This study aimed to evaluate the yield and chemical composition of essential oil (EO) and the growth parameters of Melissa officinalis L. (lemon balm) inoculated with arbuscular mycorrhizal fungi (AMF) under different rates of phosphorus (P). Treatments comprised a high and low P rate combined or not with inoculation of Rhizophagus clarus (C. Walker & A. Schüßler) or Claroideoglomus etunicatum (C. Walker & A. Schüßler), arranged according to a 2 × 3 factorial design with 8 replications. At 4 months after transplanting, shoot fresh and dry weights increased in both AMF-inoculated treatments under a low P rate. There was an increase in shoot P content with C. etunicatum inoculation under a high P rate. EO yields ranged from 0.04% to 0.12% and increased with R. clarus inoculation. Eighteen compounds were identified in EOs. The major components were geranial (43.96%–54.93%), neral (29.95%–34.66%), geraniol (3.11%–12.85%), and (E)-caryophyllene (2.62%–6.66%). It was concluded that AMF inoculation increased plant growth, improved EO yield, and modified EO composition. It is recommended to inoculate lemon balm with R. clarus under low P rates.
Citation: Mariana Moraes Pinc, Rossely Gimenes Baisch, Regiane Urcoviche Lastra, Camila da Silva, Ezilda Jacomassi, Odair Alberton. Bioprospecting of lemon balm (Melissa officinalis L.) inoculated with mycorrhiza under different rates of phosphorus for sustainable essential oil production[J]. AIMS Agriculture and Food, 2022, 7(4): 916-929. doi: 10.3934/agrfood.2022056
This study aimed to evaluate the yield and chemical composition of essential oil (EO) and the growth parameters of Melissa officinalis L. (lemon balm) inoculated with arbuscular mycorrhizal fungi (AMF) under different rates of phosphorus (P). Treatments comprised a high and low P rate combined or not with inoculation of Rhizophagus clarus (C. Walker & A. Schüßler) or Claroideoglomus etunicatum (C. Walker & A. Schüßler), arranged according to a 2 × 3 factorial design with 8 replications. At 4 months after transplanting, shoot fresh and dry weights increased in both AMF-inoculated treatments under a low P rate. There was an increase in shoot P content with C. etunicatum inoculation under a high P rate. EO yields ranged from 0.04% to 0.12% and increased with R. clarus inoculation. Eighteen compounds were identified in EOs. The major components were geranial (43.96%–54.93%), neral (29.95%–34.66%), geraniol (3.11%–12.85%), and (E)-caryophyllene (2.62%–6.66%). It was concluded that AMF inoculation increased plant growth, improved EO yield, and modified EO composition. It is recommended to inoculate lemon balm with R. clarus under low P rates.
[1] | Engel R, Szabó K, Abrankó L, et al. (2016) Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold. J Agric Food Chem 64: 3733–3742. https://doi.org/10.1021/acs.jafc.6b00408 doi: 10.1021/acs.jafc.6b00408 |
[2] | Beltrame SR, Cruz RMS, Lourenço ELB, et al. (2019) Meta-analysis of Lamiaceae and Euphorbiaceae medicinal plants inoculated with Arbuscular mycorrhizal fungi. Aust J Crop Sci 13: 588–598. |
[3] | Petrisor G, Motelica L, Craciun LN, et al. (2022) Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. Int J Mol Sci 23: 3591. https://doi.org/10.3390/ijms23073591 doi: 10.3390/ijms23073591 |
[4] | Lorenzi H, Matos FJA (2008) In: Plantas medicinais no Brasil: Nativas e exóticas, Nova Odessa: Plantarum. |
[5] | Shakeri A, Sahebkar A, Javadi B (2016) Melissa officinalis L.–A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 188: 204–228. https://doi.org/10.1016/j.jep.2016.05.010 doi: 10.1016/j.jep.2016.05.010 |
[6] | Boneza MM, Niermeyer ED (2018) Cultivar affects the phenolic composition and antioxidant properties of commercially available lemon balm (Melissa officinalis L.) varieties. Ind Crop Prod 112:783–789. https://doi.org/10.1016/j.indcrop.2018.01.003 doi: 10.1016/j.indcrop.2018.01.003 |
[7] | Chizzola R, Lohwasser U, Franz C (2018) Biodiversity within Melissa officinalis: Variability of bioactive compounds in a cultivated collection. Molecules 23: 294. https://doi.org/10.3390/molecules23020294 doi: 10.3390/molecules23020294 |
[8] | Abdel-Naime WA, Fahim JR, Fouad MA, et al. (2019) Antibacterial, antifungal, and GC–MS studies of Melissa officinalis. S Afr J Bot 124: 228–234. https://doi.org/10.1016/j.sajb.2019.05.011 doi: 10.1016/j.sajb.2019.05.011 |
[9] | Lee D, Shin Y, Jang J, et al. (2020) The herbal extract ALS-L1023 from Melissa officinalis alleviates visceral obesity and insulin resistance in obese female C57BL/6J mice. J Ethnopharmacol 253: 112646. https://doi.org/10.1016/j.jep.2020.112646 doi: 10.1016/j.jep.2020.112646 |
[10] | Smith SE, Read DJ (2008) In: Mycorrhizal Symbiosis, San Diego: Academic Press. |
[11] | Lermen C, Mohr FBM, Alberton O (2015). Growth of Cymbopogon citratus inoculated with mycorrhizal fungi under different levels of lead. Sci Hortic 186: 239–246. https://doi.org/10.1016/j.scienta.2015.02.029 doi: 10.1016/j.scienta.2015.02.029 |
[12] | Morelli F, Ferarrese L, Munhoz CL, et al. (2017) Antimicrobial activity of essential oil and growth of Ocimum basilicum (L.) inoculated with mycorrhiza and humic substances applied to soil. Genet Mol Res 16: gmr16039710. http://doi.org/10.4238/gmr16039710 |
[13] | Almeida DJ, Alberton O, Otênio JK, et al. (2020) Growth of chamomile (Matricaria chamomilla L.) and production of essential oil stimulated by arbuscular mycorrhizal symbiosis. Rhizosphere 15: 100208. https://doi.org/10.1016/j.rhisph.2020.100208 doi: 10.1016/j.rhisph.2020.100208 |
[14] | Cruz RMS, Alberton O, Lorencete MS, et al. (2020) Phytochemistry of Cymbopogon citratus (DC) Stapf inoculated with arbuscular mycorrhizal fungi and plant growth promoting bacteria. Ind Crop Prod 149: 112340. https://doi.org/10.1016/j.indcrop.2020.112340 doi: 10.1016/j.indcrop.2020.112340 |
[15] | Ferrari MPS, Cruz RMS, Queiroz MS, et al. (2020) Efficient ex vitro rooting, acclimatization, and cultivation of Curcuma longa L. from mycorrhizal fungi. J Crop Sci Biotechnol 23: 469–482. https://doi.org/10.1007/s12892-020-00057-2 doi: 10.1007/s12892-020-00057-2 |
[16] | Souza BC, Cruz RMS, Lourenço ELB, et al. (2022) Inoculation of lemongrass with arbuscular mycorrhizal fungi and rhizobacteria alters plant growth and essential oil production. Rhizosphere 22: 100514. https://doi.org/10.1016/j.rhisph.2022.100514 doi: 10.1016/j.rhisph.2022.100514 |
[17] | Assis RA, Carneiro JJ, Medeiros APR, et al. (2020) Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Ind Crop Prod 158: 112981. https://doi.org/10.1016/j.indcrop.2020.112981 doi: 10.1016/j.indcrop.2020.112981 |
[18] | Merlin E, Melato E, Lourenço ELB, et al. (2020) Inoculation of arbuscular mycorrhizal fungi and phosphorus addition increase coarse mint (Plectranthus amboinicus Lour.) plant growth and essential oil content. Rhizosphere 15: 100217. https://doi.org/10.1016/j.rhisph.2020.100217 doi: 10.1016/j.rhisph.2020.100217 |
[19] | Szabó K, Malekzadeh M, Radácsi P, et al. (2016) Could the variety influence the quantitative and qualitative outcome of lemon balm production? Ind Crop Prod 83: 710–716. https://doi.org/10.1016/j.indcrop.2015.12.027 doi: 10.1016/j.indcrop.2015.12.027 |
[20] | Karagiannidis N, Thomidis T, Lazari D, et al. (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci Hortic 129: 329–334. https://doi.org/10.1016/j.scienta.2011.03.043 doi: 10.1016/j.scienta.2011.03.043 |
[21] | Endlweber K, Scheu S (2006) Establishing arbuscular mycorrhiza-free soil: A comparison of six methods and their effects on nutrient mobilization. Appl Soil Ecol 34: 276–279. https://doi.org/10.1016/j.apsoil.2006.04.001 doi: 10.1016/j.apsoil.2006.04.001 |
[22] | Urcoviche RC, Gazim ZC, Dragunski DC, et al. (2015) Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Ind Crop Prod 67: 103–107. https://doi.org/10.1016/j.indcrop.2015.01.016 doi: 10.1016/j.indcrop.2015.01.016 |
[23] | Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Califnia Agric Exp St Cric 347: 1–32. |
[24] | Silva CF (2009) In: Manual de análises químicas de solos, plantas e fertilizantes, 2 Eds., Brasília DF: Embrapa. |
[25] | Lermen C, Cruz RMS, Souza JS, et al. (2017) Growth of Lippia alba (Mill.) NE Brown inoculated with arbuscular mycorrhizal fungi with different levels of humic substances and phosphorus in the soil. J Appl Res Med Aroma 7: 48–53. https://doi.org/10.1016/j.jarmap.2017.05.002 doi: 10.1016/j.jarmap.2017.05.002 |
[26] | Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46: 235–246. https://doi.org/10.1016/S0007-1536(63)80079-0 doi: 10.1016/S0007-1536(63)80079-0 |
[27] | Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158–161. https://doi.org/10.1016/S0007-1536(70)80110-3 doi: 10.1016/S0007-1536(70)80110-3 |
[28] | Giovannetti M, Mosse BA (1980) Evaluation of techniques for measuring VA mycorrhizal infection in roots. New Phytol 84: 489–500. http://www.jstor.org/stable/2432123 |
[29] | Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19: 703–707. https://doi.org/10.1016/0038-0717(87)90052-6 doi: 10.1016/0038-0717(87)90052-6 |
[30] | Tate KR, Ross DJ, Feltham CW (1988) A direct extraction method to estimate soil microbial-C: Effects of experimental variables and some different calibration procedures. Soil Biol Biochem 20: 329–335. https://doi.org/10.1016/0038-0717(88)90013-2 doi: 10.1016/0038-0717(88)90013-2 |
[31] | Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil–V: A method for measuring soil biomass. Soil Biol Biochem 8: 209–213. https://doi.org/10.1016/0038-0717(76)90005-5 doi: 10.1016/0038-0717(76)90005-5 |
[32] | Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25: 393–395. https://doi.org/10.1016/0038-0717(93)90140-7 doi: 10.1016/0038-0717(93)90140-7 |
[33] | Cruz RMS, Alberton O, Lorencete MS, et al. (2020) Phytochemistry of Cymbopogon citratus (D.C.) Stapf inoculated with arbuscular mycorrhizal fungi and plant growth promoting bacteria. Ind Crop Prod 149: 112340. https://doi.org/10.1016/j.indcrop.2020.112340 doi: 10.1016/j.indcrop.2020.112340 |
[34] | StatSoft (2017) Electronic statistics textbook, Tulsa, OK: StatSoft. Available from: http://www.statsoft.com/textbook/. |
[35] | Adams RP (2012) In: Identification of essential oil components by Gas Chromatography/Mass Spectrometry, 4 Eds., Illinois: Allued Books. |
[36] | Salgado FHM, Moreira FMDS, Paulino HB, et al. (2016) Fungos micorrízicos arbusculares e estimulante micorrízico afetam a massa seca e o acúmulo de nutrientes em feijoeiro e soja. Pesqui Agropecu Trop 46: 367–373. https://doi.org/10.1590/1983-40632016v4640282 doi: 10.1590/1983-40632016v4640282 |
[37] | Silva MB, Oliver FC, Cruz RMS et al. (2017) Resposta do fungo micorrízico arbuscular Rhizophagus clarus e adiçã o de substâ ncias húmicas no crescimento do tomateiro (Solanum lycopersicum L.). Sci Agrár 18: 123–130. http://doi.org/10.5380/rsa.v18i3.52888 |
[38] | Shamizi N, Yarnia M, Mohebalipour N, et al. (2022) The effect of mycorrhizal species on the growth, essential oils, yield and morpho-physiological parameters of Lemon Balm (Melissa officinalis L.) under water-deficit conditions in Tabriz region. Plant Sci Today 9: 228–235. https://doi.org/10.14719/pst.1338 doi: 10.14719/pst.1338 |
[39] | Carneiro MAC, Siqueira JO, Davide AC (2004) Fósforo e inoculaçã o com fungos micorrízicos arbusculares no estabelecimento de mudas de embaúba (Cecropia pachystachya Trec). Pesqui Agropecu Trop 34: 119–125. |
[40] | Lermen C, Cruz RMS, Gonçalves CHS, et al. (2019) Growth of lemongrass (Cymbopogon citratus (DC) Stapf) inoculated with arbuscular mycorrhizal fungi (Rhizophagus clarus and Claroideoglomus etunicatum) under contrasting phosphorus levels. Aust J Crop Sci 13: 266–271. https://search.informit.org/doi/10.3316/informit.352019797826501 |
[41] | Balota EL, Machineski O, Matos MA (2012) Soil microbial biomass under different tillage and levels of applied pig slurry. Rev Bras Eng Agríc Ambient 16: 487–495. https://doi.org/10.1590/S1415-43662012000500004 doi: 10.1590/S1415-43662012000500004 |
[42] | Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42: 1–13. https://doi.org/10.1016/j.soilbio.2009.08.020 doi: 10.1016/j.soilbio.2009.08.020 |
[43] | Sodré ACB, Luz JMQ, Haber LL, et al. (2012) Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis) essential oil. Rev Bras Farmacogn 22: 40–44. https://doi.org/10.1590/S0102-695X2011005000186 doi: 10.1590/S0102-695X2011005000186 |
[44] | Cruz RMS, Cruz GLS, Dragunski DC, et al. (2019) Inoculation with arbuscular mycorrhizal fungi alters content and composition of essential oil of Sage (Salvia officinalis) under different phosphorous levels. Aust J Crop Sci 13: 1617–1624. https://search.informit.org/doi/10.3316/informit.928132635693125 |
[45] | Abdellatif F, Akram M, Begaa S, et al. (2021) Minerals, essential oils, and biological properties of Melissa officinalis L. Plants 10: 1066. https://doi.org/10.3390/plants10061066 doi: 10.3390/plants10061066 |
[46] | Silva TC, Bertolucci SK, Carvalho AA, et al. (2021) Macroelement omission in hydroponic systems changes plant growth and chemical composition of Melissa officinalis L. essential oil. J Appl Res Med Aroma 24: 100297. https://doi.org/10.1016/j.jarmap.2021.100297 doi: 10.1016/j.jarmap.2021.100297 |
[47] | Chrysargyris A, Petropoulos SA, Tzortzakis N (2022) Essential oil composition and bioactive properties of lemon balm aerial parts as affected by cropping system and irrigation regime. Agronomy 12: 649. https://doi.org/10.3390/agronomy12030649 doi: 10.3390/agronomy12030649 |
[48] | Behbahani AB, Shahidi F (2019) Melissa officinalis essential oil: Chemical compositions, antioxidant potential, total phenolic content and antimicrobial activity. Nut Food Sci Res 6: 17–25. https://doi.org/10.29252/nfsr.6.1.17 doi: 10.29252/nfsr.6.1.17 |
[49] | Saddiq AA, Khayyat SA (2010) Chemical and antimicrobial studies of monoterpene: Citral. Pestic Biochem Phys 98: 89–93. https://doi.org/10.1016/j.pestbp.2010.05.004 doi: 10.1016/j.pestbp.2010.05.004 |