v2)||2 Mf1||u1u2||2Y+Mf2||v1v2||2Y;

    (3) E||g((ε,u1,v1))g((ε,u2,v2))||2 Mg1||u1u2||2Y+Mg2||v1v2||2Y;

    (4) E||λ(ε,u1,v1)λ(ε,u2,v2)||2 Mλ1||u1u2||2Y+Mλ2||v1v2||2Y;

    (5) E|hk(ε,u1)hk(ε,v1)||2 Mhk||u1v1||2Y,

    and hkC((εk,sk],L2(Ω,Rn)), where Mh,Mf,Mg,Mλ, and Mhk are positive constants, u1,u2,v1,v2Rn, and εTk.

    (H2) There exist lh, mh,nhY with lh=supξJlf(ε), mh=supξJmh(ε), and nh=supξJ nh(ε) such that

    E||h(ε,u1,v1)||2lh(ε)+mh(ε)||u1||2+nh(ε)||v1||2 for εT,u1,v1Rn.

    (H3) There exist lf, mf,nfY with lf=supξJlf(ε), mf=supξJmf(ε), and nf=supξJnf(ε) such that

    E||Δ(ε,u1,v1)||2lf(ε)+mf(ε)||u1||2+nf(ε)||v1||2 for εT,u1,v1Rn.

    (H4) There exist lg, mgY with lg=supξJlg(ε), mg=supξJmg(ε), and ng=supξJng(ε) such that

    E||g(ε,u1,v1)||2lg(ε)+mg(ε)||u1||2+ng(ε)||v1||2 for εT,u1,v1Rn.

    (H5) There exist lλ, mh,nhY with lλ=supξJlλ(ε), mλ=supξJmλ(ε), and nλ=supξJnλ(ε) such that

    E||λ(ε,u1,u2||2lλ(ε)+mλ(ε)||u1||2+nλ(ε)||v1||2 for εT,u1,v1Rn.

    (H6) There exist Mhk>0, for all uRn, such that

    E||hk(ε,u)||2Mhk(1+||u||2Y).

    To prove the existence and uniqueness of solution first, we need to transform the problem (1.1) into a fixed point problem and define an operator H : YY by

    HΓ(ε)={Γ(ε)=ϕ(ε),ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(β)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(β)dBH)ds, εϵ(sk,εk+1],Γ(ε)=φ(ε),ε[b,b+h].

    Let x:[0r,b+h]R be a function defined by

    x(ε)={Γ(ε)=ϕ(ε),ifε[0r,0],0,ifε(0,b],Γ(ε)=φ(ε),ifε[b,b+h].

    For each zC([0,b],R) with z(0)=0, we denote by u the function defined by

    u(ε)={Γ(ε)=ϕ(ε),ifε[0r,0],z(ε),ifε(0,b],Γ(ε)=φ(ε),ifε[b,b+h].

    Let us set Γ(ε)=z(ε)+x(ε) such that yε=zε+xε for each ε(0,b], where

    Γ(ε)={Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γη),Dγ,βψ(ε)ΓβdBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γη)),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1].
    z(ε)={Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1].

    Let Φ:YY be an operator given by

    Φz(ε)={0,ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1],0,ε[b,b+h].

    To show that the operator H has a fixed point, for this it is sufficient to show that the operator Φ has a fixed point and this fixed point will correspond to a solution of problem (1.1).

    Theorem 4.1. Assume that the Hypothesis (H1) holds, then the solution (1.1) has a unique solution of the problem (1.1), provided

    L0=max{L1,Lk,Lk}<1,k=1,2,,m, (4.1)

    where

    L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)],Lk=Mhk,Lk=4[bv1M1Mhk+M2(b)2γγ2{(Mh+Mf1+bMg1+2Hb2HMλ1)+(Mf2+bMg2+2Hb2HMλ2)×||A||+Mh+Mf1+bMg1+2Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2)}].

    Proof. Consider the operator Φ : YY defined by

    Φz(ε)={0,ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε[b,b+h]. (4.2)

    As Δ, h, g, λ, hk are all continuous, we have to prove that Φ is a contraction.

    Case 1. For z, yY and for ε[0,ε1], we have

    E||(Φz)(ε)(Φy)(ε)||23{(M2ψ(ε)2γγ2Mh||z(ϵ)y(ε)||2+M2ψ(ε)2γγ2Mf1||z(ϵ)y(ε)||2+M2ψ(ε)2γ+1γ2Mg1||z(ϵ)y(ε)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H1Mλ1||z(ϵ)y(ε)||2)+(M2ψ(ε)2γγ2Mf2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ2Mg2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H1Mλ2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.

    This implies

    ||(Φz)(ε)(Φy)(ε)||2Y3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hb2HMλ1)×||z(ϵ)y(ε)||2Y+3M2ψ(ε)2γγ2(Mf2+ψ(ε1)Mg2+2Hb2HMλ2)×||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2],||(Φz)(ε)(Φy)(ε)||2Y3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]||z(ε)y(ε)||2.

    Thus we take

    L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)].

    So, we get

    ||(Φz)(ε)(Φy)(ε)||2YL1||z(ε)y(ε)||2Y.

    Case 2. For ε(εk,sk], k=1,2,,m, we have

    E||(Φz)(ε)(Φy)(ε)||2YE||hk(ε,z(ε))hk(ε,y(ε))||2,||(Φz)(ε)(Φy)(ε)||2YMhk||z(ε)y(ε)||2Y.

    Take Lk:=Mhk and therefore,

    ||(Φz)(ε)(Φy)(ε)||2YLk||z(ε)y(ε)||2Y.

    Case 3. For z,yY and for ε(sk,εk+1], we have

    E||(Φz)(ε)(Φy)(ε)||24{(ψ(ε)sk)v1M1Mhk||z(ε)y(ε)||2+(M2(ψ(ε)sk)2γγ2Mh||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ2Mf1||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ2Mg1||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ22Hψ(ε)2H1Mλ1||z(ϵ)y(ε)||2)+(M2(ψ(ε)sk)2γγ2Mf2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2(ψ(ε)sk)2γγ2Mg2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2(ψ(ε)sk)2γγ22Hψ(ε)2H1Mλ2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.||(Φz)(ε)(Φy)(ε)||24{(ψ(ε)k+1sk)v1M1Mhk+(M2(ψ(ε)sk)2γγ2×[Mh+Mf1+(ψ(εk+1)sk)Mg1+2Hψ(ε)2HMλ1]×||z(ε)y(ε)||2)+(M2(ψ(ε)sk)2γγ2×[Mf2+(ψ(εk+1)sk)Mg2+2Hψ(ε)2HMλ2]×||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.

    Thus,

    ||(Φz)(ε)(Φy)(ε)||24{bv1M1Mhk+M2(b)2γγ2{Mh+Mf1+bMg1+2Hb2HMλ1+(Mf2+bMg2+2Hb2HMλ2)}×||A||+Mh+Mf1+bMg1+2Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2)}||z(ε)y(ε)||2:=Lk||z(ε)y(ε)||2Y.

    From the above three cases, we obtain that ||(Φz)(ε)(Φy)(ε)||2 L0||z(ε)y(ε)||2Y as per (4.1), Φ is contraction, and, thus, (1.1) has a unique fixed point z, which is a solution to problem (1.1).

    Remark 4.1. Banach contraction principle provides not only the existence results, but also uniqueness is assured. Also, the nonlinear functions could satisfy only Lipschitz conditions to prove existence and uniqueness results, even though conditions are stronger.

    Remark 4.2. It is to be noted that the assumption L0<1 in Theorem 4.1 shows a restrictive smallness on Lipschitz constants for the nonlinear functions h, g, Δ, and λ when compared with the periods of time, while the impulses are active or vice-versa. In order to relax such a kind of smallness, the generalized Schaefer's FPT is introduced.

    Theorem 4.2. Assume that (H2)(H5) hold, then the nonlinear operator Φ:YY has a fixed point, which is a solution of problem (1.1)

    Proof. Since Φ is well defined, we will present the proof by the following four steps.

    First, we prove that Φ is completely continuous (CC), that is, T is continuous, maps bounded sets into bounded sets, and maps bounded sets into quasi-equicontinuous sets.

    Step 1. To prove Φ is continuous.

    Since h, g, Δ,λ, and hK are all continuous, then it is clear that the operator Φ is continuous on J.

    Step 2. To prove Φ maps bounded sets in Y.

    In fact, it is sufficient to show that for any r>0, there exists an η>0 such that for each zBr={zY:||z||2Yz}.

    Case 1. For ε[0,ε1],zY

    ||(Φz)(ε)||2Y4{ψ(ε1)ν1M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2||h(ε,zs+xs),Dγ,βψ(ε)Γ(s)||+M2ψ(ε1)2γγ2||Δ(ε,zs+xs,Dγ,βψ(ε)Γ(s))||+M2ψ(ε1)2γ+1γ2||g(ε,zη+xη,Dγ,βψ(ε)Γ(s))||+2Hψ(ε)2H1M2ψ(ε1)2γ+1γ2||λ(ε,zη+xη,Dγ,βψ(ε)Γ(s))||}.

    Using (H2)(H4) and Lemmas 2.1 and 2.2, one can enumerate

    ||(Φz)(ε)||2Y4{M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh(ε)+mh(ε)||zs+xs||2Y)+M2ψ(ε1)2γγ2(lf(ε)+mf(ε)||zs+xs||2Y+nf(ε)||Dγ,βψ(ε)Γ(s)||2Y)+M2ψ(ε1)2γ+1γ2(lg(ε)+mg(ε)||zηxη||2Y+ng||Dγ,βψ(ε)Γ(s)||2)+2Hψ(ε)2H1M2ψ(ε1)2γ+1γ2(lλ(ε)+mλ(ε)||zη+xη||2Y+||Dγ,βψ(ε)Γ(s)||2)}4{M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh)+M2ψ(ε1)2γγ2(lf)+M2ψ(ε1)2γ+1γ2(lg)+M22Hψ(ε1)2Hγ2(lλ)}+4{M2ψ(ε1)2γγ2(mh)+M2ψ(ε1)2γγ2(mf)+M2ψ(ε1)2γ+1γ2(mg)+M22Hψ(ε1)2Hγ2(mλ)}||z||+4{M2ψ(ε1)2γγ2nf+M2ψ(ε1)2γ+1γ2ng+M2ψ(ε1)2γ+1γ2nλ}||Dγ,βψ(ε)Γ(s)||24{M1||Γ0h(ε,0)||2+M2ψ(ε1)2γγ2(lh+lf+ψ(ε)lg+2Hψ(ε)2Hlλ)}+4{M1||Γ0h(ε,0)||2+M2ψ(ε1)2γγ2(mh+mf+ψ(ε)mg+2Hψ(ε)2Hmλ)+(lh+lf+ψ(ε)lg+ψ(ε)lλ+(mh+mf+ψ(ε)mg+ψ(ε)mλ)1(nf+ψ(ε)ng+ψ(ε)mλ)}z:=η0.

    Case 2. For ε(εk,sk], k = 1, 2, , m,

    ||(Φz)(ε)||2E||hk(ε,zs+xs)||2Mhk(1+||z||2)ψ(ε)1vMhk(1+||z||2)maxψ(ε)1vMhk(1+z):=ηk,   k=1,2,3,m.

    Case 3. For ε(sk,εk+1], k=1,2,,m, ΓY, we have

    E||(Φz)(ε)||24{E||(ψ(ε)k+1sk)v1Mγ,v(A(sk)γ)hk(sk,Γ(sk))||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs,Dγ,βψ(ε)Γ(s))ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη,Dγ,βψ(ε)Γ(s))dB(η))ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,zη+xη,Dγ,βψ(ε)Γ(s))dBH)ds||2}.

    Thus

    E||(ΦΓ)(ε)||24{(ψ(ε)v1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1sk)2γγ2[lh+lf+(ψ(ε)k+1sk)lg+2H(ψ(ε)k+1sk)2Hlλ]}+4{(ψ(ε)v1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1sk)2γγ2[mh+mf+(ψ(ε)k+1sk)mg+2H(ψ(ε)k+1sk)2Hlλ]}+4{M2ψ(ε1)2γγ2nf+M2ψ(ε1)2γ+1γ2ng+M2ψ(ε1)2γ+1γ2nλ}||Dγ,βψ(ε)Γ(s)||24{bv1M1Mhk+M2b2γγ2[lh+lf+blg+2Hb2Hlλ]}+4{bv1M1Mhk+M2b2γγ2[mh+mf+bmg+2Hb2Hmλ]+[lh+lf+blg+blλ+(mh+mf+bmg+bmλ)14(nf)+bng+bmλ]}z:=ηb.

    Let η = {η0,ηk,ηb}, k=1,2,,m, then {ψ1v(Φz)(ε):zB} is a bounded set in Y, i.e., ||Φz||2Y η.

    Step 3. Φ is a quasi-equicontinous set in Y.

    Case 1. Let τ1, τ2 [0,ε1] with 0τ1τ2ε1. One could establish the following estimate:

    ||(Φz)(τ2)(Φz)(τ1)||2=sup{E||τ1v2(ΦΓ)(τ2)τ1v1(ΦΓ)(τ1)||2}8{E||Mγ,v(Aτγ2)||Γ0h(ε,0)||Mγ,v(Aτγ1)||Γ0h(ε,0)||||2+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lh+mhE||zs+xs||2+nh||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lh+mhE||zs+xs||2+nh||Dγ,βψ(ε)Γ(s)||2)ds+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lf+mfE||zs+xs||2+nf||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lf+mfE||zs+xs||2+nf||Dγ,βψ(ε)Γ(s)||2)ds+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lg+mgE||zη+xη||2+ng||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lg+mgE||zs+xs||2+ng||Dγ,βψ(ε)Γ(s)||2)ds+2Hτ2H12τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lλ+mλE||zs+xs||2+nλ||Dγ,βψ(ε)Γ(s)||2)ds+2H(τ2τ1)2H1τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2×(lλ+mλE||zs+xs||2+nλ||Dγ,βψ(ε)Γ(s)||2)ds}.

    We conclude that as τ2τ10 with ε sufficiently small, the right hand side of the above inequality tends to zero independently of zBr. Furthermore, the similar results are true for εk<τ1<τ2sk and sk<τ1<τ2εk+1 for k=1,2,,m. It proves the equicontinuous of Φ on Y. Thus, for τ1,τ2[0,b](εk,εk+1], k=1,2,,m, whenever B is a bounded set of Y as in Step 2, let zBr, then

    ||(Φz)(τ1)(Φy)(τ2)||2YM(r)(τ2τ1).

    Thus, Φ is quasi-equicontinuous, then Φ(z) is relatively compact by Lemma 3.1, which implies that Φ(z) is CC.

    Step 4. Φ has a Prior bound.

    It remains to estimate that the set (Φ)={zY:z=ΘΦz,0<Θ<1} is bounded.

    Let zΠ(Φ), then z=ΘΦ(z) for some Θ(0,1), by following the proof of Step 2 that ||z||Yη. This proves that the set Π(Φ) is bounded. Hence, by Theorem 3.1, Φ has a fixed point, which is the required solution on J.

    Here, we derive the UHR stability for (1.1). Let ω>0, ϕ0, and ζPC(J,Rn) be nondecreasing. Consider the following inequalities.

    E||Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]A˜Γ(ε)Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)||ωζ(ε),ε (sk,εk+1],k=0,1,2,,m,E||Γ(ε)hk(ε,Γ(ε))||2ωϕ,ε(εk,sk],k=1,2,,m,E||I1v0+Γ(ε)Γ0||2ωϕ,Γ(ε)=ϕ(ε),ε[0r,0],Γ(ε)=φ(ε),ε[b,b+h].

    Define a vector space as χ:

    χ=PC(J,Rn)C((sk,tk+1],Rn).

    Definition 5.1. System (1.1) is UHR stable with respect to (ζ,ϕ) if there exists C(M,L,P,ζ)>0 such that for each solution ˜Γχ of the inequality (5.1), there exists solution ΓPC(J,Rn) of (1.1) with

    E||˜Γ(ε)Γ(ε)||2C(M,L,p,ζ)ω(ζ(ε)+ϕ),εJ.

    Remark 5.1. A function ˜Γχ is a solution of (5.1) there is QKi=0 ((sk,εk+1],Rn] and qKi=0((εk,sk],Rn) such that:

    (1) E||Q(ε)||2ωζ(ε),εKi=0(sk,εk+1];E||q(ε)||2ωϕ,εKi=0(tk,sk];

    (2) Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s) +ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε (sk,εk+1],k=0,1,2,,m,

    (3) ˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε(εk,sk],k=0,1,2,,m.

    By Remark 5.1, we have

    Dγ,βψ(ε)[˜˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε (sk,εk+1],k=0,1,2,,m,˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε(εk,sk],k=0,1,2,,m,I1v0+˜Γ(ε)/ε=0=Γ0.

    Lemma 5.1. Let β[0,1], γ(0,1). If a function ˜Γχ is a solution of (5.1) then we have:

    (i)E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2ψ2γ(ε)γ2M2ωε0ζ(s)ds,ε[0,ε1].
    (ii)E||(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2b2γγ2M2ωεskζ(s)ds, ε(sk,εk+1],k=1,2,,m.

    By Remark 5.1, we have:

    Case 1. For ε[0,ε1], we have

    Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε).

    Thus

    ˜Γ(ε)=ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds.

    From above, we obtain

    E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2E||ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2ψ2γ(ε)γ2M2ωε0ζ(s)ds.

    Case 2. For ε(εk,sk], we have

    E||˜Γ(ε)hk(ε,˜Γ(ε))||2ωϕ.

    Case 3. For ε(sk,εk+1], we get

    Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε),then,˜Γ(ε)=(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds,+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds.

    Thus

    E||˜Γ(ε)(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2(ψ(ε)sk)2γγ2M2ωε0ζ(s)dsb2γγ2M2εε0ζ(s)ds.

    In order to prove stability, we assume the following assumptions:

    (H7) There exist positive constants Mk(k=1,2,,m) such that

    E||hk(ε,Γ(ε))hk(ε,z(ε))||2mk=1MkE||Γ(ε)z(ε)||2Yε(εk,sk].

    (H8) Let ζC(J,Rn) be a nondecreasing function if there exists cζ>0 such that ε0ζ(s)ds<cζζ(ε), εJ.

    Lemma 5.2. Let P0=P0 where p=1,2,,m, and the following inequality holds

    Γ(ε)a(ε)+ε0b(s)Γ(s)ds+Σ0<εk<εαkΓ(εˉk),ε0,

    where Γ,a,bPC(R+,R+), a is nondecreasing and b(ε)>0, αk>0, kP. For εR+,

    Γ(ε)a(ε)(1+α)Ke(ε0b(s)ds),ε(εK,εK+1],KP0,

    where α=supKP{αK} and ε0=0.

    Theorem 5.1. If the assumptions (H1),(H7), and (H8) are satisfied, then (1.1) is UHR stable with respect to (ζ,ϕ).

    Proof. Let ˜Γχ be a solution of inequality (5.1) and Γ be the unique solution of (1.1).

    Case 1. For ε[0,ε1], we have:

    E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2ψ2γ(ε)γ2M2εε0ψ(s)dsψ2γ(ε)γ2M2ωcζζ(ε)b2γγ2M2ωcζζ(ε)cpcζζ(ε),

    where cp=b2γγ2M2.

    Case 2. For ε(εk,sk], we have

    E||˜Γ(ε)hk(ε,˜Γ(ε))||2ωϕ.

    Case 3. For ε(sk,εk+1], we have

    E||˜Γ(ε)(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,Γ(sk))ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2(ψ(ε)sk)2γγ2M2ωε0ζ(s)dsb2γγ2M2ωcζζ(ε)cpcζζ(ε).

    Hence, for ε[0,ε1], we have:

    E||Γ(ε)˜Γ(ε)||2ψ(ε)2γγ2M2[ωcζζ(ε)+((Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2))||Γ(s)˜Γ(s)||2]b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2))||Γ(s)˜Γ(s)||2]. (5.1)

    For ε(εk,sk], we get

    E||Γ(ε)˜Γ(ε)||2=E||Γ(ε)hk(sk,˜Γ(sk))||2=E||Γ(ε)hk(sk,Γ(sk))+hk(sk,Γ(sk))hk(sk,˜Γ(sk))||22{E||Γ(ε)hk(sk,Γ(sk))||2+E||hk(sk,Γ(sk))hk(sk,˜Γ(sk))||2}2{ωϕ+Σki=0Mk||Γ(ε)˜Γ(ε)||2}. (5.2)

    For ε(sk,εk+1], k = 1, 2, , m,

    E||Γ(ε)˜Γ(ε)||25b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2))||Γ(s)˜Γ(s)||2].+5bv1M1Σki=1Mk||Γ(s)~Γ(s)||2. (5.3)

    Combining (5.2)–(5.4), one can get an inequality of the form given in Lemma 5.2. For εJ, since ε(εk,εk+1], KP0, we have

    E||Γ(ε)˜Γ(ε)||25{cpωcζζ(ε)+bv1M1Σki=1Mk||Γ(ε)˜Γ(ε)||2+cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2)]||Γ(s)˜Γ(s)||2+5bv1M1Σki=1Mk||Γ(s)~Γ(s)||2}+2ωϕ5cpωcζ(ζ(ε)+ϕ)(1+M)keε0Lds,

    where

    M=sup{bv1M1Mk},L=cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2)].

    Thus,

    E||Γ(ε)˜Γ(ε)||25C(M,L,p,ζ)ω(ζ(ε)+ϕ),εJ,

    where C(M,L,p,ζ) is a constant depending on M,L,p,ζ. Hence, (1.1) is UHR stable w.r.t (ζ,ϕ).

    Consider the following nonlinear ψ-HFSE with NI impulses driven by both noises. This type of fractional SDE can be applied in pharmacotherapy.

    D12,34ψ(ε)Γ1(ε)=Γ2(ε)+15(Γ1(ε)1+Γ21(ε)+Γ22(ε))+15(Γ1(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s))
    +Γ1(ε)eψ(ε)3β1(ε),Dγ,βψ(ε)Γ(s)+Γ1(ε)e2ψ(ε)5βH1(ε),Dγ,βψ(ε)Γ(s),
    D12,34ψ(ε)Γ2(ε)=Γ1(ε)+15(Γ2(ε)1+Γ21(ε)+Γ22(ε))+15(Γ2(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s))
    +Γ2(ε)eψ(ε)3β2(ε),Dγ,βψ(ε)Γ(s)+Γ2(ε)e2ψ(ε)3βH2(ε),Dγ,βψ(ε)Γ(s),
    ε(sk,εk+1],k=0,1,,m,
    Γ(ε)=14Γ(ε,εk),ε(0.9,sk),k=1,2,,m,
    Γ(0)=Γ0,ψ(ε)=sin(ε),

    where ΓR2, Γ12, β=34, 0<ε0<s0<ε1<<sm=1 are prefixed numbers, J=[0,1]. Here

    A=(0110),Δ(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))),
    h(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))),
    g(ε,Γ(ε))=(Γ1(ε)eψ(ε)300Γ2(ε)eψ(ε)3),λ(ε,Γ(ε))=(Γ1(ε)e2ψ(ε)500εΓ2(ε)eψ(ε)5).

    Calculate the M-L function by using [12]. We have

    Mγ,ν(Aψ(ε)γ)=(S1S2S3S4),

    where

    S1=S4=j=0(1)jb2jγΓ(1+2jγ)=0.3377,
    S2=S3=j=0(1)jb(2j+1)γΓ(1+(2j+1)γ)=1.666.

    Also calculate

    Mγ,ν(A(bs)γ)=(P1P2P3P4),

    where

    P1=P4=j=0(1)j(bs)2jγΓ(2jγ+γ)=0.7477,
    P2=P3=j=0(1)j(bs)(2j+1)γΓ[(2j+1)γ]=0.4203.

    Therefore, we need to check the hypotheses of nonlinear functions:

    E||h(ε,u1)h(ε,u2)||2130||u1u2||2,
    E||Δ(ε,u1,v1)Δ(ε,u2,v2)||2125||u1u2||2+135||v1v2||2,
    E||g(ε,u1,v1)g(ε,u2,v2)||219e2||u1u2||2+110e3||v1v2||2,
    E||λ(ε,u1,v1λ(ε,u2,v2)||2125e4ψ(ε)||u1u2||2+120e5ψ(ε)||v1v2||2,
    E||hk(ε,u)hk(ε,v||2116||uv||2,k=1,2,,m.

    We get M1=0.0862, M2=0.3824, Mhk=0.065, and γ=0.5. Hence we have L=max{L0,Lk,Lk}=0.52<1. Also,

    E||Γ(ε)˜Γ(ε)||25C(M,L,p,ζ)ε(ζ(ε)+ϕ),εJ,0.218.

    In this example, all the conditions stated in Theorems 4.1 and 5.1 are satisfied, so the example has a unique solution and is also UHR stable.

    With the help of Schaefer's FPT and the Banach contraction principles, we obtained the existence and uniqueness results for HSFEs with retarded and advanced arguments, selected the non-instantaneous impulses with both multiplicative and fractional noises, and obtained the UHR stability for HSFEs. UHR stability gives bounds between the exact and approximation solution, which is why this theory is very important in the numerical analysis as well as in approximation theory. We are hoping that our findings will have a great importance in the mentioned theories. Finally, a case study is provided to demonstrate the efficacy of the suggested outcomes. In the future, we can use the findings to investigate the controllability of HSFEs.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Anhui Province Natural Science Research Foundation (2023AH051810).

    The authors declare no conflicts of interest.



    [1] Liao J, Chen J, Ru X, et al. (2017) Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment. J Geochem Explor 176: 9-19. doi: 10.1016/j.gexplo.2016.08.013
    [2] Zhaoyong Z, Xiaodong Y, Shengtian Y (2018) Heavy metal pollution assessment, source identification, and health risk evaluation in Aibi Lake of northwest China. Environ Monit Assess 190: 1-13. doi: 10.1007/s10661-017-6437-x
    [3] Shikazono N, Tatewaki K, Mohiuddin KM, et al. (2012) Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environ Geochem Health 34: 13-26. doi: 10.1007/s10653-011-9409-z
    [4] Xia F, Zhang M, Qu L, et al. (2018) Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ Pollut 237: 639-649. doi: 10.1016/j.envpol.2018.02.020
    [5] Kaizer A, Osakwe S (2011) Physicochemical characteristics and heavy metal levels in water samples from five river systems in Delta State, Nigeria. J Appl Sci Environ Manag 14: 83-87.
    [6] Islam MS, Ahmed MK, Raknuzzaman M, et al. (2015) Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol Indic 48: 282-291. doi: 10.1016/j.ecolind.2014.08.016
    [7] Ouyang W, Wang Y, Lin C, et al. (2018) Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci Total Environ 637-638: 208-220. doi: 10.1016/j.scitotenv.2018.04.434
    [8] Chowdhury S, Mazumder MAJ, Al-Attas O, et al. (2016) Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci Total Environ 569-570: 476-488. doi: 10.1016/j.scitotenv.2016.06.166
    [9] Santos-Echeandía J, Prego R, Cobelo-García A (2008) Influence of the heavy fuel spill from the Prestige tanker wreckage in the overlying seawater column levels of copper, nickel and vanadium (NE Atlantic Ocean). J Mar Syst 72: 350-357. doi: 10.1016/j.jmarsys.2006.12.005
    [10] Holt MS (2000) Sources of chemical contaminants and routes into the freshwater environment. Food Chem Toxicol 38: 21-27.
    [11] Salehi M, Aghilinasrollahabadi K, Esfandarani MS (2020) An investigation of stormwater quality variation within an industry sector using the self-reported data collected under the stormwater monitoring program. Water 12: 1-16. doi: 10.3390/w12113185
    [12] Aghilinasrollahabadi K, Salehi M, Fujiwara T (2021) Investigate the influence of microplastics weathering on their heavy metals uptake in stormwater. J Hazard Mater 408: 124439. doi: 10.1016/j.jhazmat.2020.124439
    [13] Li F, Zhang J, Cao T, et al. (2018) Human health risk assessment of toxic elements in farmland topsoil with source identification in Jilin province, China. Int J Environ Res Public Health 15: 1040. doi: 10.3390/ijerph15051040
    [14] Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic 234: 431-444. doi: 10.1016/j.scienta.2017.12.039
    [15] Le Roux W, Chamier J, Genthe B, et al. (2018) The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere 199: 1-9. doi: 10.1016/j.chemosphere.2018.01.160
    [16] Akpor OB, Ohiobor GO, Olaolu TD (2015) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2: 37-43.
    [17] Khan K, Lu Y, Khan H, et al. (2013) Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. J Environ Sci 25: 2003-2013. doi: 10.1016/S1001-0742(12)60275-7
    [18] Salehi M, Jafvert CT, Howarter JA, et al. (2018) Investigation of the factors that influence lead accumulation onto polyethylene: Implication for potable water plumbing pipes. J Hazard Mater 347: 242-251. doi: 10.1016/j.jhazmat.2017.12.066
    [19] Ahamed T, Brown SP, Salehi M (2020) Investigate the role of biofilm and water chemistry on lead deposition onto and release from polyethylene: an implication for potable water pipes. J Hazard Mater 400: 123253. doi: 10.1016/j.jhazmat.2020.123253
    [20] DeSimone D, Sharafoddinzadeh D, Salehi M (2020) Prediction of children's blood lead levels from exposure to lead in schools' drinking water-A case study in Tennessee, USA. Water 12: 1826. doi: 10.3390/w12061826
    [21] Proctor CR, Rhoads WJ, Keane T, et al. (2020) Considerations for large building water quality after extended stagnation. AWWA Water Sci 2: e1186.
    [22] El-Kady AA, Abdel-Wahhab MA (2018) Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci Technol 75: 36-45. doi: 10.1016/j.tifs.2018.03.001
    [23] Al Osman M, Yang F, Massey IY (2019) Exposure routes and health effects of heavy metals on children. Biometals 32: 563-573. doi: 10.1007/s10534-019-00193-5
    [24] Rehman K, Fatima F, Waheed I, et al. (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119: 157-184. doi: 10.1002/jcb.26234
    [25] Mohammadi AA, Zarei A, Majidi S, et al. (2019) Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 6: 1642-1651. doi: 10.1016/j.mex.2019.07.017
    [26] Edwards M, Triantafyllidou S, Best D (2009) Elevated blood lead in young children due to lead-contaminated drinking water: Washington, DC, 2001-2004. Environ Sci Technol 43: 1618-1623. doi: 10.1021/es802789w
    [27] Jain NB, Laden F, Guller U, et al. (2005) Relation between blood lead levels and childhood anemia in India. Am J Epidemiol 161: 968-973. doi: 10.1093/aje/kwi126
    [28] Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res Granthaalayah 2350: 2394-3629.
    [29] Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15: 1-6.
    [30] Lamm SH, Kruse MB (2005) Arsenic ingestion and bladder cancer mortality-What do the dose-response relationships suggest about mechanism? Hum Ecol Risk Assess 11: 433-450.
    [31] Viet PH, Sampson ML, Buschmann J, et al. (2008) Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environ Int 34: 756-764. doi: 10.1016/j.envint.2007.12.025
    [32] Volety AK (2008) Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology 17: 579-590. doi: 10.1007/s10646-008-0242-9
    [33] Yoo JW, Cho H, Lee KW, et al. (2021) Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comp Biochem Physiol Part-C Toxicol Pharmacol 239: 108863. doi: 10.1016/j.cbpc.2020.108863
    [34] Jakimska A, Konieczka P, Skora K, et al. (2011) Bioaccumulation of metals in tissues of marine animals. J Environ Stud 20: 1117-1125.
    [35] Kononova ON, Bryuzgina GL, Apchitaeva OV, et al. (2019) Ion exchange recovery of chromium (VI) and manganese (Ⅱ) from aqueous solutions. Arab J Chem 12: 2713-2720. doi: 10.1016/j.arabjc.2015.05.021
    [36] Gupta B, Deep A, Tandon SN (2002) Recovery of chromium and nickel from industrial waste. Ind Eng Chem Res 41: 2948-2952. doi: 10.1021/ie010934b
    [37] Wang D, Li Y, Li Puma G, et al. (2017) Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater. J Hazard Mater 323: 681-689. doi: 10.1016/j.jhazmat.2016.10.037
    [38] Baltazar C, Igarashi T, Villacorte-tabelin M, et al. (2018) Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci Total Environ 645: 1522-1553. doi: 10.1016/j.scitotenv.2018.07.103
    [39] Baltazar C, Sasaki R, Igarashi T, et al. (2017) Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: I. Column experiments under intermittent and unsaturated flow. Chemosphere 186: 558-569.
    [40] Shao H, Freiburg JT, Berger PM, et al. (2020) Mobilization of trace metals from caprock and formation rocks at the Illinois Basin - Decatur Project demonstration site under geological carbon dioxide sequestration conditions. Chem Geol 550: 119758. doi: 10.1016/j.chemgeo.2020.119758
    [41] Feng W, Guo Z, Xiao X, et al. (2019) Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicol Environ Saf 180: 160-167. doi: 10.1016/j.ecoenv.2019.04.090
    [42] Feng W, Guo Z, Peng C, et al. (2019) Atmospheric bulk deposition of heavy metal(loid)s in central south China: Fluxes, influencing factors and implication for paddy soils. J Hazard Mater 371: 634-642. doi: 10.1016/j.jhazmat.2019.02.090
    [43] Rajamohan R, Rao TS, Anupkumar B, et al. (2010) Distribution of heavy metals in the vicinity of a nuclear power plant, east coast of India: With emphasis on copper concentration and primary productivity. Indian J Mar Sci 39: 182-191.
    [44] Nieva NE, Borgnino L, García MG (2018) Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Environ Pollut 242: 264-276. doi: 10.1016/j.envpol.2018.06.067
    [45] Karnchanawong S, Limpiteeprakan P (2009) Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste. Waste Manag 29: 550-558. doi: 10.1016/j.wasman.2008.03.018
    [46] Ribeiro C, Scheufele FB, Espinoza-Quinones FR, et al. (2018) Biomaterials A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio- residue, mineral and commercial adsorbent materials. Biomaterials 53: 7976-7995.
    [47] Al-Khashman O, Shawabkeh RA (2009) Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan. Environ Geochem Health 31: 717-726. doi: 10.1007/s10653-009-9250-9
    [48] Jeong H, Choi JY, Lee J, et al. (2020) Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ Pollut 265: 115028. doi: 10.1016/j.envpol.2020.115028
    [49] City D, Das M, Ahmed K, et al. (2009) Heavy metals in industrial effluents (tannery and textile) and adjacent rivers heavy metals in industrial effluents (tannery and textile) and adjacent rivers of Dhaka City, Bangladesh. Terr Aquat Environ Toxicol 5: 8-13.
    [50] Halimoon N (2010) Removal of heavy metals from textile wastewater using zeolite. Environment Asia 3: 124-130.
    [51] Saha P, Paul B (2019) Human and ecological risk assessment: an international assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Hum Ecol RISK Assess 25: 966-987. doi: 10.1080/10807039.2018.1458595
    [52] Hepburn E, Northway A, Bekele D, et al. (2018) A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence. Environ Pollut 241: 787-799. doi: 10.1016/j.envpol.2018.06.004
    [53] Ning CC, Gao PD, Wang BQ, et al. (2017) Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J Integr Agric 16: 1819-1831. doi: 10.1016/S2095-3119(16)61476-4
    [54] Fan Y, Li Y, Li H, et al. (2018) Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 197: 382-388. doi: 10.1016/j.chemosphere.2018.01.055
    [55] Defarge N, Vendômois JS De, Séralini GE (2018) Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Rep 5: 156-163. doi: 10.1016/j.toxrep.2017.12.025
    [56] Clark BN, Masters SV, Edwards M (2015) Lead release to drinking water from galvanized steel pipe coatings. Environ Eng Sci 32: 713-721. doi: 10.1089/ees.2015.0073
    [57] McFadden M, Giani R, Kwan P, et al. (2011) Contributions to drinking water lead from galvanized iron corrosion scales. J Am Water Works Assoc 103: 76-89.
    [58] Salehi M, Li X, Whelton AJ (2017) Metal accumulation in representative plastic drinking water plumbing systems. J Am Water Works Assoc 109: E479-E493.
    [59] Salehi M, Abouali M, Wang M, et al. (2018) Case study: Fixture water use and drinking water quality in a new residential green building. Chemosphere 195: 80-89. doi: 10.1016/j.chemosphere.2017.11.070
    [60] Salehi M, Odimayomi T, Ra K, et al. (2020) An investigation of spatial and temporal drinking water quality variation in green residential plumbing. J Build Environ 169: 106566. doi: 10.1016/j.buildenv.2019.106566
    [61] Sakson G, Brzezinska A, Zawilski M (2018) Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city. Environ Monit Assess 190: 1-15. doi: 10.1007/s10661-018-6648-9
    [62] Chief K, Artiola JF, Beamer P, et al. (2016) Understanding the Gold King Mine Spill. Superfund Res, The University of Arizona.
    [63] Nemati M, Hosseini SM, Shabanian M (2017) Novel electrodialysis cation exchange membrane prepared by 2- acrylamido-2-methylpropane sulfonic acid; Heavy metal ions removal. J Hazard Mater 337: 90-104. doi: 10.1016/j.jhazmat.2017.04.074
    [64] Abdullah N, Yusof N, Lau WJ, et al. (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76: 17-38. doi: 10.1016/j.jiec.2019.03.029
    [65] Wang N, Qiu Y, Hu K, et al. (2021) One-step synthesis of cake-like biosorbents from plant biomass for the effective removal and recovery heavy metals: Effect of plant species and roles of xanthation. Chemosphere 266: 129129. doi: 10.1016/j.chemosphere.2020.129129
    [66] Rahman ML, Wong ZJ, Sarjadi MS, et al. (2021) Poly(hydroxamic acid) ligand from palm-based waste materials for removal of heavy metals from electroplating wastewater. J Appl Polym Sci 138: 49671. doi: 10.1002/app.49671
    [67] Kurniawan TA, Chan GYS, Lo W hung, et al. (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366: 409-426. doi: 10.1016/j.scitotenv.2005.10.001
    [68] Bottero JY, Rose J, Wiesner MR (2006) Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 2: 391-395. doi: 10.1002/ieam.5630020411
    [69] Grün AY, App CB, Breidenbach A, et al. (2018) Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial freshwater biofilms. PLoS One 13: e0199132.
    [70] Xu J, Cao Z, Zhang Y, et al. (2018) Chemosphere A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 195: 351-364. doi: 10.1016/j.chemosphere.2017.12.061
    [71] Lu C, Chiu H (2006) Adsorption of zinc (Ⅱ) from water with purified carbon nanotubes. Chemical Eng Sci 61: 1138-1145. doi: 10.1016/j.ces.2005.08.007
    [72] Deliyanni EA, Bakoyannakis DN, Zouboulis AI, et al. (2003) Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere 50: 155-163. doi: 10.1016/S0045-6535(02)00351-X
    [73] Tavker N, Yadav VK, Yadav KK, et al. (2021) Removal of cadmium and chromium by mixture of silver nanoparticles and nano-fibrillated cellulose isolated from waste peels of citrus sinensis. Polymers 13: 1-14. doi: 10.3390/polym13020234
    [74] Shahrashoub M, Bakhtiari S (2021) The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater 311: 110692. doi: 10.1016/j.micromeso.2020.110692
    [75] Li Z, Gong Y, Zhao D, et al. (2021) Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles. Chemosphere 263: 128038. doi: 10.1016/j.chemosphere.2020.128038
    [76] Ademola Bode-Aluko C, Pereao O, Kyaw HH, et al. (2021) Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Mater Sci Eng B Solid-State Mater Adv Technol 264: 114913. doi: 10.1016/j.mseb.2020.114913
    [77] Li QH, Dong M, Li R, et al. (2021) Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydr Polym 253.
    [78] Hamad AA, Hassouna MS, Shalaby TI, et al. (2020) Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. Int J Biol Macromol 151: 1299-1313. doi: 10.1016/j.ijbiomac.2019.10.176
    [79] Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Nano Micro Small 5: 2349-2370.
    [80] Peng S, Jin G, Li L, et al. (2016) Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 45: 1225-1241. doi: 10.1039/C5CS00777A
    [81] Zhang Y, Duan X (2020) Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci Technol 81: 1130-1136. doi: 10.2166/wst.2020.208
    [82] Stec M, Jagustyn B, Słowik K, et al. (2020) Influence of high chloride concentration on pH control in hydroxide precipitation of heavy metals. J Sustain Metall 6: 239-249. doi: 10.1007/s40831-020-00270-x
    [83] Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4: 361-377. doi: 10.1016/j.arabjc.2010.07.019
    [84] Xu H, Min X, Wang Y, et al. (2020) Stabilization of arsenic sulfide sludge by hydrothermal treatment. Hydrometallurgy 191: 105229. doi: 10.1016/j.hydromet.2019.105229
    [85] Carro L, Barriada JL, Herrero R, et al. (2015) Interaction of heavy metals with Ca-pretreated Sargassum muticum algal biomass: Characterization as a cation exchange process. Chem Eng J 264: 181-187. doi: 10.1016/j.cej.2014.11.079
    [86] Carolin CF, Kumar PS, Saravanan A, et al. (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Biochem Pharmacol 5: 2782-2799.
    [87] Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: A review. J Environ Manage 92: 407-418. doi: 10.1016/j.jenvman.2010.11.011
    [88] Keng PS, Lee SL, Ha ST, et al. (2014) Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett 12: 15-25. doi: 10.1007/s10311-013-0427-1
    [89] Ma J, Qin G, Zhang Y, et al. (2018) Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. J Clean Prod 182: 776-782. doi: 10.1016/j.jclepro.2018.02.115
    [90] Zhao M, Xu Y, Zhang C, et al. (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100: 6509-6518. doi: 10.1007/s00253-016-7646-x
    [91] Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308: 438-462. doi: 10.1016/j.cej.2016.09.029
    [92] Hayati B, Maleki A, Najafi F, et al. (2017) Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater 336: 146-157. doi: 10.1016/j.jhazmat.2017.02.059
    [93] Jellali S, Azzaz AA, Jeguirim M, et al. (2021) Use of lignite as a low-cost material for cadmium and copper removal from aqueous solutions: Assessment of adsorption characteristics and exploration of involved mechanisms. Water 13: 164. doi: 10.3390/w13020164
    [94] Wang S, Terdkiatburana T, Tadé MO (2008) Adsorption of Cu(Ⅱ), Pb(Ⅱ) and humic acid on natural zeolite tuff in single and binary systems. Sep Purif Technol 62: 64-70. doi: 10.1016/j.seppur.2008.01.004
    [95] Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Res 34: 3907-3916. doi: 10.1016/S0043-1354(00)00152-4
    [96] Sadovsky D, Brenner A, Astrachan B, et al. (2016) Biosorption potential of cerium ions using Spirulina biomass. J Rare Earths 34: 644-652. doi: 10.1016/S1002-0721(16)60074-1
    [97] Ho YS, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38: 1047-1061. doi: 10.1016/S0032-9592(02)00239-X
    [98] Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69: 1775-1787. doi: 10.2166/wst.2013.718
    [99] Huang Y, Wu D, Wang X, et al. (2016) Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep Purif Technol 158: 124-136. doi: 10.1016/j.seppur.2015.12.008
    [100] Wang R, Guan S, Sato A, et al. (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Memb Sci 446: 376-382. doi: 10.1016/j.memsci.2013.06.020
    [101] Jia TZ, Lu JP, Cheng XY, et al. (2019) Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes. J Memb Sci 580: 214-223. doi: 10.1016/j.memsci.2019.03.015
    [102] Bakalár T, Búgel M, Gajdošová L (2009) Heavy metal removal using reverse osmosis. Acta Montan Slovaca 14: 250-253.
    [103] Abdullah N, Tajuddin MH, Yusof N (2019) Forward osmosis (FO) for removal of heavy metals. Nanotechnol. Water Wastewater Treat 2019: 177-204.
    [104] Abdullah N, Yusof N, Lau WJ, et al. (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76: 13-38. doi: 10.1016/j.jiec.2019.03.029
    [105] Huang J, Yuan F, Zeng G, et al. (2017) Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 173: 199-206. doi: 10.1016/j.chemosphere.2016.12.137
    [106] Fang X, Li J, Li X, et al. (2017) Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem Eng J 314: 38-49. doi: 10.1016/j.cej.2016.12.125
    [107] Landaburu-aguirre J, Pongr E, Keiski RL (2009) The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240: 262-269. doi: 10.1016/j.desal.2007.11.077
    [108] Reza M, Emami S, Amiri MK, et al. (2021) Removal efficiency optimization of Pb2+ in a nanofiltration process by MLP-ANN and RSM. Korean J Chem Eng 38: 316-325. doi: 10.1007/s11814-020-0698-8
    [109] Azimi A, Azari A, Rezakazemi M, et al. (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Rev 4: 37-59.
    [110] Abdullah N, Tajuddin MH, Yusof N (2019) Forward osmosis (FO) for removal of heavy metals. Nanotechnol Water Wastewater Treat 2019: 177-204. doi: 10.1016/B978-0-12-813902-8.00010-1
    [111] Chung T, Li X, Ong RC, et al. (2012) Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Curr Opin Chem Eng 1: 246-257. doi: 10.1016/j.coche.2012.07.004
    [112] Behdarvand F, Valamohammadi E, Tofighy MA, et al. (2021) Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J Environ Chem Eng 9: 104650. doi: 10.1016/j.jece.2020.104650
    [113] Leaper S, Abdel-Karim A, Gorgojo P (2021) The use of carbon nanomaterials in membrane distillation membranes: a review. Front Chem Sci Eng 1-20.
    [114] Liu X, Hu Q, Fang Z, et al. (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25: 3-8. doi: 10.1021/la802754t
    [115] Türkmen D, Erkut Y, Öztürk N, et al. (2009) Poly (hydroxyethyl methacrylate) nanobeads containing imidazole groups for removal of Cu (Ⅱ) ions. Mater Sci Eng 29: 2072-2078. doi: 10.1016/j.msec.2009.04.005
    [116] Saeed K, Haider S, Oh T, et al. (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Memb Sci 322: 400-405. doi: 10.1016/j.memsci.2008.05.062
    [117] Huang S, Chen D (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163: 174-179. doi: 10.1016/j.jhazmat.2008.06.075
    [118] Madadrang CJ, Kim HY, Gao G, et al. (2012) Adsorption Behavior of EDTA-Graphene Oxide for Pb (Ⅱ) Removal. ACS Appl Mater Interfaces 4: 1186-1193. doi: 10.1021/am201645g
    [119] Perez-aguilar NV, Diaz-flores PE, Rangel-mendez JR (2011) The adsorption kinetics of cadmium by three different types of carbon nanotubes. J Colloid Interface Sci 364: 279-287. doi: 10.1016/j.jcis.2011.08.024
    [120] Alsaadi MA, Mamun AA, Alam Z (2016) Removal of cadmium from water by CNT-PAC composite: effect of functionalization. Nano 11: 1650011. doi: 10.1142/S1793292016500119
    [121] Leudjo A, Pillay K, Yangkou X (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from wastewater: A review. Carbohydr Polym 159: 94-107. doi: 10.1016/j.carbpol.2016.12.027
    [122] Dichiara AB, Webber MR, Gorman WR, et al. (2015) Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites. ACS Appl Mater Interfaces 7: 15674-15680. doi: 10.1021/acsami.5b04974
    [123] Ahmad SZN, Wan Salleh WN, Ismail AF, et al. (2020) Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 248: 126008. doi: 10.1016/j.chemosphere.2020.126008
    [124] Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett 14: 1-17. doi: 10.1186/s11671-019-3167-8
    [125] Ali S, Aziz S, Rehman U, et al. (2019) Efficient removal of zinc from water and wastewater effluents by hydroxylated and carboxylated carbon nanotube membranes: Behaviors and mechanisms of dynamic filtration. J Hazard Mater 365: 64-73. doi: 10.1016/j.jhazmat.2018.10.089
    [126] Bankole MT, Abdulkareem AS, Mohammed IA, et al. (2019) Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci Rep 9: 1-19. doi: 10.1038/s41598-018-37899-4
    [127] Qu Y, Deng J, Shen W, et al. (2015) Responses of microbial communities to single-walled carbon nanotubes in phenol wastewater treatment systems. Environ Sci Technol 49: 4627-4635. doi: 10.1021/es5053045
    [128] Li Y, Liu F, Xia B, et al. (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177: 876-880. doi: 10.1016/j.jhazmat.2009.12.114
    [129] Park S, Kim Y (2010) Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers. Mater Sci Eng A 391: 121-123. doi: 10.1016/j.msea.2004.08.074
    [130] Yang J, Hou B, Wang J, et al. (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9: 424. doi: 10.3390/nano9030424
    [131] Sitko R, Turek E, Zawisza B, et al. (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalt Trans 42: 5682-5689. doi: 10.1039/c3dt33097d
    [132] Xu T, Qu R, Zhang Y, et al. (2021) Preparation of bifunctional polysilsesquioxane/carbon nanotube magnetic composites and their adsorption properties for Au (Ⅲ). Chem Eng J 410: 128225. doi: 10.1016/j.cej.2020.128225
    [133] Li S, Wang W, Liang F, et al. (2017) Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. J Hazard Mater 322: 163-171. doi: 10.1016/j.jhazmat.2016.01.032
    [134] Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater 267: 194-205. doi: 10.1016/j.jhazmat.2013.12.062
    [135] Karabelli D, Ünal S, Shahwan T, et al. (2011) Preparation and characterization of alumina-supported iron nanoparticles and its application for the removal of aqueous Cu2+ ions. Chem Eng J 168: 979-984. doi: 10.1016/j.cej.2011.01.015
    [136] Huang P, Ye Z, Xie W, et al. (2013) Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Res 47: 4050-4058. doi: 10.1016/j.watres.2013.01.054
    [137] Shaba EY, Jacob JO, Tijani JO, et al. (2021) A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl Water Sci 11: 1-41. doi: 10.1007/s13201-021-01370-z
    [138] Wu Q, Zhao J, Qin G, et al. (2013) Photocatalytic reduction of Cr (VI) with TiO2 film under visible light. Appl Catal B Environ 142-143: 142-148. doi: 10.1016/j.apcatb.2013.04.056
    [139] Sun Q, Li H, Niu B, et al. (2015) Nano-TiO2 immobilized on diatomite: characterization and photocatalytic reactivity for Cu2+ removal from aqueous solution. Procedia Eng 102: 1935-1943. doi: 10.1016/j.proeng.2015.01.334
    [140] Sheela T, Nayaka YA, Viswanatha R, et al. (2012) Kinetics and thermodynamics studies on the adsorption of Zn(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217: 163-170. doi: 10.1016/j.powtec.2011.10.023
    [141] Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200: 448-470. doi: 10.1080/00986445.2012.686939
    [142] Lai CH, Chen CY (2001) Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44: 1177-1184. doi: 10.1016/S0045-6535(00)00307-6
    [143] Oliveira LCA, Petkowicz DI, Smaniotto A, et al. (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38: 3699-3704. doi: 10.1016/j.watres.2004.06.008
    [144] Yavuz CT, Mayo JT, Yu WW, et al. (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314: 964-967. doi: 10.1126/science.1131475
    [145] Chang Y, Chen D (2005) Preparation and adsorption properties of monodisperse chitosanbound Fe3O4 magnetic nanoparticles for removal of Cu(Ⅱ) ions. J Colloid Interface Sci 283: 446-451. doi: 10.1016/j.jcis.2004.09.010
    [146] Liu J, Zhao Z, Jiang G (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42: 6949-6954. doi: 10.1021/es800924c
    [147] Bian Y, Bian Z, Zhang J, et al. (2015) Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl Surf Sci 329: 269-275. doi: 10.1016/j.apsusc.2014.12.090
    [148] Yoon Y, Park WK, Hwang T, et al. (2016) Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(Ⅲ) and As(V) removal. J Hazard Mater 304: 196-204. doi: 10.1016/j.jhazmat.2015.10.053
    [149] Mokhtari F, Salehi M, Zamani F, et al. (2016) Advances in electrospinning: The production and application of nanofibres and nanofibrous structures. Text Prog 48: 119-219. doi: 10.1080/00405167.2016.1201934
    [150] Yang Z, Peng H, Wang W, et al. (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116: 2658-2667.
    [151] Esfandarani MS, Johari MS (2010) Producing porous nanofibers. Nanocon 2010. Olomouc, Czech Republic, Oct 12th-14th.
    [152] Guseva I, Bateson TF, Bouvard V, et al. (2016) Human exposure to carbon-based fibrous nanomaterials: A review. Int J Hyg Environ Health 219: 166-175. doi: 10.1016/j.ijheh.2015.12.005
    [153] Ming Z, Feng S, Yilihamu A, et al. (2018) Toxicity of carbon nanotubes to white rot fungus Phanerochaete chrysosporium. Ecotoxicol Environ Saf 162: 225-234. doi: 10.1016/j.ecoenv.2018.07.011
    [154] Zang L, Lin R, Dou T, et al. (2019) Electrospun superhydrophilic membranes for effective removal of Pb(ii) from water. Nanoscale Adv 1: 389-394. doi: 10.1039/C8NA00044A
    [155] Liu L, Luo X, Ding L, et al. (2019) Application of nanotechnology in the removal of heavy metal from water. In: Luo X, Deng F, Nanomaterials for the Removal of Pollutants and Resources Reutilization, Elsevier Inc., 83-147.
    [156] Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Memb Sci 523: 418-429. doi: 10.1016/j.memsci.2016.10.020
    [157] Feng Q, Wu D, Zhao Y, et al. (2018) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344: 819-828. doi: 10.1016/j.jhazmat.2017.11.035
    [158] Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72: 711-717. doi: 10.1016/j.ijbiomac.2014.09.023
    [159] Chitpong N, Husson SM (2017) High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep Purif Technol 179: 94-103. doi: 10.1016/j.seppur.2017.02.009
    [160] Avila M, Burks T, Akhtar F, et al. (2014) Surface functionalized nanofibers for the removal of chromium (VI) from aqueous solutions. Chem Eng J 245: 201-209. doi: 10.1016/j.cej.2014.02.034
    [161] Esfandarani MS, Johari MS, Amrollahi R, et al. (2011) Laser induced surface modification of clay-PAN composite nanofibers. Fibers Polym 12: 715-720. doi: 10.1007/s12221-011-0715-y
    [162] Saleem H, Trabzon L, Kilic A, et al. (2020) Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination 478: 114178. doi: 10.1016/j.desal.2019.114178
    [163] Huang L, Manickam SS, McCutcheon JR (2013) Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. J Memb Sci 436: 213-220. doi: 10.1016/j.memsci.2012.12.037
    [164] Zhuang S, Zhu K, Wang J (2021) Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(Ⅱ) removal. J Clean Prod 285: 124911. doi: 10.1016/j.jclepro.2020.124911
    [165] Kakoria A, Sinha-Ray S, Sinha-Ray S (2021) Industrially scalable Chitosan/Nylon-6 (CS/N) nanofiber-based reusable adsorbent for efficient removal of heavy metal from water. Polymer 213: 123333. doi: 10.1016/j.polymer.2020.123333
    [166] ZabihiSahebi A, Koushkbaghi S, Pishnamazi M, et al. (2019) Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. Int J Biol Macromol 140: 1296-1304. doi: 10.1016/j.ijbiomac.2019.08.214
    [167] Surgutskaia NS, Martino AD, Zednik J, et al. (2020) Efficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers. Sep Purif Technol 247: 116914. doi: 10.1016/j.seppur.2020.116914
    [168] Li Y, Li M, Zhang J, et al. (2019) Adsorption properties of the double-imprinted electrospun crosslinked chitosan nanofibers. Chinese Chem Lett 30: 762-766. doi: 10.1016/j.cclet.2018.11.005
    [169] Yang D, Li L, Chen B, et al. (2019) Functionalized chitosan electrospun nano fiber membranes for heavy-metal removal. Polymer 163: 74-85. doi: 10.1016/j.polymer.2018.12.046
    [170] Rezaul M, Omer M, Alharth NH, et al. (2019) Composite nanofibers membranes of poly (vinyl alcohol)/ chitosan for selective lead (Ⅱ) and cadmium (Ⅱ) ions removal from wastewater. Ecotoxicol Environ Saf 169: 479-486. doi: 10.1016/j.ecoenv.2018.11.049
    [171] Brandes R, Brouillette F, Chabot B (2021) Phosphorylated cellulose/electrospun chitosan nanofibers media for removal of heavy metals from aqueous solutions. J Appl Polym Sci 138: 50021. doi: 10.1002/app.50021
    [172] Begum S, Yuhana NY, Saleh NM, et al. (2021) Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydr Polym 259: 117613. doi: 10.1016/j.carbpol.2021.117613
    [173] Ki CS, Gang EH, Um IC, et al. (2007) Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Memb Sci 302: 20-26. doi: 10.1016/j.memsci.2007.06.003
    [174] O'Connell DW, Birkinshaw C, O'Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour Technol 99: 6709-6724. doi: 10.1016/j.biortech.2008.01.036
    [175] Habiba U, Afifi AM, Salleh A, et al. (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322: 182-194. doi: 10.1016/j.jhazmat.2016.06.028
    [176] Phan DN, Lee H, Huang B, et al. (2019) Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26: 1781-1793. doi: 10.1007/s10570-018-2169-5
    [177] Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr Polym 77: 656-661. doi: 10.1016/j.carbpol.2009.02.008
    [178] Li L, Li Y, Cao L, et al. (2015) Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr Polym 125: 206-213. doi: 10.1016/j.carbpol.2015.02.037
    [179] Managheb M, Zarghami S, Mohammadi T, et al. (2021) Enhanced dynamic Cu(Ⅱ) ion removal using hot-pressed chitosan/poly (vinyl alcohol) electrospun nanofibrous affinity membrane (ENAM). Process Saf Environ Prot 146: 329-337. doi: 10.1016/j.psep.2020.09.013
    [180] Pereao O, Uche C, Bublikov PS, et al. (2021) Chitosan/PEO nanofibers electrospun on metallized track-etched membranes: fabrication and characterization. Mater Today Chem 20: 100416. doi: 10.1016/j.mtchem.2020.100416
    [181] Razzaz A, Ghorban S, Hosayni L, et al. (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 58: 333-343. doi: 10.1016/j.jtice.2015.06.003
    [182] Yang D, Li L, Chen B, et al. (2019) Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 163: 74-85. doi: 10.1016/j.polymer.2018.12.046
    [183] Li Y, Qiu T, Xu X (2013) Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. Eur Polym J 49: 1487-1494. doi: 10.1016/j.eurpolymj.2013.04.002
    [184] Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Memb Sci 523: 418-429. doi: 10.1016/j.memsci.2016.10.020
    [185] Huang M, Tu H, Chen J, et al. (2018) Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal. Appl Surf Sci 437: 294-303. doi: 10.1016/j.apsusc.2017.12.150
    [186] Li L, Li Y, Cao L, et al. (2015) Enhanced chromium(VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr Polym 125: 206-213. doi: 10.1016/j.carbpol.2015.02.037
    [187] Li Y, Zhang J, Xu C, et al. (2016) Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Sci China Chem 59: 95-105. doi: 10.1007/s11426-015-5526-3
    [188] Li Y, Xu C, Qiu T, et al. (2014) Crosslinked electro-spun chitosan nanofiber mats with Cd(Ⅱ) as template ions for adsorption applications. J Nanosci Nanotechnol 15: 4245-4254. doi: 10.1166/jnn.2015.10197
    [189] Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution. J Memb Sci 328: 90-96. doi: 10.1016/j.memsci.2008.11.046
    [190] Yang D, Li L, Chen B, et al. (2019) Functionalized chitosan electrospun nano fiber membranes for heavy-metal removal. Polymer 163: 74-85. doi: 10.1016/j.polymer.2018.12.046
    [191] Stephen M, Catherine N, Brenda M, et al. (2011) Oxolane-2, 5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192: 922-927. doi: 10.1016/j.jhazmat.2011.06.001
    [192] Thamer BM, Aldalbahi A, Moydeen AM, et al. (2019) Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Sci Rep 9: 1-15. doi: 10.1038/s41598-019-55679-6
    [193] Pereao OK, Bode-Aluko C, Ndayambaje G, et al. (2017) Electrospinning: polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ 25: 1175-1189. doi: 10.1007/s10924-016-0896-y
    [194] Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl Mater Interfaces 2: 3619-3627. doi: 10.1021/am1008024
    [195] Chen C, Li F, Guo Z, et al. (2019) Preparation and performance of aminated polyacrylonitrile nanofibers for highly efficient copper ion removal. Colloids Surf A 568: 334-344. doi: 10.1016/j.colsurfa.2019.02.020
    [196] Martín DM, Faccini M, García MA, et al. (2018) Highly efficient removal of heavy metal ions from polluted water using ion- selective polyacrylonitrile nano fibers. J Environ Chem Eng 6: 236-245. doi: 10.1016/j.jece.2017.11.073
    [197] Zhao R, Li X, Sun B, et al. (2015) Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem Eng J 268: 290-299. doi: 10.1016/j.cej.2015.01.061
    [198] Saeed K, Park SY, Oh TJ (2011) Preparation of hydrazine-modified polyacrylonitrile nanofibers for the extraction of metal ions from aqueous media. J Appl Polym Sci 121: 869-873. doi: 10.1002/app.33614
    [199] Hu Y, Wu XY, He X, et al. (2019) Phosphorylated polyacrylonitrile-based electrospun nanofibers for removal of heavy metal ions from aqueous solution. Polym Adv Technol 30: 545-551. doi: 10.1002/pat.4490
    [200] Zheng P, Shen S, Pu Z, et al. (2015) Electrospun fluorescent polyarylene ether nitrile nanofibrous mats and application as an adsorbent for Cu2+ removal. Fibers Polym 16: 2215-2222. doi: 10.1007/s12221-015-5425-4
    [201] Wang X, Min M, Liu Z, et al. (2011) Poly(ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly(vinyl alcohol)-doped poly(ethyleneimine) solution system and its application. J Memb Sci 379: 191-199. doi: 10.1016/j.memsci.2011.05.065
    [202] Sang Y, Li F, Gu Q, et al. (2008) Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane. Desalination 223: 349-360. doi: 10.1016/j.desal.2007.01.208
    [203] Martín DM, Ahmed MM, Rodríguez M, et al. (2017) Aminated Polyethylene Terephthalate (PET) nanofibers for the selective removal of Pb(Ⅱ) from polluted water. Materials 10: 1352. doi: 10.3390/ma10121352
    [204] Ma Z, Ji H, Teng Y, et al. (2011) Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci 358: 547-553. doi: 10.1016/j.jcis.2011.02.066
    [205] Saxena N, Prabhavathy C, De S, et al. (2009) Flux enhancement by argon-oxygen plasma treatment of polyethersulfone membranes. Sep Purif Technol 70: 160-165. doi: 10.1016/j.seppur.2009.09.011
    [206] Bahramzadeh A, Zahedi P, Abdouss M (2016) Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions. J Appl Polym Sci 133: 42944. doi: 10.1002/app.42944
    [207] Yarandpour MR, Rashidi A, Eslahi N, et al. (2018) Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions. J Taiwan Inst Chem Eng 93: 566-581. doi: 10.1016/j.jtice.2018.09.002
    [208] Wang J, Pan K, He Q, et al. (2013) Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J Hazard Mater 244: 121-129. doi: 10.1016/j.jhazmat.2012.11.020
    [209] Zhang S, Shi Q, Christodoulatos C, et al. (2019) Adsorptive filtration of lead by electrospun PVA / PAA nanofiber membranes in a fixed-bed column. Chem Eng J 370: 1262-1273. doi: 10.1016/j.cej.2019.03.294
    [210] Gore P, Khraisheh M, Kandasubramanian B (2018) Nanofibers of resorcinol-formaldehyde for effective adsorption of As (Ⅲ) ions from mimicked effluents. Environ Sci Pollut Res 25: 11729-11745. doi: 10.1007/s11356-018-1304-z
    [211] Allafchian AR, Shiasi A, Amiri R (2017) Preparing of poly (acrylonitrile co maleic acid) nanofiber mats for removal of Ni (Ⅱ) and Cr (VI) ions from water. J Taiwan Inst Chem Eng 80: 563-569. doi: 10.1016/j.jtice.2017.08.029
    [212] Aliabadi M, Irani M, Ismaeili J, et al. (2014) Design and evaluation of chitosan/ hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45: 518-526. doi: 10.1016/j.jtice.2013.04.016
    [213] Jiang M, Han T, Wang J, et al. (2018) Removal of heavy metal chromium using cross-linked chitosan composite nano fiber mats. Int J Biol Macromol 120: 213-221. doi: 10.1016/j.ijbiomac.2018.08.071
    [214] Feng Q, Wu D, Zhao Y, et al. (2018) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344: 819-828. doi: 10.1016/j.jhazmat.2017.11.035
    [215] Lin Y, Cai W, Tian X, et al. (2011) Polyacrylonitrile/ferrous chloride composite porous nanofibers and their strong Cr-removal performance. J Mater Chem 21: 991-997. doi: 10.1039/C0JM02334E
    [216] Huang M, Tu H, Chen J, et al. (2018) Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal. Appl Surf Sci 437: 294-303. doi: 10.1016/j.apsusc.2017.12.150
    [217] Irani M, Reza A, Ali M (2012) Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol-gel/electrospinning. Chem Eng J 200-202: 192-201. doi: 10.1016/j.cej.2012.06.054
    [218] Li L, Wang F, Lv Y, et al. (2018) Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Appl Clay Sci 161: 225-234. doi: 10.1016/j.clay.2018.04.002
    [219] Min L, Yang L, Wu R, et al. (2019) Enhanced adsorption of arsenite from aqueous solution by an iron-doped electrospun chitosan nanofiber mat: Preparation, characterization and performance. J Colloid Interface Sci 535: 255-264. doi: 10.1016/j.jcis.2018.09.073
    [220] Xiao S, Ma H, Shen M, et al. (2011) Excellent copper (Ⅱ) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids Surfaces A Physicochem Eng Asp 381: 48-54. doi: 10.1016/j.colsurfa.2011.03.005
    [221] Wu S, Li F, Wang H, et al. (2010) Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nano fiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51: 6203-6211. doi: 10.1016/j.polymer.2010.10.015
    [222] Aliahmadipoor P, Ghazanfari D, Gohari RJ, et al. (2020) Preparation of PVDF/FMBO composite electrospun nanofiber for effective arsenate removal from water. RSC Adv 10: 24653-24662. doi: 10.1039/D0RA02723E
    [223] Haddad MY, Alharbi HF (2019) Enhancement of heavy metal ion adsorption using electrospun polyacrylonitrile nanofibers loaded with ZnO nanoparticles. J Appl Polym Sci 136: 47209. doi: 10.1002/app.47209
    [224] Sahoo SK, Panigrahi GK, Sahoo JK, et al. (2021) Electrospun magnetic polyacrylonitrile-GO hybrid nanofibers for removing Cr(VI) from water. J Mol Liq 326: 115364. doi: 10.1016/j.molliq.2021.115364
    [225] Liu F, Wang X, Chen B, et al. (2017) Removal of Cr (VI) using polyacrylonitrile/ferrous chloride composite nanofibers. J Taiwan Inst Chem Eng 70: 401-410. doi: 10.1016/j.jtice.2016.10.043
    [226] Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34: 451-465. doi: 10.1016/S0032-9592(98)00112-5
    [227] Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187: 79-88. doi: 10.1016/j.cej.2012.01.089
    [228] Neghlani PK, Rafizadeh M, Taromi FA (2011) Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J Hazard Mater 186: 182-189. doi: 10.1016/j.jhazmat.2010.10.121
    [229] Zhang J, Xue CH, Ma HR, et al. (2020) Fabrication of PAN electrospun nanofibers modified by tannin for effective removal of trace Cr(Ⅲ) in organic complex from wastewater. Polymers 12: 1-17.
    [230] Morillo Martín D, Faccini M, García MA, et al. (2018) Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J Environ Chem Eng 6: 236-245. doi: 10.1016/j.jece.2017.11.073
    [231] Zhang S, Shi Q, Korfiatis G, et al. (2020) Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions. Chem Eng J 387: 124179. doi: 10.1016/j.cej.2020.124179
    [232] Yarandpour MR, Rashidi A, Eslahi N, et al. (2018) Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions. J Taiwan Inst Chem Eng 93: 566-581. doi: 10.1016/j.jtice.2018.09.002
    [233] Zhu F, Zheng YM, Zhang BG, et al. (2021) A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J Hazard Mater 401: 123608. doi: 10.1016/j.jhazmat.2020.123608
    [234] Xu Y, Li X, Xiang HF, et al. (2020) Large-Scale Preparation of polymer nanofibers for air filtration by a new multineedle electrospinning device. J Nanomater 2020: 1-7.
    [235] Wang X, Lin T, Wang X (2014) Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring. Fibers Polym 15: 961-965. doi: 10.1007/s12221-014-0961-x
    [236] Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70: 1-17. doi: 10.1016/j.progpolymsci.2017.03.002
    [237] Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 9: 232-247. doi: 10.2166/wrd.2019.057
  • This article has been cited by:

    1. Hamza Khalil, Akbar Zada, Sana Ben Moussa, Ioan-Lucian Popa, Afef Kallekh, Qualitative Analysis of Impulsive Stochastic Hilfer Fractional Differential Equation, 2024, 23, 1575-5460, 10.1007/s12346-024-01149-y
    2. Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Existence and Stability of Neutral Stochastic Impulsive and Delayed Integro-Differential System via Resolvent Operator, 2024, 8, 2504-3110, 659, 10.3390/fractalfract8110659
    3. Wei Zhang, Jinbo Ni, Some New Results on Itô–Doob Hadamard Fractional Stochastic Pantograph Equations in Lp
    Spaces, 2024, 23, 1575-5460, 10.1007/s12346-024-01190-x
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12206) PDF downloads(948) Cited by(20)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog