Research article

Ground states of a Kirchhoff equation with the potential on the lattice graphs

  • Received: 25 August 2023 Revised: 22 October 2023 Accepted: 31 October 2023 Published: 14 November 2023
  • 35J60, 35J20, 35R02

  • In this paper, we study the nonlinear Kirchhoff equation

    $ \begin{align*} -\Big(a+b\int_{\mathbb{Z}^{3}}|\nabla u|^{2} d \mu\Big)\Delta u+V(x)u = f(u) \end{align*} $

    on lattice graph $ \mathbb{Z}^3 $, where $ a, b > 0 $ are constants and $ V:\mathbb{Z}^{3}\rightarrow \mathbb{R} $ is a positive function. Under a Nehari-type condition and 4-superlinearity condition on $ f $, we use the Nehari method to prove the existence of ground-state solutions to the above equation when $ V $ is coercive. Moreover, we extend the result to noncompact cases in which $ V $ is a periodic function or a bounded potential well.

    Citation: Wenqian Lv. Ground states of a Kirchhoff equation with the potential on the lattice graphs[J]. Communications in Analysis and Mechanics, 2023, 15(4): 792-810. doi: 10.3934/cam.2023038

    Related Papers:

  • In this paper, we study the nonlinear Kirchhoff equation

    $ \begin{align*} -\Big(a+b\int_{\mathbb{Z}^{3}}|\nabla u|^{2} d \mu\Big)\Delta u+V(x)u = f(u) \end{align*} $

    on lattice graph $ \mathbb{Z}^3 $, where $ a, b > 0 $ are constants and $ V:\mathbb{Z}^{3}\rightarrow \mathbb{R} $ is a positive function. Under a Nehari-type condition and 4-superlinearity condition on $ f $, we use the Nehari method to prove the existence of ground-state solutions to the above equation when $ V $ is coercive. Moreover, we extend the result to noncompact cases in which $ V $ is a periodic function or a bounded potential well.



    加载中


    [1] G. Kirchhoff, Mechanik, Teubner, Leipzig, 2019,267–277.
    [2] J. Lions, On some questions in boundary value problems of mathmatical phisics, North-Holland Math. Stud., 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
    [3] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [4] J. Jin, X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 369 (2010), 564–574. https://doi.org/10.1016/j.jmaa.2010.03.059 doi: 10.1016/j.jmaa.2010.03.059
    [5] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, RI, 1986. https://doi.org/10.1090/cbms/065
    [6] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbb{R}^N$, Nonlinear Anal. Real World Appl., 12 (2011), 1278–1287. https://doi.org/10.1016/j.nonrwa.2010.09.023 doi: 10.1016/j.nonrwa.2010.09.023
    [7] X. He, W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equ., 252 (2012), 1813–1834. https://doi.org/10.1016/j.jde.2011.08.035 doi: 10.1016/j.jde.2011.08.035
    [8] A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011
    [9] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2 doi: 10.1090/S0002-9947-96-01532-2
    [10] G. Che, T. Wu, Multiple positive solutions for a class of Kirchhoff type equations with indefinite nonlinearities, Adv. Nonlinear Anal., 11 (2022), 598–619. https://doi.org/10.1515/anona-2021-0213 doi: 10.1515/anona-2021-0213
    [11] H. Guo, Y. Zhang, H. S. Zhou, Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential, Commun. Pure Appl. Anal. 17 (2018), 1875–1897. https://doi.org/10.3934/cpaa.2018089 doi: 10.3934/cpaa.2018089
    [12] X. He, W. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl., 193 (2014), 473–500. https://doi.org/10.1007/s10231-012-0286-6 doi: 10.1007/s10231-012-0286-6
    [13] C. Ji, F. Fang, B. Zhang, A multiplicity result for asymptotically linear Kirchhoff equations, Adv. Nonlinear Anal., 8 (2019), 267–277. https://doi.org/10.1515/anona-2016-0240 doi: 10.1515/anona-2016-0240
    [14] G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differ. Equ., 257 (2014), 566–600. https://doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011
    [15] Y. Li, F. Li, J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253 (2012), 2285–2294. https://doi.org/10.1016/j.jde.2012.05.017 doi: 10.1016/j.jde.2012.05.017
    [16] X. Ma, X. He, Nontrivial solutions for Kirchhoff equations with periodic potentials, Electron. J. Differential Equations, 102 (2016), 2 67–277.
    [17] K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246–255. https://doi.org/10.1016/j.jde.2005.03.006 doi: 10.1016/j.jde.2005.03.006
    [18] X. Tang, B. Chen, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equ., 261 (2016), 2384–2402. https://doi.org/10.1016/j.jde.2016.04.032 doi: 10.1016/j.jde.2016.04.032
    [19] A. Grigor'yan, Y. Lin, Y. Yang, Yamabe type equations on graphs, J. Differ. Equ., 261 (2016), 4924–4943. https://doi.org/10.1016/j.jde.2016.07.011 doi: 10.1016/j.jde.2016.07.011
    [20] A. Grigor'yan, Y. Lin, Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math., 60 (2017), 1311–1324. https://doi.org/10.1007/s11425-016-0422-y doi: 10.1007/s11425-016-0422-y
    [21] N. Zhang, L. Zhao, Convergence of ground state solutions for nonlinear Schrödinger equations on graphs, Sci. China Math., 61 (2018), 1481–1494. https://doi.org/10.1007/s11425-017-9254-7 doi: 10.1007/s11425-017-9254-7
    [22] X. Han, M. Shao, L. Zhao, Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differ. Equ., 268 (2020), 3936–3961. https://doi.org/10.1016/j.jde.2019.10.007 doi: 10.1016/j.jde.2019.10.007
    [23] B. Hua, R. Li, The existence of extremal functions for discrete Sobolev inequalities on lattice graphs, J. Differ. Equ., 305 (2021), 224–241. https://doi.org/10.1016/j.jde.2021.10.016 doi: 10.1016/j.jde.2021.10.016
    [24] B. Hua, D. Mugnolo, Time regularity and long-time behavior of parabolic p-Laplace equations on infinite graphs, J. Differ. Equ., 259 (2015), 6162–6190. https://doi.org/10.1016/j.jde.2015.07.018 doi: 10.1016/j.jde.2015.07.018
    [25] B. Hua, W Xu, Existence of ground state solutions to some Nonlinear Schrödinger equations on lattice graphs, Calc. Var., 62 (2023), 127. https://doi.org/10.1007/s00526-023-02470-1 doi: 10.1007/s00526-023-02470-1
    [26] Y. Li, Z. Wang, J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 829–837. https://doi.org/10.1016/j.anihpc.2006.01.003 doi: 10.1016/j.anihpc.2006.01.003
    [27] A. Szulkin, T. Weth, The method of Nehari manifold, in Analysis and Applications, International Press, (2020), 2314–2351.
    [28] J. Zhang, W. Zhang, Semiclassical states for coupled nonlinear Schrodinger system with competing potentials, J. Geom. Anal., 32 (2022), 114. https://doi.org/10.1007/s12220-022-00870-x doi: 10.1007/s12220-022-00870-x
    [29] A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822. https://doi.org/10.1016/j.jfa.2009.09.013 doi: 10.1016/j.jfa.2009.09.013
    [30] P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984) 109–145. https://doi.org/10.1016/S0294-1449(16)30428-0 doi: 10.1016/S0294-1449(16)30428-0
    [31] P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X
    [32] A. Grigor'yan, Y. Lin, Y. Yang, Kazdan-Warner equation on graph, Calc. Var., 55 (2016), 92. https://doi.org/10.1007/s00526-016-1042-3 doi: 10.1007/s00526-016-1042-3
    [33] M. Ostrovskii, Sobolev spaces on graphs, Quaest. Math., 28 (2005), 501–523. https://doi.org/10.2989/16073600509486144 doi: 10.2989/16073600509486144
    [34] B. Hua, R. Li, L. Wang, A class of semilinear elliptic equations on lattice graphs, J. Differ. Equ., 363 (2022), 327–349. https://doi.org/10.48550/arXiv.2203.05146 doi: 10.48550/arXiv.2203.05146
    [35] M. Willen, Minimax Theorems, Birkhäuser, Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(573) PDF downloads(120) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog