Review

Deep brain stimulation, lesioning, focused ultrasound: update on utility

  • Received: 15 March 2023 Revised: 13 April 2023 Accepted: 23 April 2023 Published: 26 April 2023
  • Procedures for neurological disorders such as Parkinsons Disease (PD), Essential Tremor (ET), Obsessive Compulsive Disorder (OCD), Tourette's Syndrome (TS), and Major Depressive Disorder (MDD) tend to overlap. Common therapeutic procedures include deep brain stimulation (DBS), lesioning, and focused ultrasound (FUS). There has been significant change and innovation regarding targeting mechanisms and new advancements in this field allowing for better clinical outcomes in patients with severe cases of these conditions. In this review, we discuss advancements and recent discoveries regarding these three procedures and how they have led to changes in utilization in certain conditions. We further discuss the advantages and drawbacks of these treatments in certain conditions and the emerging advancements in brain-computer interface (BCI) and its utility as a therapeutic for neurological disorders.

    Citation: Akshay Reddy, Mohammad Reza Hosseini, Aashay Patel, Ramy Sharaf, Vishruth Reddy, Arman Tabarestani, Brandon Lucke-Wold. Deep brain stimulation, lesioning, focused ultrasound: update on utility[J]. AIMS Neuroscience, 2023, 10(2): 87-108. doi: 10.3934/Neuroscience.2023007

    Related Papers:

  • Procedures for neurological disorders such as Parkinsons Disease (PD), Essential Tremor (ET), Obsessive Compulsive Disorder (OCD), Tourette's Syndrome (TS), and Major Depressive Disorder (MDD) tend to overlap. Common therapeutic procedures include deep brain stimulation (DBS), lesioning, and focused ultrasound (FUS). There has been significant change and innovation regarding targeting mechanisms and new advancements in this field allowing for better clinical outcomes in patients with severe cases of these conditions. In this review, we discuss advancements and recent discoveries regarding these three procedures and how they have led to changes in utilization in certain conditions. We further discuss the advantages and drawbacks of these treatments in certain conditions and the emerging advancements in brain-computer interface (BCI) and its utility as a therapeutic for neurological disorders.



    加载中


    Conflict of interest



    The authors declare no conflict of interest.

    [1] Benabid AL (2003) Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol 13: 696-706. https://doi.org/10.1016/j.conb.2003.11.001
    [2] Dougherty DD (2018) Deep Brain Stimulation: Clinical Applications. Psychiatr Clin North Am 41: 385-394. https://doi.org/10.1016/j.psc.2018.04.004
    [3] Hales K What is the process for DBS surgery? Neurology Solutions. Published September 14 (2016). Accessed December 4, 2022. https://www.neurologysolutions.com/process-for-dbs-surgery/
    [4] Fariba KA, Gupta V (2022) Deep Brain Stimulation. StatPearls.StatPearls Publishing. Accessed December 4, 2022. http://www.ncbi.nlm.nih.gov/books/NBK557847/
    [5] Muthuraman M, Koirala N, Ciolac D, et al. (2018) Deep Brain Stimulation and L-DOPA Therapy: Concepts of Action and Clinical Applications in Parkinson's Disease. Front Neurol 9. Accessed December 4, 2022. https://doi.org/10.3389/fneur.2018.00711
    [6] Elias WJ, Lipsman N, Ondo WG, et al. (2016) A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med 375: 730-739. https://doi.org/10.1056/NEJMoa1600159
    [7] Frighetto L, Bizzi J, Silva RS, et al. (2012) Stereotactic radiosurgery for movement disorders. Surg Neurol Int 3: 10. https://doi.org/10.4103/2152-7806.91605
    [8] Schlesinger I, Eran A, Sinai A, et al. (2015) MRI Guided Focused Ultrasound Thalamotomy for Moderate-to-Severe Tremor in Parkinson's Disease. Park Dis 2015: 1-4. https://doi.org/10.1155/2015/219149
    [9] Phenix CP, Togtema M, Pichardo S, et al. (2014) High Intensity Focused Ultrasound Technology, its Scope and Applications in Therapy and Drug Delivery. J Pharm Pharm Sci 17: 136-153. https://doi.org/10.18433/J3ZP5F
    [10] Bachu VS, Kedda J, Suk I, et al. (2021) High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng 49: 1975-1991. https://doi.org/10.1007/s10439-021-02833-9
    [11] Elias WJ, Kassell NF (2012) Introduction in: Neurosurgical Focus. J Neurosurg 32. https://doi.org/10.3171/2011.11.FOCUS11317
    [12] Napoli A, Alfieri G, Scipione R, et al. (2020) High-intensity focused ultrasound for prostate cancer. Expert Rev Med Devices 17: 427-433. https://doi.org/10.1080/17434440.2020.1755258
    [13] Alekou T, Giannakou M, Damianou C (2021) Focused ultrasound phantom model for blood brain barrier disruption. Ultrasonics 110: 106244. https://doi.org/10.1016/j.ultras.2020.106244
    [14] Gavrilov LR (1984) Use of focused ultrasound for stimulation of nerve structures. Ultrasonics 22: 132-138. https://doi.org/10.1016/0041-624X(84)90008-8
    [15] Sriram S, Root K, Chacko K, et al. (2022) Surgical Management of Synucleinopathies. Biomedicines 10: 2657. https://doi.org/10.3390/biomedicines10102657
    [16] Shanker V (2019) Essential tremor: diagnosis and management. BMJ 366: l4485. https://doi.org/10.1136/bmj.l4485
    [17] Hayes MT (2019) Parkinson's Disease and Parkinsonism. Am J Med 132: 802-807. https://doi.org/10.1016/j.amjmed.2019.03.001
    [18] Beitz JM (2014) Parkinson's disease: a review. Front Biosci S6: 65-74. https://doi.org/10.2741/S415
    [19] Kalia LV, Lang AE (2015) Parkinson's disease. The Lancet 386: 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
    [20] Dauer W, Przedborski S (2003) Parkinson's Disease. Neuron 39: 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
    [21] Rizek P, Kumar N, Jog MS (2016) An update on the diagnosis and treatment of Parkinson disease. Can Med Assoc J 188: 1157-1165. https://doi.org/10.1503/cmaj.151179
    [22] Odekerken VJJ, Boel JA, Schmand BA, et al. (2016) GPi vs STN deep brain stimulation for Parkinson disease: Three-year follow-up. Neurology 86: 755-761. https://doi.org/10.1212/WNL.0000000000002401
    [23] Volkmann J (2004) Deep Brain Stimulation for the Treatment of Parkinson's Disease. J Clin Neurophysiol 21: 6-17. https://doi.org/10.1097/00004691-200401000-00003
    [24] Odekerken VJ, van Laar T, Staal MJ, et al. (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 12: 37-44. https://doi.org/10.1016/S1474-4422(12)70264-8
    [25] Anderson VC, Burchiel KJ, Hogarth P, et al. (2005) Pallidal vs Subthalamic Nucleus Deep Brain Stimulation in Parkinson Disease. Arch Neurol 62: 554. https://doi.org/10.1001/archneur.62.4.554
    [26] Follett KA, Weaver FM, Stern M, et al. (2010) Pallidal versus Subthalamic Deep-Brain Stimulation for Parkinson's Disease. N Engl J Med 362: 2077-2091. https://doi.org/10.1056/NEJMoa0907083
    [27] Mansouri A, Taslimi S, Badhiwala JH, et al. (2018) Deep brain stimulation for Parkinson's disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg 128: 1199-1213. https://doi.org/10.3171/2016.11.JNS16715
    [28] Weaver FM, Follett KA, Stern M, et al. (2012) Randomized trial of deep brain stimulation for Parkinson disease: Thirty-six-month outcomes. Neurology 79: 55-65. https://doi.org/10.1212/WNL.0b013e31825dcdc1
    [29] Alesch F, Pinter MM, Helscher RJ, et al. (1995) Stimulation of the ventral intermediate thalamic nucleus in tremor dominated Parkinson's disease and essential tremor. Acta Neurochir (Wien) 136: 75-81. https://doi.org/10.1007/BF01411439
    [30] Tsuboi T, Jabarkheel Z, Zeilman PR, et al. (2020) Longitudinal follow-up with VIM thalamic deep brain stimulation for dystonic or essential tremor. Neurology 94: e1073-e1084. https://doi.org/10.1212/WNL.0000000000008875
    [31] Wong JK, Cauraugh JH, Ho KWD, et al. (2019) STN vs. GPi deep brain stimulation for tremor suppression in Parkinson disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 58: 56-62. https://doi.org/10.1016/j.parkreldis.2018.08.017
    [32] Benabid AL (2003) Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol 13: 696-706. https://doi.org/10.1016/j.conb.2003.11.001
    [33] Little S, Beudel M, Zrinzo L, et al. (2016) Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. J Neurol Neurosurg Psychiatry 87: 717-721. https://doi.org/10.1136/jnnp-2015-310972
    [34] Jourdain VA, Schechtmann G (2014) Health Economics and Surgical Treatment for Parkinson's Disease in a World Perspective: Results from an International Survey. Stereotact Funct Neurosurg 92: 71-79. https://doi.org/10.1159/000355215
    [35] Sharma VD, Patel M, Miocinovic S (2020) Surgical Treatment of Parkinson's Disease: Devices and Lesion Approaches. Neurotherapeutics 17: 1525-1538. https://doi.org/10.1007/s13311-020-00939-x
    [36] Walters H, Shah BB (2019) Focused Ultrasound and Other Lesioning Therapies in Movement Disorders. Curr Neurol Neurosci Rep 19: 66. https://doi.org/10.1007/s11910-019-0975-2
    [37] Franzini A, Moosa S, Prada F, et al. (2020) Ultrasound Ablation in Neurosurgery: Current Clinical Applications and Future Perspectives. Neurosurgery 87: 1-10. https://doi.org/10.1093/neuros/nyz407
    [38] Alvarez L, Macias R, Guridi J, et al. (2001) Dorsal subthalamotomy for Parkinson's disease. Mov Disord 16: 72-78. https://doi.org/10.1002/1531-8257(200101)16:1<72::AID-MDS1019>3.0.CO;2-6
    [39] Barlas O, Hanagasi HA, imer M, et al. (2001) Do unilateral ablative lesions of the subthalamic nucleu in parkinsonian patients lead to hemiballism?. Mov Disord 16: 306-310. https://doi.org/10.1002/mds.1051
    [40] Patel NK, Heywood P, O'Sullivan K, et al. (2003) Unilateral subthalamotomy in the treatment of Parkinson's disease. Brain 126: 1136-1145. https://doi.org/10.1093/brain/awg111
    [41] Bond AE, Shah BB, Huss DS, et al. (2017) Safety and Efficacy of Focused Ultrasound Thalamotomy for Patients With Medication-Refractory, Tremor-Dominant Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol 74: 1412. https://doi.org/10.1001/jamaneurol.2017.3098
    [42] Tarakad A, Jankovic J (2019) Essential Tremor and Parkinson's Disease: Exploring the Relationship. Tremor Hyperkinetic Mov 8: 589. https://doi.org/10.5334/tohm.441
    [43] Gironell A (2014) The GABA Hypothesis in Essential Tremor: Lights and Shadows. Tremor Hyperkinetic Mov 4: 254. https://doi.org/10.5334/tohm.229
    [44] Helmich RC, Toni I, Deuschl G, et al. (2013) The Pathophysiology of Essential Tremor and Parkinson's Tremor. Curr Neurol Neurosci Rep 13: 378. https://doi.org/10.1007/s11910-013-0378-8
    [45] Rajput AH, Rajput A (2014) Medical Treatment of Essential Tremor. J Cent Nerv Syst Dis 6: JCNSD.S13570. https://doi.org/10.4137/JCNSD.S13570
    [46] Opri E, Cernera S, Molina R, et al. (2020) Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci Transl Med 12: eaay7680. https://doi.org/10.1126/scitranslmed.aay7680
    [47] Kübler D, Kroneberg D, Al-Fatly B, et al. (2021) Determining an efficient deep brain stimulation target in essential tremor - Cohort study and review of the literature. Parkinsonism Relat Disord 89: 54-62. https://doi.org/10.1016/j.parkreldis.2021.06.019
    [48] Kundu B, Schrock L, Davis T, et al. (2018) Thalamic Deep Brain Stimulation for Essential Tremor Also Reduces Voice Tremor. Neuromodulation Technol Neural Interface 21: 748-754. https://doi.org/10.1111/ner.12739
    [49] Barbe MT, Reker P, Hamacher S, et al. (2018) DBS of the PSA and the VIM in essential tremor: A randomized, double-blind, crossover trial. Neurology 91: e543-e550. https://doi.org/10.1212/WNL.0000000000005956
    [50] Iorio-Morin C, Fomenko A, Kalia SK (2020) Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes. Brain Sci 10: 925. https://doi.org/10.3390/brainsci10120925
    [51] Ramirez-Zamora A, Smith H, Kumar V, et al. (2016) Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations. Stereotact Funct Neurosurg 94: 283-297. https://doi.org/10.1159/000449007
    [52] Lu G, Luo L, Liu M, et al. (2020) Outcomes and Adverse Effects of Deep Brain Stimulation on the Ventral Intermediate Nucleus in Patients with Essential Tremor. Neural Plast 2020: 1-13. https://doi.org/10.1155/2020/2486065
    [53] Binder DK, Shah BB, Elias WJ (2022) Focused ultrasound and other lesioning in the treatment of tremor. J Neurol Sci 435: 120193. https://doi.org/10.1016/j.jns.2022.120193
    [54] Boutet A, Ranjan M, Zhong J, et al. (2018) Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain 141: 3405-3414. https://doi.org/10.1093/brain/awy278
    [55] Jameel A, Gedroyc W, Nandi D, et al. (2022) Double lesion MRgFUS treatment of essential tremor targeting the thalamus and posterior sub-thalamic area: preliminary study with two year follow-up. Br J Neurosurg 36: 241-250. https://doi.org/10.1080/02688697.2021.1958150
    [56] Park Y, Jung NY, Na YC, et al. (2019) Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor. Mov Disord 34: 727-734. https://doi.org/10.1002/mds.27637
    [57] Veale D, Roberts A (2014) Obsessive-compulsive disorder. BMJ 348: g2183-g2183. https://doi.org/10.1136/bmj.g2183
    [58] Fenske JN, Petersen K (2015) Obsessive-Compulsive Disorder: Diagnosis and Management. Am Fam Physician 92: 896-903.
    [59] Richter PMA, Ramos RT (2018) Obsessive-Compulsive Disorder. Contin Lifelong Learn Neurol 24: 828-844. https://doi.org/10.1212/CON.0000000000000603
    [60] Nakao T, Okada K, Kanba S (2014) Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings: Review of neurobiology for OCD. Psychiatry Clin Neurosci 68: 587-605. https://doi.org/10.1111/pcn.12195
    [61] Pittenger C, Bloch MH (2014) Pharmacological Treatment of Obsessive-Compulsive Disorder. Psychiatr Clin North Am 37: 375-391. https://doi.org/10.1016/j.psc.2014.05.006
    [62] McKay D, Sookman D, Neziroglu F, et al. (2015) Efficacy of cognitive-behavioral therapy for obsessive–compulsive disorder. Psychiatry Res 225: 236-246. https://doi.org/10.1016/j.psychres.2014.11.058
    [63] Rowa K, Antony MM, Swinson RP (2007) Exposure and Response Prevention. Psychological Treatment of Obsessive-Compulsive Disorder: Fundamentals and Beyond.American Psychological Association 79-109. https://doi.org/10.1037/11543-004
    [64] Doshi P (2009) Surgical treatment of obsessive compulsive disorders: Current status. Indian J Psychiatry 51: 216. https://doi.org/10.4103/0019-5545.55095
    [65] Nuttin B, Cosyns P, Demeulemeester H, et al. (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. The Lancet 354: 1526. https://doi.org/10.1016/S0140-6736(99)02376-4
    [66] Goodman WK, Foote KD, Greenberg BD, et al. (2010) Deep Brain Stimulation for Intractable Obsessive Compulsive Disorder: Pilot Study Using a Blinded, Staggered-Onset Design. Biol Psychiatry 67: 535-542. https://doi.org/10.1016/j.biopsych.2009.11.028
    [67] Karas PJ, Lee S, Jimenez-Shahed J, et al. (2019) Deep Brain Stimulation for Obsessive Compulsive Disorder: Evolution of Surgical Stimulation Target Parallels Changing Model of Dysfunctional Brain Circuits. Front Neurosci 12: 998. https://doi.org/10.3389/fnins.2018.00998
    [68] Alonso P, Cuadras D, Gabriëls L, et al. (2015) Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Meta-Analysis of Treatment Outcome and Predictors of Response. Sgambato-Faure V, ed. PLOS ONE 10: e0133591. https://doi.org/10.1371/journal.pone.0133591
    [69] de Koning PP, Figee M, van den Munckhof P, et al. (2011) Current Status of Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Clinical Review of Different Targets. Curr Psychiatry Rep 13: 274-282. https://doi.org/10.1007/s11920-011-0200-8
    [70] Senova S, Clair AH, Palfi S, et al. (2019) Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front Psychiatry 10: 905. https://doi.org/10.3389/fpsyt.2019.00905
    [71] Menchón JM, Real E, Alonso P, et al. (2021) A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsive disorder. Mol Psychiatry 26: 1234-1247. https://doi.org/10.1038/s41380-019-0562-6
    [72] Kim SJ, Roh D, Jung HH, et al. (2018) A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive–compulsive disorder: 2-year follow-up. J Psychiatry Neurosci 43: 327-337. https://doi.org/10.1503/jpn.170188
    [73] Williams NR, Okun MS (2013) Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest 123: 4546-4556. https://doi.org/10.1172/JCI68341
    [74] Fernandez HH, Galvez-Jimenez N, Galvez-Jimenez N (2012) Tics and Tourette syndrome: An adult perspective. Cleve Clin J Med 79: S35-S39. https://doi.org/10.3949/ccjm.79.s2a.07
    [75] Kenney C, Kuo SH, Jimenez-Shahed J (2008) Tourette's syndrome. Am Fam Physician 77: 651-658.
    [76] Xu W, Zhang C, Deeb W, et al. (2020) Deep brain stimulation for Tourette's syndrome. Transl Neurodegener 9: 4. https://doi.org/10.1186/s40035-020-0183-7
    [77] Cury RG, Lopez WOC, Dos Santos Ghilardi MG, et al. (2016) Parallel improvement in anxiety and tics after DBS for medically intractable Tourette syndrome: A long-term follow-up. Clin Neurol Neurosurg 144: 33-35. https://doi.org/10.1016/j.clineuro.2016.02.030
    [78] Testini P, Zhao CZ, Stead M, et al. (2016) Centromedian-Parafascicular Complex Deep Brain Stimulation for Tourette Syndrome: A Retrospective Study. Mayo Clin Proc 91: 218-225. https://doi.org/10.1016/j.mayocp.2015.11.016
    [79] Ji GJ, Liao W, Yu Y, et al. (2016) Globus Pallidus Interna in Tourette Syndrome: Decreased Local Activity and Disrupted Functional Connectivtiy. Front Neuroanat 10. https://doi.org/10.3389/fnana.2016.00093
    [80] Kefalopoulou Z, Zrinzo L, Jahanshahi M, et al. (2015) Bilateral globus pallidus stimulation for severe Tourette's syndrome: a double-blind, randomised crossover trial. Lancet Neurol 14: 595-605. https://doi.org/10.1016/S1474-4422(15)00008-3
    [81] Otte C, Gold SM, Penninx BW, et al. (2016) Major depressive disorder. Nat Rev Dis Primer 2: 16065. https://doi.org/10.1038/nrdp.2016.65
    [82] Abdoli N, Salari N, Darvishi N, et al. (2022) The global prevalence of major depressive disorder (MDD) among the elderly: A systematic review and meta-analysis. Neurosci Biobehav Rev 132: 1067-1073. https://doi.org/10.1016/j.neubiorev.2021.10.041
    [83] Otte C, Gold SM, Penninx BW, et al. (2016) Major depressive disorder. Nat Rev Dis Primer 2: 16065. https://doi.org/10.1038/nrdp.2016.65
    [84] Hamilton JP, Etkin A, Furman DJ, et al. (2012) Functional Neuroimaging of Major Depressive Disorder: A Meta-Analysis and New Integration of Baseline Activation and Neural Response Data. Am J Psychiatry 169: 693-703. https://doi.org/10.1176/appi.ajp.2012.11071105
    [85] Karrouri R, Hammani Z, Benjelloun R, et al. (2021) Major depressive disorder: Validated treatments and future challenges. World J Clin Cases 9: 9350-9367. https://doi.org/10.12998/wjcc.v9.i31.9350
    [86] Wu Y, Mo J, Sui L, et al. (2021) Deep Brain Stimulation in Treatment-Resistant Depression: A Systematic Review and Meta-Analysis on Efficacy and Safety. Front Neurosci 15: 655412. https://doi.org/10.3389/fnins.2021.655412
    [87] Holtzheimer PE (2012) Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Unipolar and Bipolar Depression. Arch Gen Psychiatry 69: 150. https://doi.org/10.1001/archgenpsychiatry.2011.1456
    [88] Malone DA, Dougherty DD, Rezai AR, et al. (2009) Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Treatment-Resistant Depression. Biol Psychiatry 65: 267-275. https://doi.org/10.1016/j.biopsych.2008.08.029
    [89] Fenoy AJ, Quevedo J, Soares JC (2022) Deep brain stimulation of the “medial forebrain bundle”: a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 27: 574-592. https://doi.org/10.1038/s41380-021-01100-6
    [90] Mustroph ML, Cosgrove GR, Williams ZM (2022) The Evolution of Modern Ablative Surgery for the Treatment of Obsessive-Compulsive and Major Depression Disorders. Front Integr Neurosci 16: 797533. https://doi.org/10.3389/fnint.2022.797533
    [91] Volpini M, Giacobbe P, Cosgrove GR, et al. (2017) The History and Future of Ablative Neurosurgery for Major Depressive Disorder. Stereotact Funct Neurosurg 95: 216-228. https://doi.org/10.1159/000478025
    [92] Kim M, Kim CH, Jung HH, et al. (2018) Treatment of Major Depressive Disorder via Magnetic Resonance–Guided Focused Ultrasound Surgery. Biol Psychiatry 83: e17-e18. https://doi.org/10.1016/j.biopsych.2017.05.008
    [93] Krauss JK, Lipsman N, Aziz T, et al. (2021) Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 17: 75-87. https://doi.org/10.1038/s41582-020-00426-z
    [94] Colen RR, Sahnoune I, Weinberg JS (2017) Neurosurgical applications of high-intensity focused ultrasound with magnetic resonance thermometry. Neurosurg Clin 28: 559-567. https://doi.org/10.1016/j.nec.2017.05.008
    [95] Esselink R, De Bie R, De Haan R, et al. (2004) Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: a randomized trial. Neurology 62: 201-207. https://doi.org/10.1212/01.WNL.0000103235.12621.C3
    [96] Meissner W, Schreiter D, Volkmann J, et al. (2005) Deep brain stimulation in late stage Parkinson's disease: a retrospective cost analysis in Germany. J Neurol 252: 218-223. https://doi.org/10.1007/s00415-005-0640-3
    [97] Charles PD, Padaliya BB, Newman WJ, et al. (2004) Deep brain stimulation of the subthalamic nucleus reduces antiparkinsonian medication costs. Parkinsonism Relat Disord 10: 475-479. https://doi.org/10.1016/j.parkreldis.2004.05.006
    [98] Deeb W, Giordano JJ, Rossi PJ, et al. (2016) Proceedings of the fourth annual deep brain stimulation think tank: a review of emerging issues and technologies. Front Integr Neurosci 10: 38. https://doi.org/10.3389/fnint.2016.00038
    [99] Cagnan H, Denison T, McIntyre C, et al. (2019) Emerging technologies for improved deep brain stimulation. Nat Biotechnol 37: 1024-1033. https://doi.org/10.1038/s41587-019-0244-6
    [100] Voges J, Waerzeggers Y, Maarouf M, et al. (2006) Deep-brain stimulation: long-term analysis of complications caused by hardware and surgery—experiences from a single centre. J Neurol Neurosurg Psychiatry 77: 868-872. https://doi.org/10.1136/jnnp.2005.081232
    [101] Farris S, Giroux M (2011) Deep brain stimulation: a review of the procedure and the complications. JAAPA 24: 39-45. https://doi.org/10.1097/01720610-201102000-00007
    [102] Sixel-Döring F, Trenkwalder C, Kappus C, et al. (2010) Skin complications in deep brain stimulation for Parkinson's disease: frequency, time course, and risk factors. Acta Neurochir (Wien) 152: 195-200. https://doi.org/10.1007/s00701-009-0490-3
    [103] Lanotte M, Verna G, Panciani PP, et al. (2009) Management of skin erosion following deep brain stimulation. Neurosurg Rev 32: 111-115. https://doi.org/10.1007/s10143-008-0158-0
    [104] Hong B, Winkel A, Stumpp N, et al. (2019) Detection of bacterial DNA on neurostimulation systems in patients without overt infection. Clin Neurol Neurosurg 184: 105399. https://doi.org/10.1016/j.clineuro.2019.105399
    [105] Piacentino M, Pilleri M, Bartolomei L (2011) Hardware-related infections after deep brain stimulation surgery: review of incidence, severity and management in 212 single-center procedures in the first year after implantation. Acta Neurochir (Wien) 153: 2337-2341. https://doi.org/10.1007/s00701-011-1130-2
    [106] Tarakji KG, Mittal S, Kennergren C, et al. (2019) Antibacterial envelope to prevent cardiac implantable device infection. N Engl J Med 380: 1895-1905. https://doi.org/10.1056/NEJMoa1901111
    [107] Miller PM, Gross RE (2009) Wire tethering or ‘bowstringing’ as a long-term hardware-related complication of deep brain stimulation. Stereotact Funct Neurosurg 87: 353-359. https://doi.org/10.1159/000236369
    [108] Lyons KE, Wilkinson SB, Overman J, et al. (2004) Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures. Neurology 63: 612-616. https://doi.org/10.1212/01.WNL.0000134650.91974.1A
    [109] Blomstedt P, Hariz M (2005) Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir (Wien) 147: 1061-1064. https://doi.org/10.1007/s00701-005-0576-5
    [110] Temel Y, Kessels A, Tan S, et al. (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12: 265-272. https://doi.org/10.1016/j.parkreldis.2006.01.004
    [111] Okun MS, Tagliati M, Pourfar M, et al. (2005) Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol 62: 1250-1255. https://doi.org/10.1001/archneur.62.8.noc40425
    [112] Walters H, Shah BB (2019) Focused ultrasound and other lesioning therapies in movement disorders. Curr Neurol Neurosci Rep 19: 1-7. https://doi.org/10.1007/s11910-019-0975-2
    [113] Lev-Tov L, Barbosa DA, Ghanouni P, et al. (2022) Focused ultrasound for functional neurosurgery. J Neurooncol 156: 17-22. https://doi.org/10.1007/s11060-021-03818-3
    [114] Arvanitis CD, Vykhodtseva N, Jolesz F, et al. (2016) Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model. J Neurosurg 124: 1450-1459. https://doi.org/10.3171/2015.4.JNS142862
    [115] Monteith SJ, Medel R, Kassell NF, et al. (2013) Transcranial magnetic resonance–guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study. J Neurosurg 118: 319-328. https://doi.org/10.3171/2012.10.JNS12186
    [116] Lipsman N, Schwartz ML, Huang Y, et al. (2013) MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 12: 462-468. https://doi.org/10.1016/S1474-4422(13)70048-6
    [117] Magara A, Bühler R, Moser D, et al. (2014) First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease. J Ther Ultrasound 2: 11. https://doi.org/10.1186/2050-5736-2-11
    [118] Jung HH, Kim SJ, Roh D, et al. (2015) Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry 20: 1205-1211. https://doi.org/10.1038/mp.2014.154
    [119] Wright C, Hynynen K, Goertz D (2012) In Vitro and In Vivo High-Intensity Focused Ultrasound Thrombolysis. Invest Radiol 47: 217-225. https://doi.org/10.1097/RLI.0b013e31823cc75c
    [120] Quadri SA, Waqas M, Khan I, et al. (2018) High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 44: E16. https://doi.org/10.3171/2017.11.FOCUS17610
    [121] Mehta RI, Carpenter JS, Mehta RI, et al. (2021) Blood-Brain Barrier Opening with MRI-guided Focused Ultrasound Elicits Meningeal Venous Permeability in Humans with Early Alzheimer Disease. Radiology 298: 654-662. https://doi.org/10.1148/radiol.2021200643
    [122] Cosman E, Nashold B, Bedenbaugh P (1983) Stereotactic radiofrequency lesion making. Stereotact Funct Neurosurg 46: 160-166. https://doi.org/10.1159/000101256
    [123] Cosman ER, Dolensky JR, Hoffman RA (2014) Factors that affect radiofrequency heat lesion size. Pain Med 15: 2020-2036. https://doi.org/10.1111/pme.12566
    [124] De Salles AA, Gorgulho AA, Pereira JL, et al. (2013) Intracranial stereotactic radiosurgery: concepts and techniques. Neurosurg Clin 24: 491-498. https://doi.org/10.1016/j.nec.2013.07.001
    [125] Lozano AM, Gildenberg PL, Tasker RR (2009) .Springer Science & Business Media. https://doi.org/10.1007/978-3-540-69960-6
    [126] Vidal JJ (1973) Toward Direct Brain-Computer Communication. Annu Rev Biophys Bioeng 2: 157-180. https://doi.org/10.1146/annurev.bb.02.060173.001105
    [127] Burns A, Adeli H, Buford JA (2014) Brain-computer interface after nervous system injury. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 20: 639-651. https://doi.org/10.1177/1073858414549015
    [128] Mridha MF, Das SC, Kabir MM, et al. (2021) Brain-Computer Interface: Advancement and Challenges. Sensors 21: 5746. https://doi.org/10.3390/s21175746
    [129] Akhtari M, Bryant HC, Mamelak AN, et al. (2000) Conductivities of three-layer human skull. Brain Topogr 13: 29-42. https://doi.org/10.1023/A:1007882102297
    [130] Shih JJ, Krusienski DJ, Wolpaw JR (2012) Brain-Computer Interfaces in Medicine. Mayo Clin Proc 87: 268-279. https://doi.org/10.1016/j.mayocp.2011.12.008
    [131] Herron JA, Thompson MC, Brown T, et al. (2017) Cortical Brain–Computer Interface for Closed-Loop Deep Brain Stimulation. IEEE Trans Neural Syst Rehabil Eng 25: 2180-2187. https://doi.org/10.1109/TNSRE.2017.2705661
    [132] Bronte-Stewart HM, Petrucci MN, O'Day JJ, et al. (2020) Perspective: Evolution of Control Variables and Policies for Closed-Loop Deep Brain Stimulation for Parkinson's Disease Using Bidirectional Deep-Brain-Computer Interfaces. Front Hum Neurosci 14: 353. https://doi.org/10.3389/fnhum.2020.00353
    [133] Fang H, Yang Y (2023) Predictive neuromodulation of cingulo-frontal neural dynamics in major depressive disorder using a brain-computer interface system: A simulation study. Front Comput Neurosci 17: 1119685. https://doi.org/10.3389/fncom.2023.1119685
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2657) PDF downloads(230) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog