Research article

Treatment effects on the quality and shelf life of the cape gooseberry (Physalis peruviana L.) Corpoica Andina

  • Received: 24 April 2024 Revised: 09 July 2024 Accepted: 22 July 2024 Published: 20 September 2024
  • The Cape gooseberry (Physalis peruviana L.) is renowned for its distinctive appearance and functional properties. Colombia has emerged as the world's leading producer and exporter of Cape gooseberries, with annual export growth of 1.2%, predominantly to countries such as the USA and the Netherlands. Traditionally sold with its calyx intact to minimize water loss and deterioration, recent interest in selling Cape gooseberries without the calyx to reduce volume has raised concerns regarding shelf life. Consequently, research has pivoted toward post-harvest management to extend shelf life. An experiment was conducted to explore various treatments and temperatures (5, 10, and 18 ℃), meticulously monitoring fruit quality over time. Findings underscore that calcium chloride and refrigerated storage at 10 ℃ preserve the quality of the Cape gooseberry fruit for up to 20 days. Moreover, temperature and time exerted a significant influence on fruit quality and physicochemical properties, with interactions impacting conservation methods. The application of calcium chloride as a barrier method yielded optimal preservation outcomes, safeguarding key fruit properties. Conversely, sodium hypochlorite treatment at 18 ℃ accelerated fruit ripening owing to heightened respiratory intensity. This study not only sheds light on effective preservation strategies for Cape gooseberries but also underscores the intricate interplay between environmental factors and post-harvest management techniques. By enhancing our understanding of these dynamics, the study catalyzes advancements in fruit preservation practices, thereby fortifying the agricultural and economic sectors, both domestically and internationally.

    Citation: María Cristina García-Muñoz, Martha Patricia Tarazona Diaz, Andrea Carolina Duarte Morales. Treatment effects on the quality and shelf life of the cape gooseberry (Physalis peruviana L.) Corpoica Andina[J]. AIMS Agriculture and Food, 2024, 9(3): 887-903. doi: 10.3934/agrfood.2024048

    Related Papers:

  • The Cape gooseberry (Physalis peruviana L.) is renowned for its distinctive appearance and functional properties. Colombia has emerged as the world's leading producer and exporter of Cape gooseberries, with annual export growth of 1.2%, predominantly to countries such as the USA and the Netherlands. Traditionally sold with its calyx intact to minimize water loss and deterioration, recent interest in selling Cape gooseberries without the calyx to reduce volume has raised concerns regarding shelf life. Consequently, research has pivoted toward post-harvest management to extend shelf life. An experiment was conducted to explore various treatments and temperatures (5, 10, and 18 ℃), meticulously monitoring fruit quality over time. Findings underscore that calcium chloride and refrigerated storage at 10 ℃ preserve the quality of the Cape gooseberry fruit for up to 20 days. Moreover, temperature and time exerted a significant influence on fruit quality and physicochemical properties, with interactions impacting conservation methods. The application of calcium chloride as a barrier method yielded optimal preservation outcomes, safeguarding key fruit properties. Conversely, sodium hypochlorite treatment at 18 ℃ accelerated fruit ripening owing to heightened respiratory intensity. This study not only sheds light on effective preservation strategies for Cape gooseberries but also underscores the intricate interplay between environmental factors and post-harvest management techniques. By enhancing our understanding of these dynamics, the study catalyzes advancements in fruit preservation practices, thereby fortifying the agricultural and economic sectors, both domestically and internationally.



    加载中


    [1] Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) -an andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. doi: 10.17584/RCCH.2020V14I1.10893 doi: 10.17584/RCCH.2020V14I1.10893
    [2] AGRONET. (2023). Ministerio de Agricultura y Desarrollo Rural -Rendimiento Nacional Por Cultivo. Uchuva. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod = 1
    [3] Agudelo-Sánchez, S., Mosquera-Palacios, Y., David-Úsuga, D., Cartagena-Montoya, S., & Duarte-Correa, Y. (2023). Effect of processing methods on the postharvest quality of cape gooseberry (Physalis peruviana L.). Horticulturae 2023, Vol. 9, Page 1158, 9(10), 1158. doi: 10.3390/HORTICULTURAE9101158
    [4] Racines, L. G., & Vera, J. M. B. (2023). Export of Organic Cape Gooseberry (Physalis peruviana) as an alternative illicit crop substitution: survey of consumers in Namur, Belgium. Sustainability 2023, Vol. 15, Page 16604, 15(24), 16604. doi: 10.3390/SU152416604
    [5] Rincón Munar, N. (2021). Informe exportaciones de uchuva -Analdex -Asociación Nacional de Comercio Exterior. Analdex. https://www.analdex.org/2021/07/30/informe-exportaciones-de-uchuva-mayo-2021/
    [6] Petkova, N. T., & Popova, V. T. (2021). Nutritional composition of different cape gooseberry genotypes (Physalis peruviana L.)-a comparative study. Journal homepage, 5(4), 191–202. doi: 10.26656/fr.2017.5(4).123 doi: 10.26656/fr.2017.5(4).123
    [7] Agudelo-Sánchez, S., Mosquera-Palacios, Y., David-Úsuga, D., Cartagena-Montoya, S., & Duarte-Correa, Y. (2023). Postharvest quality evaluation of cape gooseberry (Physalis peruviana L.) using different alternatives: from minimal processing to coating application. Horticulturae, 9, 11158. doi: 10.20944/PREPRINTS202309.0303.V1 doi: 10.20944/PREPRINTS202309.0303.V1
    [8] Sengupta, P., Sen, S., Mukherjee, K., & Acharya, K. (2020). Postharvest diseases of Indian gooseberry and their management: A Review. International Journal of Fruit Science, 20(2), 178–190. doi: 10.1080/15538362.2019.1608889 doi: 10.1080/15538362.2019.1608889
    [9] Simpson, A. M. A., & Mitch, W. A. (2022). Chlorine and ozone disinfection and disinfection byproducts in postharvest food processing facilities: A review. Critical Reviews in Environmental Science and Technology, 52(11), 1825–1867. doi: 10.1080/10643389.2020.1862562 doi: 10.1080/10643389.2020.1862562
    [10] Zhao, Y., & Wang, C. (2015). Effect of calcium chloride in combination with salicylic acid on post-harvest freshness of apples. Food Science and Biotechnology, 24(3), 1139–1146. doi: 10.1007/S10068-015-0145-5/METRIC doi: 10.1007/S10068-015-0145-5/METRIC
    [11] Pinzón, E. H., Reyes, A. J., & Álvarez-Herrera, J. G. (2015). Comportamiento del fruto de uchuva Physalis peruviana L., bajo diferentes temperaturas de almacenamiento. Revista de Ciencias Agrícolas, 32(2), 26–35
    [12] Gao, Q., Tan, Q., Song, Z., Chen, W., Li, X., & Zhu, X. (2020). Calcium chloride postharvest treatment delays the ripening and softening of papaya fruit. Journal of Food Processing and Preservation, 44(8), e14604. doi: 10.1111/JFPP.14604 doi: 10.1111/JFPP.14604
    [13] ICONTEC. (2022). Frutas frescas. uchuva. especificaciones. ICONTEC; https://tienda.icontec.org/gp-ntc-frutas-frescas-uchuva-especificaciones-ntc4580-2022.html.
    [14] Guevara Collazos, A. J., Villagran Munar, E. A., Velasquez Ayala, F. A., & González Velandia, K. D. (2019). Evaluation of the postharvest behavior of cape gooseberry from conventional and agroecological production systems. Revista mexicana de ciencias agrícolas, 10(6), 1273–1285. doi: 10.29312/REMEXCA.V10I6.1492 doi: 10.29312/REMEXCA.V10I6.1492
    [15] Knoche, M., Athoo, T. O., Winkler, A., & Brüggenwirth, M. (2015). Postharvest osmotic dehydration of pedicels of sweet cherry fruit. Postharvest Biology and Technology, 108, 86–90. doi: 10.1016/J.POSTHARVBIO.2015.05.014 doi: 10.1016/J.POSTHARVBIO.2015.05.014
    [16] Ergun, M., & Dogan, E. (2018). Use of hydrogen peroxide, citric acid and sodium hypochlorite as sanitizer for minimally processed table grapes. Ciência e Técnica Vitivinícola, 33(1), 58–65. doi: 10.1051/CTV/20183301058 doi: 10.1051/CTV/20183301058
    [17] Zhang, C., Xiong, Z., Yang, H., & Wu, W. (2019). Changes in pericarp morphology, physiology and cell wall composition account for flesh firmness during the ripening of blackberry (Rubus spp.) fruit. Scientia Horticulturae, 250, 59–68. doi: 10.1016/J.SCIENTA.2019.02.015 doi: 10.1016/J.SCIENTA.2019.02.015
    [18] Huan, C., Jiang, L., An, X., Yu, M., Xu, Y., Ma, R., & Yu, Z. (2016). Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiology and Biochemistry, 104,294–303. doi: 10.1016/J.PLAPHY.2016.05.013 doi: 10.1016/J.PLAPHY.2016.05.013
    [19] Ali, I., Abbasi, N. A., & Hafiz, I. (2021). Application of calcium chloride at different phenological stages alleviates chilling injury and delays climacteric ripening in peach fruit during Low-temperature Storage. International Journal of Fruit Science, 21(1), 1040–1058. doi: 10.1080/15538362.2021.1975607 doi: 10.1080/15538362.2021.1975607
    [20] Skolik, P., Morais, C. L. M., Martin, F. L., & McAinsh, M. R. (2019). Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and Chemometrics. BMC Plant Biology, 19(1), 1–15. doi: 10.1186/S12870-019-1852-5/TABLES/4 doi: 10.1186/S12870-019-1852-5/TABLES/4
    [21] Pott, D. M., Vallarino, J. G., & Osorio, S. (2020). Metabolite changes during postharvest storage: Effects on fruit quality traits. Metabolites, 12(5), 187. doi: 10.3390/metabo10050187 doi: 10.3390/metabo10050187
    [22] Keller, M., Zhang, Y., Shrestha, P. M., Biondi, M., & Bondada, B. R. (2015). Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Plant, Cell & Environment, 38(6), 1048–1059. doi: 10.1111/PCE.12465 doi: 10.1111/PCE.12465
    [23] Tadeo, F. R., Terol, J., Rodrigo, M. J., Licciardello, C., & Sadka, A. (2020). Fruit growth and development. The genus citrus, 12,245–269.
    [24] Zhang, Z., Jin, H., Suo, J., Yu, W., Zhou, M., Dai, W., Song, L., Hu, Y., & Wu, J. (2020). Effect of temperature and humidity on oil quality of harvested Torreya grandis cv. Merrillii Nuts during the after-ripening stage. Frontiers in Plant Science, 11, 573681. doi: 10.3389/FPLS.2020.573681/BIBTEX doi: 10.3389/FPLS.2020.573681/BIBTEX
    [25] Durán-Soria, S., Pott, D. M., Osorio, S., & Vallarino, J. G. (2020). Sugar signaling during fruit ripening. Frontiers in Plant Science, 11, 564917. doi: 10.3389/FPLS.2020.564917/BIBTEX doi: 10.3389/FPLS.2020.564917/BIBTEX
    [26] Shehata, S. A., Abdelrahman, S. Z., Megahed, M. M. A., Abdeldaym, E. A., El-Mogy, M. M., & Abdelgawad, K. F. (2021). Extending shelf life and maintaining quality of tomato fruit by calcium chloride, hydrogen peroxide, chitosan, and ozonated water. Horticulturae, 7(9), 309. doi: 10.3390/HORTICULTURAE7090309/S1 doi: 10.3390/HORTICULTURAE7090309/S1
    [27] Garavito, J., Herrera, A. O., & Castellanos, D. A. (2021). A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (Physalis peruviana) fruits. Biosystems Engineering, 208,152–163. doi: 10.1016/J.BIOSYSTEMSENG.2021.05.015 doi: 10.1016/J.BIOSYSTEMSENG.2021.05.015
    [28] Olivares-Tenorio, M. L., Dekker, M., van Boekel, M. A. J. S., & Verkerk, R. (2017). Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana L.). LWT, 80,523–530. doi: 10.1016/J.LWT.2017.03.027 doi: 10.1016/J.LWT.2017.03.027
    [29] Bravo, K., Sepulveda-Ortega, S., Lara-Guzman, O., Navas-Arboleda, A. A., & Osorio, E. (2015). Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). Journal of the Science of Food and Agriculture, 95(7), 1562–1569. doi: 10.1002/JSFA.6866 doi: 10.1002/JSFA.6866
    [30] Ramesha, G., Vasudeva, K., Krishna, HC Amarananjundeswara, H., & Anjaneya Reddy, B. (2018). Effect of disinfectants on utilization of culled tomato (Solanum lycopersicum L.) for extraction of lycopene. Journal of Pharmacognosy and Phytochemistry, 7(2), 1705–1708.
    [31] Brizzolara, S., Manganaris, G. A., Fotopoulos, V., Watkins, C. B., & Tonutti, P. (2020). Primary metabolism in fresh fruits during storage. Frontiers in Plant Science, 11, 509561. doi: 10.3389/FPLS.2020.00080/BIBTEX doi: 10.3389/FPLS.2020.00080/BIBTEX
    [32] Pinzón Sandoval, E. H., Reyes, A. J., & Álvarez Herrera, J. G. (2016). Efecto del cloruro de calcio sobre la calidad del fruto de uchuva (Physalis peruviana L.). Ciencia y Agricultura, 13(2), 7–17.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(350) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog