Research article Special Issues

Effect of fermentation parameters on the antioxidant activity of Ecuadorian cocoa (Theobroma cacao L.)

  • Received: 08 May 2024 Revised: 25 June 2024 Accepted: 09 July 2024 Published: 02 September 2024
  • Cocoa (Theobroma cacao L.), indigenous to the tropical forests of the Americas, is renowned not only as the primary raw material for chocolate and its derivatives (cocoa liquor and butter) but also as a rich source of phytonutrients with beneficial health effects. Current research has elucidated that within the post-harvest process, fermentation stands as the critical stage for the formation of the principal biochemical quality markers in cocoa, known as polyphenols. These compounds contribute to the bitterness and astringency that constitute the complex flavor profile of chocolate; however, their excessive presence can be organoleptically undesirable. A high phenolic content (>10%) is associated with insufficient fermentation and certain varieties of ordinary cocoa, thereby serving as a discriminatory parameter between fine-flavor cocoa (Nacional) and bulk cocoa (CCN-51). Beyond their technological significance, these components have garnered substantial scientific interest, as polyphenol consumption is associated with potential protective effects against the development of non-communicable chronic diseases (including diabetes, cancer, and atherosclerosis), attributable to their potent antioxidant properties. In this context, the objective of this study was to evaluate the impact of fermentation time on the antioxidant capacity (AC) and total polyphenol content (TPC) in the principal Ecuadorian cocoa varieties (i.e., CCN-51 clone and Nacional). Pilot-scale fermentation experiments demonstrated significant variations in antioxidant capacity (CCN-51 clone: 785.61 to 1852.78 and Nacional: 564.32 to 1428.60 µmol TE/g) and total polyphenol content (CCN-51 clone: 52.92 to 162.82; Nacional: 40.55 to 157.50 mg gallic acid/g). Both parameters decreased markedly throughout the process, with the CCN-51 clone exhibiting greater retention.

    Citation: Orbe Chamorro Mayra, Luis- Armando Manosalvas-Quiroz, Nicolás Pinto Mosquera, Iván Samaniego. Effect of fermentation parameters on the antioxidant activity of Ecuadorian cocoa (Theobroma cacao L.)[J]. AIMS Agriculture and Food, 2024, 9(3): 872-886. doi: 10.3934/agrfood.2024047

    Related Papers:

  • Cocoa (Theobroma cacao L.), indigenous to the tropical forests of the Americas, is renowned not only as the primary raw material for chocolate and its derivatives (cocoa liquor and butter) but also as a rich source of phytonutrients with beneficial health effects. Current research has elucidated that within the post-harvest process, fermentation stands as the critical stage for the formation of the principal biochemical quality markers in cocoa, known as polyphenols. These compounds contribute to the bitterness and astringency that constitute the complex flavor profile of chocolate; however, their excessive presence can be organoleptically undesirable. A high phenolic content (>10%) is associated with insufficient fermentation and certain varieties of ordinary cocoa, thereby serving as a discriminatory parameter between fine-flavor cocoa (Nacional) and bulk cocoa (CCN-51). Beyond their technological significance, these components have garnered substantial scientific interest, as polyphenol consumption is associated with potential protective effects against the development of non-communicable chronic diseases (including diabetes, cancer, and atherosclerosis), attributable to their potent antioxidant properties. In this context, the objective of this study was to evaluate the impact of fermentation time on the antioxidant capacity (AC) and total polyphenol content (TPC) in the principal Ecuadorian cocoa varieties (i.e., CCN-51 clone and Nacional). Pilot-scale fermentation experiments demonstrated significant variations in antioxidant capacity (CCN-51 clone: 785.61 to 1852.78 and Nacional: 564.32 to 1428.60 µmol TE/g) and total polyphenol content (CCN-51 clone: 52.92 to 162.82; Nacional: 40.55 to 157.50 mg gallic acid/g). Both parameters decreased markedly throughout the process, with the CCN-51 clone exhibiting greater retention.



    加载中


    [1] Espín Susana & Samaniego Iván (2016) Manual para el análisis de parámetros químicos asociados a la calidad del cacao. Quito—Ecuador: Estación Experimental Santa Catalina- INIAP.
    [2] Arvelo M, González D, Steven A, et al. (2017) Manual Técnico del Cultivo de Cacao Prácticas Latinoamericanas. Available from: https://iica.int/es.
    [3] Barišić V, Kopjar M, Jozinović A, et al.(2019) The chemistry behind chocolate production. Molecules 24: 3163. https://doi.org/10.3390/molecules24173163 doi: 10.3390/molecules24173163
    [4] Beckett ST, Fowler MS, Ziegler GR (2017) Beckett's Industrial Chocolate Manufacture and Use. https://doi.org/10.1002/9781118923597
    [5] López Guerrero A (2017) Producción y Comercialización de Cacao Fino de Aroma en el Ecuador-Año 2012–2014. Available from: https://www.scpm.gob.ec/sitio/wp-content/uploads/2019/03/ESTUDIO-DEL-CACAO-IZ7-version-publica-ultima.pdf.
    [6] ISO 2451 (2017) Cocoa Beans Specification and Quality Requirements. Switzerland.
    [7] Becerra LD, Quintanilla-Carvajal MX, Escobar S, et al. (2023) Correlation between color parameters and bioactive compound content during cocoa seed transformation under controlled process conditions. Food Biosci 53: 102526. https://doi.org/10.1016/j.fbio.2023.102526 doi: 10.1016/j.fbio.2023.102526
    [8] Pallares Pallares A, Perea Villamil JA, López Giraldo LJ (2017) Influence of fermentation and drying processes in the aroma precursor compounds of cocoa beans (Theobroma cacao L) CCN-51. Respuestas 21: 120–133. https://doi.org/10.22463/0122820X.726 doi: 10.22463/0122820X.726
    [9] Haruna L, Abano EE, Teye E, et al. (2024) Effect of partial pulp removal and fermentation duration on drying behavior, nib acidification, fermentation quality, and flavor attributes of Ghanaian cocoa beans. J Agric Food Res 17: 101211. https://doi.org/10.1016/j.jafr.2024.101211 doi: 10.1016/j.jafr.2024.101211
    [10] Llerena W, Samaniego I, Vallejo C, et al. (2023) Profile of bioactive components of cocoa (Theobroma cacao L.) by-products from Ecuador and evaluation of their antioxidant activity. Foods 12: 2583. https://doi.org/10.3390/foods12132583 doi: 10.3390/foods12132583
    [11] Cortez D, Quispe-Sanchez L, Mestanza M, et al. (2023) Changes in bioactive compounds during fermentation of cocoa (Theobroma cacao) harvested in Amazonas-Peru. Curr Res Food Sci. 6: 100494. https://doi.org/10.1016/j.crfs.2023.100494 doi: 10.1016/j.crfs.2023.100494
    [12] Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantitation. Food Res Int 33: 423–447. https://doi.org/10.1016/S0963-9969(00)00068-5 doi: 10.1016/S0963-9969(00)00068-5
    [13] Onomo PE, Niemenak N, Djocgoue PF, et al. (2015) Heritability of polyphenols, anthocyanins, and antioxidant capacity of Cameroonian cocoa (Theobroma cacao L.) beans. Afr J Biotechnol 14: 2672–2682. https://doi.org/10.5897/AJB2015.14715 doi: 10.5897/AJB2015.14715
    [14] Urbańska B, Kowalska J (2019) Comparison of the total polyphenol content and antioxidant activity of chocolate obtained from roasted and unroasted cocoa beans from different regions of the world. Antioxidants 8: 283. https://doi.org/10.3390/antiox8080283 doi: 10.3390/antiox8080283
    [15] Caporaso N, Whitworth MB, Fowler MS, et al. (2018) Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content, and antioxidant activity in single cocoa beans. Food Chem 258: 343–351. https://doi.org/10.1016/j.foodchem.2018.03.039 doi: 10.1016/j.foodchem.2018.03.039
    [16] Borja-Fajardo JG, Horta-Tellez HB, Peñaloza-Atuesta GC, et al. (2022) Antioxidant activity, total polyphenol content, and methylxantine ratio in four materials of Theobroma cacao L. from Tolima, Colombia. Heliyon 8: e09402. https://doi.org/10.1016/j.heliyon.2022.e09402
    [17] Arrazate C, Villarreal J, Campos E, et al. (2011) Diagnóstico del cacao en México SINAREFI Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura.
    [18] do Carmo Brito BDN, Campos Chisté R, da Silva Pena R, et al. (2017) Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chem 228: 484–490. https://doi.org/10.1016/j.foodchem.2017.02.004 doi: 10.1016/j.foodchem.2017.02.004
    [19] Calvo AM, Botina BL, García MC, et al. (2021) Dynamics of cocoa fermentation and its effect on quality. Sci Rep Dec 11: 16746. https://doi.org/10.1038/s41598-021-95703-2 doi: 10.1038/s41598-021-95703-2
    [20] Moretti LK, Ramos KK, Ávila PF, et al. (2023) Influence of cocoa varieties on carbohydrate composition and enzymatic activity of cocoa pulp. Food Res Int 173: 113393. https://doi.org/10.1016/j.foodres.2023.113393 doi: 10.1016/j.foodres.2023.113393
    [21] Samaniego I, Espín S, Quiroz J, et al. (2020) Effect of the growing area on the methylxanthines and flavan-3-ols content in cocoa beans from Ecuador. J Food Compos Anal 88: 103448. https://doi.org/10.1016/j.jfca.2020.103448 doi: 10.1016/j.jfca.2020.103448
    [22] Quiroz-Vera J, Mestanza S, Parada-Vera N, et al. (2021) Catálogo de cultivares de cacao en Ecuador. 1era. Ed. 2021. Instituto Nacional de Investigaciones Agropecuarias. Boletín Técnico No. 449.
    [23] Melo TS, Pires TC, Engelmann JVP, et al. (2021) Evaluation of the content of bioactive compounds in cocoa beans during the fermentation process. J Food Sci Technol 58: 1947–1957. https://doi.org/10.1007/s13197-020-04706-w doi: 10.1007/s13197-020-04706-w
    [24] Menéndez-Cevallos LT, Burgos-Briones GA (2021) Efectos de la fermentación y secado en el contenido de polifenoles y alcaloides del cacao. Dominio De Las Ciencias 7: 1280–1304. http://dx.doi.org/10.23857/dc.v7i5.2310 doi: 10.23857/dc.v7i5.2310
    [25] Fang Y, Li R, Chu Z, et al. (2020) Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Sci Nutr 8: 4121–4133. https://doi.org/10.1002/fsn3.1701 doi: 10.1002/fsn3.1701
    [26] Tello Alonso S, Avendaño Arrazate CH, Vásquez Murrieta MS, et al. (2020) Contenido de compuestos bioactivos en Theobroma cacao L. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos.
    [27] Velásquez Reyes D, Gschaedler A, Kirchmayr M, et al. (2021) Cocoa bean turning as a method for redirecting the aroma compound profile in artisanal cocoa fermentation. Heliyon 7: e07694. https://doi.org/10.1016/j.heliyon.2021.e07694
    [28] Papalexandratou Z, Kaasik K, Kauffmann LV, et al. (2019) Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. Int J Food Microbiol 304: 106–118. https://doi.org/10.1016/j.ijfoodmicro.2019.05.012 doi: 10.1016/j.ijfoodmicro.2019.05.012
    [29] Instituto Ecuatoriano de Normalización. NTE INEN 176 (2018) Granos de cacao. requisitos cocoa beans requirements.
    [30] López M, Hernández E (2018) El proceso de fermentación del CACAO (Theobroma cacao L.). Agro Productividad 4: 20–24. Available from: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/572/441
    [31] De Vuyst L, Leroy F (2020) Functional role of yeasts, lactic acid bacteria, and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev 44: 432–453. https://doi.org/10.1093/femsre/fuaa014 doi: 10.1093/femsre/fuaa014
    [32] Sarbu I, Csutak O (2019) The microbiology of cocoa fermentation. In: Grumezescu AM, Holban AM (Eds.), Caffeinated and Cocoa Based Beverages, Volume 8: The Science of Beverages, Woodhead Publishing, 423–446. https://doi.org/10.1016/B978-0-12-815864-7.00013-1
    [33] Visintin S, Ramos L, Batista N, et al. (2017) Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. Int J Food Microbiol 257: 31–40. https://doi.org/10.1016/j.ijfoodmicro.2017.06.004 doi: 10.1016/j.ijfoodmicro.2017.06.004
    [34] Afoakwa EO, Quao J, Budu AS, et al. (2011) Effect of pulp preconditioning on acidification, proteolysis, sugars, and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans. Int J Food Sci Nutr 62: 755–764. https://doi.org/10.3109/09637486.2011.581224 doi: 10.3109/09637486.2011.581224
    [35] Chire GC, Verona PA, Guzmán JH (2016) Color changes during post-harvest of Peruvian cocoa beans from Piura. Ciencia e Investigación 19: 29–34. https://doi.org/10.15381/ci.v19i1.13625 doi: 10.15381/ci.v19i1.13625
    [36] Efraim P, Pezoa-Garcı́a N, Jardim D, et al. (2010) Influence of cocoa beans fermentation and drying on the polyphenol content and sensory acceptance. Food Sci Technol 30: 142–150. https://doi.org/10.1590/S0101-20612010000500022 doi: 10.1590/S0101-20612010000500022
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(389) PDF downloads(79) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog