Review Special Issues

Nanoscale antenna systems: Transforming wireless communications and biomedical applications

  • This article provides an overview of nanoscale antenna systems in wireless communications and emerging biomedical applications. The research examines the importance of nanoscale antennas and the significance of nanotechnology in antenna layout. It delves into numerous layout concerns along with challenges of miniaturization, frequency selection and trade-offs between size, bandwidth, performance and radiation properties. The paper also explores the role of nanomaterials in antenna packages, specializing in their properties and overall performance-improving properties. It explores synthetic methods and techniques for incorporating nanomaterials into antenna designs, opening the way for new designs and improved performance. In the field of wireless communication, the article includes miniaturized antennas for wearable devices, Internet of Things (IoT) applications, millimeter wave, terahertz communication systems and it also explores antenna designs for compact wireless devices with constrained form factors overcoming challenges due to size limitations. In the biomedical field, antennas integrated into implantable medical devices and biosensing platforms are explored. The article examines the use and fabrication of biocompatible materials for biomedical antennas by considering their applicability in biomedical environments. Performance analysis and characterization techniques for nanoscale antennas are presented, including calibration methods, radiation sample analysis, gain, efficiency, impedance matching and analysis of performance parameters in various typical application scenarios. It helps to optimize antenna configuration for various cases. The article concludes with a discussion of key findings and contributions to the study. It highlights future directions and potential developments in nanoscale antenna systems, including power efficiency and energy collection, reliability and robustness in active areas and integration with wireless communication systems and networking. Finally, this article presents treasured insights into the design, fabric packages and research of nanoscale antenna systems. It gives a roadmap for future studies and improvement, focusing on the transformative capability of nanoscale antennas in Wi-Fi communications and biomedical applications.

    Citation: Segun Akinola, Leelakrishna Reddy. Nanoscale antenna systems: Transforming wireless communications and biomedical applications[J]. AIMS Bioengineering, 2023, 10(3): 300-330. doi: 10.3934/bioeng.2023019

    Related Papers:

    [1] A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628
    [2] Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357
    [3] Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663
    [4] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [5] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [6] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265
    [7] Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
    [8] Omar Kahouli, Saleh Albadran, Zied Elleuch, Yassine Bouteraa, Abdellatif Ben Makhlouf . Stability results for neutral fractional stochastic differential equations. AIMS Mathematics, 2024, 9(2): 3253-3263. doi: 10.3934/math.2024158
    [9] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [10] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
  • This article provides an overview of nanoscale antenna systems in wireless communications and emerging biomedical applications. The research examines the importance of nanoscale antennas and the significance of nanotechnology in antenna layout. It delves into numerous layout concerns along with challenges of miniaturization, frequency selection and trade-offs between size, bandwidth, performance and radiation properties. The paper also explores the role of nanomaterials in antenna packages, specializing in their properties and overall performance-improving properties. It explores synthetic methods and techniques for incorporating nanomaterials into antenna designs, opening the way for new designs and improved performance. In the field of wireless communication, the article includes miniaturized antennas for wearable devices, Internet of Things (IoT) applications, millimeter wave, terahertz communication systems and it also explores antenna designs for compact wireless devices with constrained form factors overcoming challenges due to size limitations. In the biomedical field, antennas integrated into implantable medical devices and biosensing platforms are explored. The article examines the use and fabrication of biocompatible materials for biomedical antennas by considering their applicability in biomedical environments. Performance analysis and characterization techniques for nanoscale antennas are presented, including calibration methods, radiation sample analysis, gain, efficiency, impedance matching and analysis of performance parameters in various typical application scenarios. It helps to optimize antenna configuration for various cases. The article concludes with a discussion of key findings and contributions to the study. It highlights future directions and potential developments in nanoscale antenna systems, including power efficiency and energy collection, reliability and robustness in active areas and integration with wireless communication systems and networking. Finally, this article presents treasured insights into the design, fabric packages and research of nanoscale antenna systems. It gives a roadmap for future studies and improvement, focusing on the transformative capability of nanoscale antennas in Wi-Fi communications and biomedical applications.



    Fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Fractional order differential equations offer a superior framework for capturing the intricate dynamics of real-world phenomena compared to their integer-order counterparts. This superiority stems from the unique ability of fractional integrals and derivatives to account for the inherent hereditary and memory characteristics present in diverse processes and materials. By harnessing these fractional operators, models can more accurately depict the nuanced behaviors observed in nature, thereby enhancing our understanding and predictive capabilities across a wide range of disciplines and applications. Many fractional derivatives, including Caputo derivative, Atangana-Baleanu derivative, Coimbra derivative, and Riemann-Liouville (R-L) derivative, are frequently used to examine FDEs and fractional order stochastic differential equations (SDEs). In a similar vein, the Hilfer fractional derivative (HFD), which was just recently used to do so, was developed by Hilfer [21], which is a generalized version of R-L and Caputo derivatives. In actuality, fractional derivative and integrals indicate greater accuracy than integral models and also depict broader physical applications in seepage, flow in porous media, nanotechnology, fluid dynamics and traffic models [6,7,12,22,24,28,31].

    SDEs are the natural extension of deterministic systems. SDEs with impulses arise from many mathematical models of physical phenomena in different scientific fields for example, technology, physics, biology, economics, etc. They are important from the viewpoint of applications since they incorporate randomness into the mathematical description of the phenomena and provide a more accurate description of it. Certainly, in various fields like economics, bioengineering, chemistry, medicine, and biology, we often encounter situations where things change suddenly at specific points in time [5,23,29,32]. These abrupt changes can be explained by what we call "impulsive effects." These impulsive effects are like sudden pushes that happen at certain moments and have a big impact on the system, being studied. These pushes play a crucial role in understanding and modeling how things change in the aforementioned diverse fields. For the mathematical models of such phenomena, finding their solution is a challenging task. As a result, Boundani et al. [8,9] presented some specific conditions that help us to determine whether certain mathematical equations, involving randomness, can have solutions. These equations involve functional differential equations and a type of random behavior, called fractional Brownian motion.

    In [20], Hernandez and O'Regan introduced non-instantaneous (NI) impulses. Many researchers have utilized these impulses and studied the corresponding dynamical systems [3,4,27,36,39]. To better understand NI impulses, we can think about human blood sugar levels. When they have too much or too little, glucose they get insulin medication through the bloodstream, in fact it doesn't work instantly but takes some time to be absorbed [37]. This gradual effect is like NI, where the impact lasts for a while in many real situations. Sudden changes don't explain things well. For instance, in the treatment of diseases with medication, we need to describe how things change over time more smoothly. That's where NI impulsive differential equations come in handy. They help us to model these gradual changes, like how drugs affect the body in pharmacotherapy.

    Among the qualitative behaviors of different physical systems, different types of stabilities are the essential ones. One of these types of stabilities is Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) stability [11,16,26,30,33].

    In the literature, most of the results related to fractional stochastic differential equations (FSDEs) are given over infinite dimensional spaces [1,2,13,18,19,25,32,35,38], and very few have looked at similar results in finite spaces. There is no prior work on the specific topic of non-integers order impulses in finite-dimensional equations to the problem of fractional neutral SDEs including both noises. In FSDEs incorporating both retarded and advanced arguments, a significant characteristic emerges: The rate of change of the system at the present moment is influenced not only by its past history but also by its anticipated future states. This feature underscores the intricate interplay between past, present, and future dynamics, where the system's behavior is shaped by a combination of its memory effects and anticipatory responses.

    In the current manuscript, we investigate the following ψ-Hilfer fractional stochastic equation (HFSE):

    Dγ,βψ(ε)[Γ(ε)h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε),Dγ,βψ(ε)Γ(ε))+ε0g(s,Γ(s),Dγ,βψ(ε)Γ(ε))dB(s)+ε0λ(s,Γ(s),Dγ,βψ(ε)Γ(ε))dBH(s),ε (sk,εk+1]J:=(0,b],k=0,1,2,,m,Γ(ε)=hk(ε,Γ(ε)),ε(εk,sk],k=1,2,,m,I1v0+Γ(ε)/ε=0=Γ0,v=γ+βγβ,Γ(ε)=ϕ(ε),ε[0r,0],Γ(ε)=φ(ε),ε[b,b+h], (1.1)

    where Dγ,βψ(ε) is the ψ– Hilfer FD of order 0<γ<1 and of type 0<β1. Let J:=[0,b], b>0. The state vector ΓRn, ARn×n and nonlinear functions h : J×RnRn, Δ:J×RnRn, g:J×RnRn×n, λ:J×RnRn×n, and hk:J×RnRn are measurable and bounded functions. Also, Γ0 is F0 measurable Rn-valued stochastic variable and B is an n-dimensional Wiener process.

    Based on the value of H, the following kinds of the fractional Brownian motion (fBm) process exist:

    (1) if H=12, then the process is a Brownian motion or a Wiener process exists;

    (2) if H>12, then the increment of the process is positively correlated;

    (3) if H<12, then the increment of the process is negatively correlated.

    The contributions of this paper are described as below:

    ● Nonlinear ψ-HFSE is considered in Rn.

    ● The existence and uniqueness results are established by using the standard Banach contraction principle.

    ● The weaker sufficient conditions are derived by using the generalized Schaefer FPT for the system with measure of non-compactness (MNC).

    ● UHR stability results are derived for ψ-HFSE with NI impulse.

    ● An example is provided for the theoretical results.

    This paper is structured as follows: In Section 2, we present a number of lemmas and some fundamental definitions for fractional calculus. Section 3 derives the solution representation of ψ-Hilfer fractional SDEs with NI impulses. To demonstrate the key results, the generalized Schaefer's and contraction mapping principles are used in Section 4. In Section 5, UHR stability of a ψ-HFSE is discussed. Example is demonstrated for the validity of theoretical results in Section 6.

    Notations:

    (Ω,F,P) represents the complete probability space along a probability measure P on Ω.

    B(ε) and BH(ε) denote, respectively, the n-dimensional Brownian motion and fBm with Hurst index 12<H<1.

    {Fε|εJ} represents the filtration generated by {B(ε):0sε}.

    L2(Ω,Fε,P,Rn) : = L2(Ω,Rn) is the space of all Fε-measurable square integrable random variables with values in Rn.

    Let Jk = (εk,εk+1], k=1,2,,m be such that impulse times satisfy 0 = ε0 = s0<ε1<s1<ε2<<εmsm<εm+1 = b. Let C(J,L2(Ω,Rn)) denote Cn(J) and be the Banach space of all continuous maps from J into L2(Ω,Rn) of Fε-adapted square integrable functions Γ(ε) and for its norm supE||Γ(ε)||2<.

    Define the space

    Y=PCvn(J)=PCvn(J,L2(Ω,Rn))={Γ:JL2(Ω,Rn),Γ/JkCn(Jk,L2(Ω,Rn)),

    and there exist Γ(εk) and Γ(ε+k) with Γ(εk)=Γ(εk), k=1,,m, endowed with the norm

    ||Γ||2Y=maxk=0,1,,msupεJk{E||(εεk)(1v)Γ(ε)||}}.

    Clearly, Y is a Banach space.

    Lemma 2.1. [39] Let p2 and fLp(J,Rn×n) such that E|b0f(s)dB(s)|p<, then

    E|b0f(s)dB(s)|p(p(p1)2)p2bp22Eb0|f(s)|pds.

    Lemma 2.2. [10] Let φ:JL02 satisfy b0||φ(s)||2L02ds<, then we get

    E||ε0φ(s)dBH(s)||22Hε2H1ε0E||φ(s)||2L02ds.

    Definition 2.1. [17] The generalized ψ-Hilfer FD of order 0<γ<1 and of type 0β1 is represented by

    Dγ,βψ(t)f(t)=Iβ(nγ)ψ(t)(1ψ(t).ddt)mI1β(nγ)ψ(t)f(t).

    Definition 2.2. [10] Let z be a bounded linear operator. The two parameter Mittage-Leffler (M-L) function is defined by

    Mγ,β(z)=r=0zrΓ(rγ+β),γ,β>0,zC.

    One of the interesting properties of the M-L function, related with their Laplace integral, is given by

    0esεεβ1Mγ,β(±aεγ)dε=sγβ(sγIa).

    That is

    L{εβ1Mγ,β(±aεγ)}(s)=sγβ(sγIa).

    Lemma 2.3. [17] For γ(n1,n], β[0,1], the following Laplace formula for the ψ-Hilfer derivative is valid:

    Lψ{0Dγ,βψ(t)f(t)}=sγLψ{f(t)}m1n=0sm(1v)+γβn1(0I(1v)(mβ)nψ(t)f)(0).

    Corollary 2.1. [17] If f is a function whose classical Laplace transform is F(s), then the generalized Laplace transform of the function fψ=f(ψ(t)) is also F(s):

    L{F(s)}=F(s)L{f(ψ(ε))}=F(s).

    Example 2.1. [17]

    (a)Lψ{(ψ(ε)μ)}=Γ(μ+1)sμ+1,fors>0.(b)Lψ{ea(ψ(ε))}=1sa,fors>a.(c)Lψ{Mμ(A(ψ(ε))μ)}=sμ1sμA.(d)Lψ{(ψ(ε))μ1Mμ,μ(A(ψ(ε))μ)}=1sμA,forRe(μ)>0and |Asμ|<1.

    Example 2.2. Assume that Re(μ)>0 and |Asμ|<1. If Mγμ,v denotes the Prabhakar function, then we have

    Lψ{(ψ(ε))v1Mγμ,v(A(ψ(ε))μ)}=L{ψ(ε)v1Mγμ,v(A(ψ(ε)μ))}=sμγv(sμA)γ.

    Consider the linear deterministic system, which is represented in the following form:

    Dγ,βψ(ε)[Γ(ε)h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε)),I1v0+Γ(ε)/ε=0=Γ0,v=γ+βγβ.

    By the Laplace transformation, we get

    sγˆΓ(s)ˆh(s)sβ(1γ)(Γ(0)h(ε,0))=AˆΓ(s)+ˆΔ(s),(sγIA)(ˆΓ(s))=sβ(1γ)(Γ(0)h(ε,0))+ˆh(s)+ˆΔ(s),ˆΓ(s)=sβ(1γ)(sγIA)[Γ(0)h(ε,0)]+1(sγIA)ˆh(s)+1(sγIA)ˆΔ(s),

    where I is the identity matrix.

    Γ(s)=Lψ1sβ(1γ)(sγIA)[Γ(0)h(ε,0)]+Lψ11(sγIA)ˆh(s)+Lψ11(sγIA)ˆΔ(s).

    Substituting the LψT of the M-L function, one can obtain that

    Γ(ε)=ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds.

    Therefore, the solution of (1.1) is given as follows:

    Γ(ε)={Γ(ε)=ϕ(ε),ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(sk,εk+1],Γ(ε)=ϕ(ε),ε[b,b+h].

    Definition 3.1. [40] The set S is called a quasi-equicontinuous in T if, for ε > 0, there exists a δ > 0, such that if ΓS,KN,τ1,τ2TKT, and |τ2τ1|<δ, then |Γ(τ2)Γ(τ1)|<ε.

    Lemma 3.1. [34] The set SPC(J,Rn) is relatively compact if

    (i) S is uniformly bounded, i.e., ||Γ||PCk for each ΓS and some k>0;

    (ii) S is quasi-equicontinous in T.

    Definition 3.2. [14] An operator T : ZZ is said to be χ-condensing of any bounded set B of Z with χ-condensing(B) > 0, χ(T(B))<χ(B), where

    χ(B)=inf{k>0,B is covered by a finite number of sets of diameter k}

    is Kuratowskii MNC of a bounded set B of Z.

    Now, we state the generalized Schaefer's type FPT with χ-condensing operators.

    Theorem 3.1. [15] Let T : ZZ be an operator and Z be a separable Banach space satisfying

    (A1) T is χ-condensing and continuous.

    (A2) The set S = {ΓZ:Γ=δT(Γ) for some 0<δ<1} is bounded, then T has a fixed point.

    For convenience, define the following:

    M1=supξJ||Mγ,v(A(ψ(ε))γ)||2;M2=supξJ||Mγ,γ(A(bψ(ε))γ)||2.

    To derive the existence result, we imposed the following assumptions:

    (H1) The functions Δ,h,g,λ, and hk k=1,2,,m are Lipschitz continuous.

    (1) E||h(ε,u1)h(ε,u2)||2 Mh||u1u2||2Y;

    (2) E||Δ(ε,u1,v1)Δ(ε,u2,v2)||2 Mf1||u1u2||2Y+Mf2||v1v2||2Y;

    (3) E||g((ε,u1,v1))g((ε,u2,v2))||2 Mg1||u1u2||2Y+Mg2||v1v2||2Y;

    (4) E||λ(ε,u1,v1)λ(ε,u2,v2)||2 Mλ1||u1u2||2Y+Mλ2||v1v2||2Y;

    (5) E|hk(ε,u1)hk(ε,v1)||2 Mhk||u1v1||2Y,

    and hkC((εk,sk],L2(Ω,Rn)), where Mh,Mf,Mg,Mλ, and Mhk are positive constants, u1,u2,v1,v2Rn, and εTk.

    (H2) There exist lh, mh,nhY with lh=supξJlf(ε), mh=supξJmh(ε), and nh=supξJ nh(ε) such that

    E||h(ε,u1,v1)||2lh(ε)+mh(ε)||u1||2+nh(ε)||v1||2 for εT,u1,v1Rn.

    (H3) There exist lf, mf,nfY with lf=supξJlf(ε), mf=supξJmf(ε), and nf=supξJnf(ε) such that

    E||Δ(ε,u1,v1)||2lf(ε)+mf(ε)||u1||2+nf(ε)||v1||2 for εT,u1,v1Rn.

    (H4) There exist lg, mgY with lg=supξJlg(ε), mg=supξJmg(ε), and ng=supξJng(ε) such that

    E||g(ε,u1,v1)||2lg(ε)+mg(ε)||u1||2+ng(ε)||v1||2 for εT,u1,v1Rn.

    (H5) There exist lλ, mh,nhY with lλ=supξJlλ(ε), mλ=supξJmλ(ε), and nλ=supξJnλ(ε) such that

    E||λ(ε,u1,u2||2lλ(ε)+mλ(ε)||u1||2+nλ(ε)||v1||2 for εT,u1,v1Rn.

    (H6) There exist Mhk>0, for all uRn, such that

    E||hk(ε,u)||2Mhk(1+||u||2Y).

    To prove the existence and uniqueness of solution first, we need to transform the problem (1.1) into a fixed point problem and define an operator H : YY by

    HΓ(ε)={Γ(ε)=ϕ(ε),ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(β)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(β)dBH)ds, εϵ(sk,εk+1],Γ(ε)=φ(ε),ε[b,b+h].

    Let x:[0r,b+h]R be a function defined by

    x(ε)={Γ(ε)=ϕ(ε),ifε[0r,0],0,ifε(0,b],Γ(ε)=φ(ε),ifε[b,b+h].

    For each zC([0,b],R) with z(0)=0, we denote by u the function defined by

    u(ε)={Γ(ε)=ϕ(ε),ifε[0r,0],z(ε),ifε(0,b],Γ(ε)=φ(ε),ifε[b,b+h].

    Let us set Γ(ε)=z(ε)+x(ε) such that yε=zε+xε for each ε(0,b], where

    Γ(ε)={Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γη),Dγ,βψ(ε)ΓβdBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,Γs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,Γ((η,γη)),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1].
    z(ε)={Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1].

    Let Φ:YY be an operator given by

    Φz(ε)={0,ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,  εϵ(sk,εk+1],0,ε[b,b+h].

    To show that the operator H has a fixed point, for this it is sufficient to show that the operator Φ has a fixed point and this fixed point will correspond to a solution of problem (1.1).

    Theorem 4.1. Assume that the Hypothesis (H1) holds, then the solution (1.1) has a unique solution of the problem (1.1), provided

    L0=max{L1,Lk,Lk}<1,k=1,2,,m, (4.1)

    where

    L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)],Lk=Mhk,Lk=4[bv1M1Mhk+M2(b)2γγ2{(Mh+Mf1+bMg1+2Hb2HMλ1)+(Mf2+bMg2+2Hb2HMλ2)×||A||+Mh+Mf1+bMg1+2Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2)}].

    Proof. Consider the operator Φ : YY defined by

    Φz(ε)={0,ε[0r,0],Γ(0),ε=0,ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,,m,(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε[b,b+h]. (4.2)

    As Δ, h, g, λ, hk are all continuous, we have to prove that Φ is a contraction.

    Case 1. For z, yY and for ε[0,ε1], we have

    E||(Φz)(ε)(Φy)(ε)||23{(M2ψ(ε)2γγ2Mh||z(ϵ)y(ε)||2+M2ψ(ε)2γγ2Mf1||z(ϵ)y(ε)||2+M2ψ(ε)2γ+1γ2Mg1||z(ϵ)y(ε)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H1Mλ1||z(ϵ)y(ε)||2)+(M2ψ(ε)2γγ2Mf2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ2Mg2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H1Mλ2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.

    This implies

    ||(Φz)(ε)(Φy)(ε)||2Y3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hb2HMλ1)×||z(ϵ)y(ε)||2Y+3M2ψ(ε)2γγ2(Mf2+ψ(ε1)Mg2+2Hb2HMλ2)×||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2],||(Φz)(ε)(Φy)(ε)||2Y3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]||z(ε)y(ε)||2.

    Thus we take

    L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)].

    So, we get

    ||(Φz)(ε)(Φy)(ε)||2YL1||z(ε)y(ε)||2Y.

    Case 2. For ε(εk,sk], k=1,2,,m, we have

    E||(Φz)(ε)(Φy)(ε)||2YE||hk(ε,z(ε))hk(ε,y(ε))||2,||(Φz)(ε)(Φy)(ε)||2YMhk||z(ε)y(ε)||2Y.

    Take Lk:=Mhk and therefore,

    ||(Φz)(ε)(Φy)(ε)||2YLk||z(ε)y(ε)||2Y.

    Case 3. For z,yY and for ε(sk,εk+1], we have

    E||(Φz)(ε)(Φy)(ε)||24{(ψ(ε)sk)v1M1Mhk||z(ε)y(ε)||2+(M2(ψ(ε)sk)2γγ2Mh||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ2Mf1||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ2Mg1||z(ϵ)y(ε)||2+M2(ψ(ε)sk)2γγ22Hψ(ε)2H1Mλ1||z(ϵ)y(ε)||2)+(M2(ψ(ε)sk)2γγ2Mf2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2(ψ(ε)sk)2γγ2Mg2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2+M2(ψ(ε)sk)2γγ22Hψ(ε)2H1Mλ2||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.||(Φz)(ε)(Φy)(ε)||24{(ψ(ε)k+1sk)v1M1Mhk+(M2(ψ(ε)sk)2γγ2×[Mh+Mf1+(ψ(εk+1)sk)Mg1+2Hψ(ε)2HMλ1]×||z(ε)y(ε)||2)+(M2(ψ(ε)sk)2γγ2×[Mf2+(ψ(εk+1)sk)Mg2+2Hψ(ε)2HMλ2]×||Dγ,βψ(ε)z(s)Dγ,βψ(ε)y(s)||2)}.

    Thus,

    ||(Φz)(ε)(Φy)(ε)||24{bv1M1Mhk+M2(b)2γγ2{Mh+Mf1+bMg1+2Hb2HMλ1+(Mf2+bMg2+2Hb2HMλ2)}×||A||+Mh+Mf1+bMg1+2Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2)}||z(ε)y(ε)||2:=Lk||z(ε)y(ε)||2Y.

    From the above three cases, we obtain that ||(Φz)(ε)(Φy)(ε)||2 L0||z(ε)y(ε)||2Y as per (4.1), Φ is contraction, and, thus, (1.1) has a unique fixed point z, which is a solution to problem (1.1).

    Remark 4.1. Banach contraction principle provides not only the existence results, but also uniqueness is assured. Also, the nonlinear functions could satisfy only Lipschitz conditions to prove existence and uniqueness results, even though conditions are stronger.

    Remark 4.2. It is to be noted that the assumption L0<1 in Theorem 4.1 shows a restrictive smallness on Lipschitz constants for the nonlinear functions h, g, Δ, and λ when compared with the periods of time, while the impulses are active or vice-versa. In order to relax such a kind of smallness, the generalized Schaefer's FPT is introduced.

    Theorem 4.2. Assume that (H2)(H5) hold, then the nonlinear operator Φ:YY has a fixed point, which is a solution of problem (1.1)

    Proof. Since Φ is well defined, we will present the proof by the following four steps.

    First, we prove that Φ is completely continuous (CC), that is, T is continuous, maps bounded sets into bounded sets, and maps bounded sets into quasi-equicontinuous sets.

    Step 1. To prove Φ is continuous.

    Since h, g, Δ,λ, and hK are all continuous, then it is clear that the operator Φ is continuous on J.

    Step 2. To prove Φ maps bounded sets in Y.

    In fact, it is sufficient to show that for any r>0, there exists an η>0 such that for each zBr={zY:||z||2Yz}.

    Case 1. For ε[0,ε1],zY

    ||(Φz)(ε)||2Y4{ψ(ε1)ν1M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2||h(ε,zs+xs),Dγ,βψ(ε)Γ(s)||+M2ψ(ε1)2γγ2||Δ(ε,zs+xs,Dγ,βψ(ε)Γ(s))||+M2ψ(ε1)2γ+1γ2||g(ε,zη+xη,Dγ,βψ(ε)Γ(s))||+2Hψ(ε)2H1M2ψ(ε1)2γ+1γ2||λ(ε,zη+xη,Dγ,βψ(ε)Γ(s))||}.

    Using (H2)(H4) and Lemmas 2.1 and 2.2, one can enumerate

    ||(Φz)(ε)||2Y4{M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh(ε)+mh(ε)||zs+xs||2Y)+M2ψ(ε1)2γγ2(lf(ε)+mf(ε)||zs+xs||2Y+nf(ε)||Dγ,βψ(ε)Γ(s)||2Y)+M2ψ(ε1)2γ+1γ2(lg(ε)+mg(ε)||zηxη||2Y+ng||Dγ,βψ(ε)Γ(s)||2)+2Hψ(ε)2H1M2ψ(ε1)2γ+1γ2(lλ(ε)+mλ(ε)||zη+xη||2Y+||Dγ,βψ(ε)Γ(s)||2)}4{M1||Γ0h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh)+M2ψ(ε1)2γγ2(lf)+M2ψ(ε1)2γ+1γ2(lg)+M22Hψ(ε1)2Hγ2(lλ)}+4{M2ψ(ε1)2γγ2(mh)+M2ψ(ε1)2γγ2(mf)+M2ψ(ε1)2γ+1γ2(mg)+M22Hψ(ε1)2Hγ2(mλ)}||z||+4{M2ψ(ε1)2γγ2nf+M2ψ(ε1)2γ+1γ2ng+M2ψ(ε1)2γ+1γ2nλ}||Dγ,βψ(ε)Γ(s)||24{M1||Γ0h(ε,0)||2+M2ψ(ε1)2γγ2(lh+lf+ψ(ε)lg+2Hψ(ε)2Hlλ)}+4{M1||Γ0h(ε,0)||2+M2ψ(ε1)2γγ2(mh+mf+ψ(ε)mg+2Hψ(ε)2Hmλ)+(lh+lf+ψ(ε)lg+ψ(ε)lλ+(mh+mf+ψ(ε)mg+ψ(ε)mλ)1(nf+ψ(ε)ng+ψ(ε)mλ)}z:=η0.

    Case 2. For ε(εk,sk], k = 1, 2, , m,

    ||(Φz)(ε)||2E||hk(ε,zs+xs)||2Mhk(1+||z||2)ψ(ε)1vMhk(1+||z||2)maxψ(ε)1vMhk(1+z):=ηk,   k=1,2,3,m.

    Case 3. For ε(sk,εk+1], k=1,2,,m, ΓY, we have

    E||(Φz)(ε)||24{E||(ψ(ε)k+1sk)v1Mγ,v(A(sk)γ)hk(sk,Γ(sk))||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,zs+xs)ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,zs+xs,Dγ,βψ(ε)Γ(s))ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,zη+xη,Dγ,βψ(ε)Γ(s))dB(η))ds||2+E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,zη+xη,Dγ,βψ(ε)Γ(s))dBH)ds||2}.

    Thus

    E||(ΦΓ)(ε)||24{(ψ(ε)v1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1sk)2γγ2[lh+lf+(ψ(ε)k+1sk)lg+2H(ψ(ε)k+1sk)2Hlλ]}+4{(ψ(ε)v1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1sk)2γγ2[mh+mf+(ψ(ε)k+1sk)mg+2H(ψ(ε)k+1sk)2Hlλ]}+4{M2ψ(ε1)2γγ2nf+M2ψ(ε1)2γ+1γ2ng+M2ψ(ε1)2γ+1γ2nλ}||Dγ,βψ(ε)Γ(s)||24{bv1M1Mhk+M2b2γγ2[lh+lf+blg+2Hb2Hlλ]}+4{bv1M1Mhk+M2b2γγ2[mh+mf+bmg+2Hb2Hmλ]+[lh+lf+blg+blλ+(mh+mf+bmg+bmλ)14(nf)+bng+bmλ]}z:=ηb.

    Let η = {η0,ηk,ηb}, k=1,2,,m, then {ψ1v(Φz)(ε):zB} is a bounded set in Y, i.e., ||Φz||2Y η.

    Step 3. Φ is a quasi-equicontinous set in Y.

    Case 1. Let τ1, τ2 [0,ε1] with 0τ1τ2ε1. One could establish the following estimate:

    ||(Φz)(τ2)(Φz)(τ1)||2=sup{E||τ1v2(ΦΓ)(τ2)τ1v1(ΦΓ)(τ1)||2}8{E||Mγ,v(Aτγ2)||Γ0h(ε,0)||Mγ,v(Aτγ1)||Γ0h(ε,0)||||2+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lh+mhE||zs+xs||2+nh||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lh+mhE||zs+xs||2+nh||Dγ,βψ(ε)Γ(s)||2)ds+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lf+mfE||zs+xs||2+nf||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lf+mfE||zs+xs||2+nf||Dγ,βψ(ε)Γ(s)||2)ds+τ2τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lg+mgE||zη+xη||2+ng||Dγ,βψ(ε)Γ(s)||2)ds+(τ2τ1)τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2(lg+mgE||zs+xs||2+ng||Dγ,βψ(ε)Γ(s)||2)ds+2Hτ2H12τ20||τ1v2(τ2s)γ1Mγ,γ(A(τ2s)γ)τ1v1(τ1s)γ1Mγ,γ(A(τ1s)γ)||2(lλ+mλE||zs+xs||2+nλ||Dγ,βψ(ε)Γ(s)||2)ds+2H(τ2τ1)2H1τ20τ2(1v)2(τ2s)2γ2||Mγ,γ(A(τ2s)γ)||2×(lλ+mλE||zs+xs||2+nλ||Dγ,βψ(ε)Γ(s)||2)ds}.

    We conclude that as τ2τ10 with ε sufficiently small, the right hand side of the above inequality tends to zero independently of zBr. Furthermore, the similar results are true for εk<τ1<τ2sk and sk<τ1<τ2εk+1 for k=1,2,,m. It proves the equicontinuous of Φ on Y. Thus, for τ1,τ2[0,b](εk,εk+1], k=1,2,,m, whenever B is a bounded set of Y as in Step 2, let zBr, then

    ||(Φz)(τ1)(Φy)(τ2)||2YM(r)(τ2τ1).

    Thus, Φ is quasi-equicontinuous, then Φ(z) is relatively compact by Lemma 3.1, which implies that Φ(z) is CC.

    Step 4. Φ has a Prior bound.

    It remains to estimate that the set (Φ)={zY:z=ΘΦz,0<Θ<1} is bounded.

    Let zΠ(Φ), then z=ΘΦ(z) for some Θ(0,1), by following the proof of Step 2 that ||z||Yη. This proves that the set Π(Φ) is bounded. Hence, by Theorem 3.1, Φ has a fixed point, which is the required solution on J.

    Here, we derive the UHR stability for (1.1). Let ω>0, ϕ0, and ζPC(J,Rn) be nondecreasing. Consider the following inequalities.

    E||Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]A˜Γ(ε)Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)||ωζ(ε),ε (sk,εk+1],k=0,1,2,,m,E||Γ(ε)hk(ε,Γ(ε))||2ωϕ,ε(εk,sk],k=1,2,,m,E||I1v0+Γ(ε)Γ0||2ωϕ,Γ(ε)=ϕ(ε),ε[0r,0],Γ(ε)=φ(ε),ε[b,b+h].

    Define a vector space as χ:

    χ=PC(J,Rn)C((sk,tk+1],Rn).

    Definition 5.1. System (1.1) is UHR stable with respect to (ζ,ϕ) if there exists C(M,L,P,ζ)>0 such that for each solution ˜Γχ of the inequality (5.1), there exists solution ΓPC(J,Rn) of (1.1) with

    E||˜Γ(ε)Γ(ε)||2C(M,L,p,ζ)ω(ζ(ε)+ϕ),εJ.

    Remark 5.1. A function ˜Γχ is a solution of (5.1) there is QKi=0 ((sk,εk+1],Rn] and qKi=0((εk,sk],Rn) such that:

    (1) E||Q(ε)||2ωζ(ε),εKi=0(sk,εk+1];E||q(ε)||2ωϕ,εKi=0(tk,sk];

    (2) Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s) +ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε (sk,εk+1],k=0,1,2,,m,

    (3) ˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε(εk,sk],k=0,1,2,,m.

    By Remark 5.1, we have

    Dγ,βψ(ε)[˜˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε (sk,εk+1],k=0,1,2,,m,˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε(εk,sk],k=0,1,2,,m,I1v0+˜Γ(ε)/ε=0=Γ0.

    Lemma 5.1. Let β[0,1], γ(0,1). If a function ˜Γχ is a solution of (5.1) then we have:

    (i)E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2ψ2γ(ε)γ2M2ωε0ζ(s)ds,ε[0,ε1].
    (ii)E||(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2b2γγ2M2ωεskζ(s)ds, ε(sk,εk+1],k=1,2,,m.

    By Remark 5.1, we have:

    Case 1. For ε[0,ε1], we have

    Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε).

    Thus

    ˜Γ(ε)=ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds+ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds.

    From above, we obtain

    E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2E||ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2ψ2γ(ε)γ2M2ωε0ζ(s)ds.

    Case 2. For ε(εk,sk], we have

    E||˜Γ(ε)hk(ε,˜Γ(ε))||2ωϕ.

    Case 3. For ε(sk,εk+1], we get

    Dγ,βψ(ε)[˜Γ(ε)h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε),then,˜Γ(ε)=(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,γ(sk))+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds,+ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds.

    Thus

    E||˜Γ(ε)(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2(ψ(ε)sk)2γγ2M2ωε0ζ(s)dsb2γγ2M2εε0ζ(s)ds.

    In order to prove stability, we assume the following assumptions:

    (H7) There exist positive constants Mk(k=1,2,,m) such that

    E||hk(ε,Γ(ε))hk(ε,z(ε))||2mk=1MkE||Γ(ε)z(ε)||2Yε(εk,sk].

    (H8) Let ζC(J,Rn) be a nondecreasing function if there exists cζ>0 such that ε0ζ(s)ds<cζζ(ε), εJ.

    Lemma 5.2. Let P0=P0 where p=1,2,,m, and the following inequality holds

    Γ(ε)a(ε)+ε0b(s)Γ(s)ds+Σ0<εk<εαkΓ(εˉk),ε0,

    where Γ,a,bPC(R+,R+), a is nondecreasing and b(ε)>0, αk>0, kP. For εR+,

    Γ(ε)a(ε)(1+α)Ke(ε0b(s)ds),ε(εK,εK+1],KP0,

    where α=supKP{αK} and ε0=0.

    Theorem 5.1. If the assumptions (H1),(H7), and (H8) are satisfied, then (1.1) is UHR stable with respect to (ζ,ϕ).

    Proof. Let ˜Γχ be a solution of inequality (5.1) and Γ be the unique solution of (1.1).

    Case 1. For ε[0,ε1], we have:

    E||˜Γ(ε)ψ(ε)v1Mγ,v(A(ψ(ε)γ)[Γ0h(ε,0)]ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||ψ(ε)0(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2ψ2γ(ε)γ2M2εε0ψ(s)dsψ2γ(ε)γ2M2ωcζζ(ε)b2γγ2M2ωcζζ(ε)cpcζζ(ε),

    where cp=b2γγ2M2.

    Case 2. For ε(εk,sk], we have

    E||˜Γ(ε)hk(ε,˜Γ(ε))||2ωϕ.

    Case 3. For ε(sk,εk+1], we have

    E||˜Γ(ε)(ψ(ε)sk)v1Mγ,v(A(sk)γ)hk(sk,Γ(sk))ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)h(s,˜Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))dsψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)(s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||ψ(ε)sk(ψ(ε)s)γ1Mγ,γ(A(ψ(ε)s)γ)Q(s)ds||2(ψ(ε)sk)2γγ2M2ωε0ζ(s)dsb2γγ2M2ωcζζ(ε)cpcζζ(ε).

    Hence, for ε[0,ε1], we have:

    E||Γ(ε)˜Γ(ε)||2ψ(ε)2γγ2M2[ωcζζ(ε)+((Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2))||Γ(s)˜Γ(s)||2]b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+2Hb2HMλ2))||Γ(s)˜Γ(s)||2]. (5.1)

    For ε(εk,sk], we get

    E||Γ(ε)˜Γ(ε)||2=E||Γ(ε)hk(sk,˜Γ(sk))||2=E||Γ(ε)hk(sk,Γ(sk))+hk(sk,Γ(sk))hk(sk,˜Γ(sk))||22{E||Γ(ε)hk(sk,Γ(sk))||2+E||hk(sk,Γ(sk))hk(sk,˜Γ(sk))||2}2{ωϕ+Σki=0Mk||Γ(ε)˜Γ(ε)||2}. (5.2)

    For ε(sk,εk+1], k = 1, 2, , m,

    E||Γ(ε)˜Γ(ε)||25b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2))||Γ(s)˜Γ(s)||2].+5bv1M1Σki=1Mk||Γ(s)~Γ(s)||2. (5.3)

    Combining (5.2)–(5.4), one can get an inequality of the form given in Lemma 5.2. For εJ, since ε(εk,εk+1], KP0, we have

    E||Γ(ε)˜Γ(ε)||25{cpωcζζ(ε)+bv1M1Σki=1Mk||Γ(ε)˜Γ(ε)||2+cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2)]||Γ(s)˜Γ(s)||2+5bv1M1Σki=1Mk||Γ(s)~Γ(s)||2}+2ωϕ5cpωcζ(ζ(ε)+ϕ)(1+M)keε0Lds,

    where

    M=sup{bv1M1Mk},L=cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11(Mf2+bMg2+Hb2HMλ2)].

    Thus,

    E||Γ(ε)˜Γ(ε)||25C(M,L,p,ζ)ω(ζ(ε)+ϕ),εJ,

    where C(M,L,p,ζ) is a constant depending on M,L,p,ζ. Hence, (1.1) is UHR stable w.r.t (ζ,ϕ).

    Consider the following nonlinear ψ-HFSE with NI impulses driven by both noises. This type of fractional SDE can be applied in pharmacotherapy.

    D12,34ψ(ε)Γ1(ε)=Γ2(ε)+15(Γ1(ε)1+Γ21(ε)+Γ22(ε))+15(Γ1(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s))
    +Γ1(ε)eψ(ε)3β1(ε),Dγ,βψ(ε)Γ(s)+Γ1(ε)e2ψ(ε)5βH1(ε),Dγ,βψ(ε)Γ(s),
    D12,34ψ(ε)Γ2(ε)=Γ1(ε)+15(Γ2(ε)1+Γ21(ε)+Γ22(ε))+15(Γ2(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s))
    +Γ2(ε)eψ(ε)3β2(ε),Dγ,βψ(ε)Γ(s)+Γ2(ε)e2ψ(ε)3βH2(ε),Dγ,βψ(ε)Γ(s),
    ε(sk,εk+1],k=0,1,,m,
    Γ(ε)=14Γ(ε,εk),ε(0.9,sk),k=1,2,,m,
    Γ(0)=Γ0,ψ(ε)=sin(ε),

    where ΓR2, Γ12, β=34, 0<ε0<s0<ε1<<sm=1 are prefixed numbers, J=[0,1]. Here

    A=(0110),Δ(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))),
    h(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))),
    g(ε,Γ(ε))=(Γ1(ε)eψ(ε)300Γ2(ε)eψ(ε)3),λ(ε,Γ(ε))=(Γ1(ε)e2ψ(ε)500εΓ2(ε)eψ(ε)5).

    Calculate the M-L function by using [12]. We have

    Mγ,ν(Aψ(ε)γ)=(S1S2S3S4),

    where

    S1=S4=j=0(1)jb2jγΓ(1+2jγ)=0.3377,
    S2=S3=j=0(1)jb(2j+1)γΓ(1+(2j+1)γ)=1.666.

    Also calculate

    Mγ,ν(A(bs)γ)=(P1P2P3P4),

    where

    P1=P4=j=0(1)j(bs)2jγΓ(2jγ+γ)=0.7477,
    P2=P3=j=0(1)j(bs)(2j+1)γΓ[(2j+1)γ]=0.4203.

    Therefore, we need to check the hypotheses of nonlinear functions:

    E||h(ε,u1)h(ε,u2)||2130||u1u2||2,
    E||Δ(ε,u1,v1)Δ(ε,u2,v2)||2125||u1u2||2+135||v1v2||2,
    E||g(ε,u1,v1)g(ε,u2,v2)||219e2||u1u2||2+110e3||v1v2||2,
    E||λ(ε,u1,v1λ(ε,u2,v2)||2125e4ψ(ε)||u1u2||2+120e5ψ(ε)||v1v2||2,
    E||hk(ε,u)hk(ε,v||2116||uv||2,k=1,2,,m.

    We get M1=0.0862, M2=0.3824, Mhk=0.065, and γ=0.5. Hence we have L=max{L0,Lk,Lk}=0.52<1. Also,

    E||Γ(ε)˜Γ(ε)||25C(M,L,p,ζ)ε(ζ(ε)+ϕ),εJ,0.218.

    In this example, all the conditions stated in Theorems 4.1 and 5.1 are satisfied, so the example has a unique solution and is also UHR stable.

    With the help of Schaefer's FPT and the Banach contraction principles, we obtained the existence and uniqueness results for HSFEs with retarded and advanced arguments, selected the non-instantaneous impulses with both multiplicative and fractional noises, and obtained the UHR stability for HSFEs. UHR stability gives bounds between the exact and approximation solution, which is why this theory is very important in the numerical analysis as well as in approximation theory. We are hoping that our findings will have a great importance in the mentioned theories. Finally, a case study is provided to demonstrate the efficacy of the suggested outcomes. In the future, we can use the findings to investigate the controllability of HSFEs.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Anhui Province Natural Science Research Foundation (2023AH051810).

    The authors declare no conflicts of interest.



    Conflict of interest



    The authors declare no conflict of interest.

    Author Contributions:



    Akinola did the survey and write up while Reddy did the editing and correction.

    [1] Karim R, Iftikhar A, Ijaz B, et al. (2019) The potentials, challenges, and future directions of on-chip-antennas for emerging wireless applications—a comprehensive survey. IEEE Access 7: 173897-173934. https://doi.org/10.1109/ACCESS.2019.2957073
    [2] Delavarpour N, Koparan C, Nowatzki J, et al. (2021) A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sens 13: 1204. https://doi.org/10.3390/rs13061204
    [3] Yang X, Sun Z, Low T, et al. (2018) Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv Mater 30: 1704896. https://doi.org/10.1002/adma.201704896
    [4] Yang Y, Chen S, Li W, et al. (2020) Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14: 8754-8765. https://doi.org/10.1021/acsnano.0c03337
    [5] Decker M, Staude I (2016) Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J Opt 18: 103001. https://doi.org/10.1088/2040-8978/18/10/103001
    [6] Milias C, Andersen RB, Lazaridis PI, et al. (2021) Metamaterial-inspired antennas: A review of the state of the art and future design challenges. IEEE Access 9: 89846-89865. https://doi.org/10.1109/ACCESS.2021.3091479
    [7] Landaluce H, Arjona L, Perallos A, et al. (2020) A review of IoT sensing applications and challenges using RFID and wireless sensor networks. Sensors 20: 2495. https://doi.org/10.3390/s20092495
    [8] Yang L, Martin LJ, Staiculescu D, et al. (2008) Conformal magnetic composite RFID for wearable RF and bio-monitoring applications. IEEE Trans Microwave Theory Tech 56: 3223-3230. https://doi.org/10.1109/TMTT.2008.2006810
    [9] Abbasi QH, Yang K, Chopra N, et al. (2016) Nano-communication for biomedical applications: A review on the state-of-the-art from physical layers to novel networking concepts. IEEE Access 4: 3920-3935. https://doi.org/10.1109/ACCESS.2016.2593582
    [10] Jakšić Z, Obradov M, Vuković S, et al. (2014) Plasmonic enhancement of light trapping in photodetectors. Facta Univ-Ser Elect 27: 183-203. https://doi.org/10.2298/FUEE1402183J
    [11] Tekbıyık K, Ekti AR, Kurt GK, et al. (2019) Terahertz band communication systems: challenges, novelties and standardization efforts. Phys Commun 35: 100700. https://doi.org/10.1016/j.phycom.2019.04.014
    [12] Bush SF (2010) Nanoscale Communication Networks. USA: Artech House.
    [13] Buerkle A, Sarabandi K, Mosallaei H (2005) Compact slot and dielectric resonator antenna with dual-resonance, broadband characteristics. IEEE T Antenn Propag 53: 1020-1027. https://doi.org/10.1109/TAP.2004.842681
    [14] Elsheakh DMN, Elsadek HA, Abdallah EA (2012) Antenna Designs with Electromagnetic Band Gap Structures. Croatia: InTech 403-473.
    [15] Liaskos C, Tsioliaridou A, Pitsillides A, et al. (2015) Design and development of software-defined metamaterials for nanonetworks. IEEE Circ Syst Mag 15: 12-25. https://doi.org/10.1109/MCAS.2015.2484098
    [16] Abdelraouf OAM, Wang Z, Liu H, et al. (2022) Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano 16: 13339-13369. https://doi.org/10.1021/acsnano.2c04628
    [17] El Misilmani HM, Naous T, Al Khatib SK (2020) A review on the design and optimization of antennas using machine learning algorithms and techniques. Int J RF Microw C E 30: e22356. https://doi.org/10.1002/mmce.22356
    [18] Ouedraogo RO, Rothwell EJ, Diaz AR, et al. (2012) Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE T Antenn Propag 60: 2175-2182. https://doi.org/10.1109/TAP.2012.2189699
    [19] Lin H, Zaeimbashi M, Sun N, et al. (2018) Future antenna miniaturization mechanism: magnetoelectric antennas. 2018 IEEE/MTT-S International Microwave Symposium-IMS, IEEE 2018: 220-223. https://doi.org/10.1109/MWSYM.2018.8439678
    [20] Hum SV, Perruisseau-Carrier J (2013) Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE T Antenn Propag 62: 183-198. https://doi.org/10.1109/TAP.2013.2287296
    [21] Costantine J, Tawk Y, Barbin SE, et al. (2015) Reconfigurable antennas: design and applications. Proc IEEE 103: 424-437. https://doi.org/10.1109/JPROC.2015.2396000
    [22] Yotter RA, Wilson DM (2003) A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens J 3: 288-303. https://doi.org/10.1109/JSEN.2003.814651
    [23] Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Design 56: 862-871. https://doi.org/10.1016/j.matdes.2013.12.002
    [24] Akyildiz IF, Kak A, Nie S (2020) 6G and beyond: The future of wireless communications systems. IEEE Access 8: 133995-134030. https://doi.org/10.1109/ACCESS.2020.3010896
    [25] Ferrari AC, Bonaccorso F, Fal'Ko V, et al. (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7: 4598-4810. https://doi.org/10.1039/C4NR01600A
    [26] Zeng W, Shu L, Li Q, et al. (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26: 5310-5336. https://doi.org/10.1002/adma.201400633
    [27] Porwal O (2022) An overview of current developments in the synthesis of carbon nanotubes and their use in medicinal applications. J Pharm Negat Result 13: 3691-3705. https://doi.org/10.47750/Pnr.2022.13.S08.456
    [28] Xia W, Dai L, Yu P, et al. (2017) Recent progress in van der Waals heterojunctions. Nanoscale 9: 4324-4365. https://doi.org/10.1039/C7NR00844A
    [29] Cao JB, Wu JQ (2011) Strain effects in low-dimensional transition metal oxides. Mater Sci Eng R 71: 35-52. https://doi.org/10.1016/j.mser.2010.08.001
    [30] Han C, Gómez DE, Xiao Q, et al. (2021) Near-field enhancement by plasmonic antennas for photocatalytic Suzuki-Miyaura cross-coupling reactions. J Catal 397: 205-211. https://doi.org/10.1016/j.jcat.2021.03.020
    [31] Wang Y, Landreman P, Schoen D, et al. (2021) Electrical tuning of phase-change antennas and metasurfaces. Nat Nanotechnol 16: 667-672. https://doi.org/10.1038/s41565-021-00882-8
    [32] Huang Y, Dong X, Liu Y, et al. (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21: 12358-12362. https://doi.org/10.1039/c1jm11436k
    [33] Aligodarz MT, Rashidian A, Klymyshyn DM, et al. (2013) Polyester-styrene/ceramic nanocomposites for antenna applications. 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), IEEE 2013: 1906-1907. https://doi.org/10.1109/aps.2013.6711611
    [34] Komoda N, Nogi M, Suganuma K, et al. (2012) Printed silver nanowire antennas with low signal loss at high-frequency radio. Nanoscale 4: 3148-3153. https://doi.org/10.1039/c2nr30485f
    [35] Arun H (2021) Advancements in the use of carbon nanotubes for antenna realization. AEU-Int J Electron C 136: 153753. https://doi.org/10.1016/j.aeue.2021.153753
    [36] Zhi D, Li T, Li J, et al. (2021) A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Composites, Part B 211: 108642. https://doi.org/10.1016/j.compositesb.2021.108642
    [37] Yu P, Wu J, Liu S, et al. (2016) Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 11: 704-737. https://doi.org/10.1016/j.nantod.2016.10.001
    [38] Zhu X, Shi L, Schmidt MS, et al. (2013) Enhanced light–matter interactions in graphene-covered gold nanovoid arrays. Nano Lett 13: 4690-4696. https://doi.org/10.1021/nl402120t
    [39] Shao LJ, Gao YF, Yan F (2011) Semiconductor quantum dots for biomedical applications. Sensors 11: 11736-11751. https://doi.org/10.3390/s111211736
    [40] Cheng Z, Li M, Dey R, et al. (2021) Nanomaterials for cancer therapy: Current progress and perspectives. J Hematol Oncol 14: 85. https://doi.org/10.1186/s13045-021-01096-0
    [41] Yao K, Zheng Y (2021) Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna. J Chem Phys 155: 224110. https://doi.org/10.1063/5.0072210
    [42] Hamied FMA, Mahmoud K, Hussein M, et al. (2021) Design and analysis of rectangular spiral nano-antenna for solar energy harvesting. Prog Electromagn Res C 111: 25-34. https://doi.org/10.2528/PIERC21011206
    [43] Simovski CR, Mollaei MSM, Voroshilov PM (2020) Fluorescence quenching by plasmonic nanoantennas. Phys Rev B 101: 245421. https://doi.org/10.1103/PhysRevB.101.245421
    [44] Krasnok AE, Miroshnichenko AE, Belov PA, et al. (2013) All-dielectric nanoantennas. Metamaterials: Fundamentals and Applications VI 8806: 142-153. https://doi.org/10.1117/12.2025961
    [45] Moshiri SMM, Nozhat N (2021) Smart optical cross dipole nanoantenna with multibeam pattern. Sci Rep 11: 5047. https://doi.org/10.1038/s41598-021-84495-0
    [46] Zhao Y, Alù A (2013) Optical nanoantennas and their applications. 2013 IEEE Radio and Wireless Symposium 2013: 58-60. https://doi.org/10.1109/RWS.2013.6486640
    [47] Abass A, Gutsche P, Maes B, et al. (2016) Insights into directional scattering: from coupled dipoles to asymmetric dimer nanoantennas. Opt Express 24: 19638-19650. https://doi.org/10.1364/OE.24.019638
    [48] Santos PN, Dmitriev V, da Costa KQ (2021) Optimization of modified yagi-uda nanoantenna arrays using adaptive fuzzy gapso. Int J Antenn Propag 2021: 1-11. https://doi.org/10.1155/2021/8874385
    [49] Feng T, Zhang W, Liang Z, et al. (2018) Unidirectional emission in an all-dielectric nanoantenna. J Phys Condens Matter 30: 124002. https://doi.org/10.1088/1361-648X/aaab28
    [50] Pahuja A, Parihar MS, Kumar VD (2020) Performance enhancement of thin-film solar cell using Yagi–Uda nanoantenna array embedded inside the anti-reflection coating. Appl Phys A 126: 70. https://doi.org/10.1007/s00339-019-3250-0
    [51] Wei L, Zayats AV, Rodríguez-Fortuño FJ (2018) Interferometric evanescent wave excitation of a nanoantenna for ultrasensitive displacement and phase metrology. Phys Rev Lett 121: 193901. https://doi.org/10.1103/PhysRevLett.121.193901
    [52] Calamak S, Ulubayram K (2019) Polyethylenimine-mediated gold nanoparticle arrays with tunable electric field enhancement for plasmonic applications. J Mater Sci Mater Electron 30: 10013-10023. https://doi.org/10.1007/s10854-019-01344-7
    [53] Cakmakyapan S, Cinel NA, Cakmak AO, et al. (2014) Validation of electromagnetic field enhancement in near-infrared through Sierpinski fractal nanoantennas. Opt Express 22: 19504-19512. https://doi.org/10.1364/OE.22.019504
    [54] Rieger W, Heremans JJ, Ruan H, et al. (2018) Yagi-Uda nanoantenna enhanced metal-semiconductor-metal photodetector. Appl Phys Lett 113: 023102. https://doi.org/10.1063/1.5038339
    [55] Sethi WT, De Sagazan O, Himdi M, et al. (2021) Thermoelectric sensor coupled yagi–Uda nanoantenna for infrared detection. Electronics 10: 527. https://doi.org/10.3390/electronics10050527
    [56] Mahmoud KR, Hussein M, Hameed MFO, et al. (2017) Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission. JOSA B 34: 2041-2049. https://doi.org/10.1364/JOSAB.34.002041
    [57] Mejia E, Qian Y, Safiabadi Tali SA, et al. (2021) Spectral tuning of double resonant nanolaminate plasmonic nanoantennas with a fixed size. Appl Physs Lett 118: 241108. https://doi.org/10.1063/5.0054220
    [58] Pal N, Maurya JB, Prajapati YK, et al. (2023) LiF-Ag-Si-TMDs based long-range SPR sensor in visible and NIR spectrum. Optik 274: 170556. https://doi.org/10.1016/j.ijleo.2023.170556
    [59] Hameed N, Zeghdoudi T, Guichardaz B, et al. (2023) Stand-alone optical spinning tweezers with tunable rotation frequency. Opt Express 31: 4379-4392. https://doi.org/10.1364/OE.480961
    [60] Yoon J, Kim JY, Kim J, et al. (2023) Inverse design of a Si-based high-performance vertical-emitting meta-grating coupler on a 220 nm silicon-on-insulator platform. Photonics Res 11: 897-905. https://doi.org/10.1364/PRJ.473978
    [61] Wang G Nanotechnology: the new features (2018). arXiv preprint arXiv:1812.04939
    [62] Zhao B, Li Y, Zeng Q, et al. (2020) Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small 16: 2003502. https://doi.org/10.1002/smll.202003502
    [63] Gal-Katziri M, Fikes A, Hajimiri A (2022) Flexible active antenna arrays. npj Flexible Electron 6: 85. https://doi.org/10.1038/s41528-022-00218-z
    [64] Zhu C, Wu J, Yan J, et al. (2023) Advanced fiber materials for wearable electronics. Adv Fiber Mater 5: 12-35. https://doi.org/10.1007/s42765-022-00212-0
    [65] Qin Y, Kim Y, Zhang L, et al. (2010) Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. Small 6: 910-914. https://doi.org/10.1002/smll.200902159
    [66] Pearce AK, Wilks TR, Arno MC, et al. (2021) Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat Rev Chem 5: 21-45. https://doi.org/10.1038/s41570-020-00232-7
    [67] Fu X, Cai J, Zhang X, et al. (2018) Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv Drug Delivery Rev 132: 169-187. https://doi.org/10.1016/j.addr.2018.07.006
    [68] Yao S, Zhu Y (2015) Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 27: 1480-1511. https://doi.org/10.1002/adma.201404446
    [69] Hassan A, Ali S, Bae J, et al. (2016) All printed antenna based on silver nanoparticles for 1.8 GHz applications. Appl Phys A 122: 1-7. https://doi.org/10.1007/s00339-016-0286-2
    [70] Carloni LP, Pande P, Xie Y (2009) Networks-on-chip in emerging interconnect paradigms: Advantages and challenges. 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip 2009: 93-102. https://doi.org/10.1109/NOCS.2009.5071456
    [71] Fasolo E, Rossi M, Widmer J, et al. (2007) In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wirel Commun 14: 70-87. https://doi.org/10.1109/MWC.2007.358967
    [72] Vermesan O, Friess P, Guillemin P, et al. (2022) Internet of things strategic research roadmap. Internet of Things - Global Technological and Societal Trends from Smart Environments and Spaces to Green Ict. New York: River Publishers 9-52. https://doi.org/10.1201/9781003338604-2
    [73] Hong W, Lim S, Ko S, et al. (2017) Optically invisible antenna integrated within an OLED touch display panel for IoT applications. IEEE Trans Antenn Propag 65: 3750-3755. https://doi.org/10.1109/TAP.2017.2705127
    [74] Dong Y, Itoh T (2012) Metamaterial-based antennas. Proc IEEE 100: 2271-2285. https://doi.org/10.1109/JPROC.2012.2187631
    [75] Wang Z, Du Y, Wei K, et al. (2022) Vision, application scenarios, and key technology trends for 6G mobile communications. Sci China Inform Sci 65: 151301. https://doi.org/10.1007/s11432-021-3351-5
    [76] Kasture K, Shende P (2023) Amalgamation of artificial intelligence with nanoscience for biomedical applications. Arch Computat Methods Eng 2023: 1-19. https://doi.org/10.1007/s11831-023-09948-3
    [77] Akyildiz IF, Jornet JM, Han C (2014) TeraNets: Ultra-broadband communication networks in the terahertz band. IEEE Wirel Commun 21: 130-135. https://doi.org/10.1109/MWC.2014.6882305
    [78] Song HJ, Kim JY, Ajito K, et al. (2013) Fully integrated ASK receiver MMIC for terahertz communications at 300 GHz. IEEE Trans Terahertz Sci Technol 3: 445-452. https://doi.org/10.1109/TTHZ.2013.2252954
    [79] Wu K, Cheng YJ, Djerafi T, et al. (2012) Substrate-integrated millimeter-wave and terahertz antenna technology. Proc IEEE 100: 2219-2232. https://doi.org/10.1109/JPROC.2012.2190252
    [80] Rebeiz GM (1992) Millimeter-wave and terahertz integrated circuit antennas. Proc IEEE 80: 1748-1770. https://doi.org/10.1109/5.175253
    [81] Sun H, Zhang Z, Hu RQ, et al. (2018) Wearable communications in 5G: challenges and enabling technologies. IEEE Veh Technol Mag 13: 100-109. https://doi.org/10.1109/MVT.2018.2810317
    [82] Wang C, He T, Zhou H, et al. (2023) Artificial intelligence enhanced sensors-enabling technologies to next-generation healthcare and biomedical platform. Bioelectronic Medicine 9: 17. https://doi.org/10.1186/s42234-023-00118-1
    [83] Khadka B, Lee B, Kim KT (2023) Drug delivery systems for personal healthcare by smart wearable patch system. Biomolecules 13: 929. https://doi.org/10.3390/biom13060929
    [84] Dahlan NA, Thiha A, Ibrahim F, et al. (2022) Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for biomedical applications and towards pioneering food waste utilisation. Nanomaterials 12: 4025. https://doi.org/10.3390/nano12224025
    [85] Savci HS, Sula A, Wang Z, et al. (2005) MICS transceivers: regulatory standards and applications [medical implant communications service]. Proceedings. IEEE SoutheastCon 2005: 179-182. https://doi.org/10.1109/SECON.2005.1423241
    [86] Pan T, Lu D, Xin H, et al. (2021) Biophotonic probes for bio-detection and imaging. Light: Sci Appl 10: 124. https://doi.org/10.1038/s41377-021-00561-2
    [87] Nazari M, Saljooghi AS, Ramezani M, et al. (2022) Current status and future prospects of nanoscale metal-organic frameworks in bioimaging. J Mater Chem B 10: 8824-8851. https://doi.org/10.1039/D2TB01787C
    [88] Baker JR, Ward BB, Thomas T (2009) Nanotechnology in clinical and translational research. Clin Transl Sci: Princ Hum Res 2009: 123-135. https://doi.org/10.1016/B978-0-12-373639-0.00008-X
    [89] Teshome AK, Kibret B, Lai DTH (2018) A review of implant communication technology in WBAN: Progress and challenges. IEEE Rev Biomed Eng 12: 88-99. https://doi.org/10.1109/RBME.2018.2848228
    [90] Neethirajan S (2017) Recent advances in wearable sensors for animal health management. Sens Bio-Sens Res 12: 15-29. https://doi.org/10.1016/j.sbsr.2016.11.004
    [91] Qiu T, Lee TC, Mark AG, et al. (2014) Swimming by reciprocal motion at low Reynolds number. Nat Commun 5: 5119. https://doi.org/10.1038/ncomms6119
    [92] Cvetkovic C, Raman R, Chan V, et al. (2014) Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl A Sci 111: 10125-10130. https://doi.org/10.1073/pnas.1401577111
    [93] Qiu F, Fujita S, Mhanna R, et al. (2015) Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater 25: 1666-1671. https://doi.org/10.1002/adfm.201403891
    [94] González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J (2019) Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci 94: 57-116. https://doi.org/10.1016/j.progpolymsci.2019.03.001
    [95] Teo AJT, Mishra A, Park I, et al. (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2: 454-472. https://doi.org/10.1021/acsbiomaterials.5b00429
    [96] Fisher C, Skolrood LN, Li K, et al. (2023) Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review. Adv Mater Technol 2023: 2300030. https://doi.org/10.1002/admt.202300030
    [97] Karatum O, Gwak MJ, Hyun J, et al. (2023) Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems. Chem Soc Rev 52: 3326-3352. https://doi.org/10.1039/D2CS01020H
    [98] Zhang J, Xu Q, Pei W, et al. (2021) Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. Int J Biol Macromol 193: 2103-2112. https://doi.org/10.1016/j.ijbiomac.2021.11.042
    [99] Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57: 303-331. https://doi.org/10.1146/annurev.physchem.56.092503.141236
    [100] Akiki E (2021) Integrated SOI photoacoustic gas sensor at THz frequencies for food quality control application [PhD thesis]. France: Université de lille.
    [101] Kotter DK, Novack SD, Slafer WD, et al. (2008) Solar nantenna electromagnetic collectors. ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. Florida: Energy Sustainability 40-415. https://doi.org/10.1115/ES2008-54016
    [102] Seimeni MA, Tsolis A, Alexandridis AA, et al. (2021) Human exposure to EMFs from wearable textile patch antennas: Experimental evaluation of the ground-plane effect. Prog Electromagn Res B 92: 71-89. https://doi.org/10.2528/PIERB21022502
    [103] Ali U, Ullah S, Kamal B, et al. (2023) Design, analysis and applications of wearable antennas: a review. IEEE Access 11: 14458-14486. https://doi.org/10.1109/ACCESS.2023.3243292
    [104] Soozanipour A, Ejeian F, Boroumand Y, et al. (2023) Biotechnological advancements towards water, food and medical healthcare: A review. Chemosphere 312: 137185. https://doi.org/10.1016/j.chemosphere.2022.137185
    [105] Dao NN (2023) Internet of wearable things: Advancements and benefits from 6G technologies. Future Gener Comp Sy 138: 172-184. https://doi.org/10.1016/j.future.2022.07.006
    [106] Radhakrishnan S, Mathew M, Rout CS (2022) Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Mater Adv 3: 1874-1904. https://doi.org/10.1039/D1MA00929J
    [107] Dahlin AB (2012) Size matters: problems and advantages associated with highly miniaturized sensors. Sensors 12: 3018-3036. https://doi.org/10.3390/s120303018
    [108] Akyildiz IF, Jornet JM (2016) Realizing ultra-massive MIMO (1024× 1024) communication in the (0.06–10) terahertz band. Nano Commun Netw 8: 46-54. https://doi.org/10.1016/j.nancom.2016.02.001
    [109] Kuzyk A, Jungmann R, Acuna GP, et al. (2018) DNA origami route for nanophotonics. ACS photonics 5: 1151-1163. https://doi.org/10.1021/acsphotonics.7b01580
    [110] Luo Y, Abidian MR, Ahn JH, et al. (2023) Technology roadmap for flexible sensors. ACS Nano 17: 5211-5295. https://doi.org/10.1021/acsanm.2c05140
  • This article has been cited by:

    1. Hamza Khalil, Akbar Zada, Sana Ben Moussa, Ioan-Lucian Popa, Afef Kallekh, Qualitative Analysis of Impulsive Stochastic Hilfer Fractional Differential Equation, 2024, 23, 1575-5460, 10.1007/s12346-024-01149-y
    2. Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Existence and Stability of Neutral Stochastic Impulsive and Delayed Integro-Differential System via Resolvent Operator, 2024, 8, 2504-3110, 659, 10.3390/fractalfract8110659
    3. Wei Zhang, Jinbo Ni, Some New Results on Itô–Doob Hadamard Fractional Stochastic Pantograph Equations in Lp
    Spaces, 2024, 23, 1575-5460, 10.1007/s12346-024-01190-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2008) PDF downloads(134) Cited by(0)

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog