Citation: Yu. A. Desheva, A. S. Mamontov, P. G. Nazarov. Contribution of antibody-dependent enhancement to the pathogenesis of coronavirus infections[J]. AIMS Allergy and Immunology, 2020, 4(3): 50-59. doi: 10.3934/Allergy.2020005
[1] | Diamond MS, Pierson TC (2020) The challenges of vaccine development against a new virus during a pandemic. Cell Host Microbe 27: 699-703. doi: 10.1016/j.chom.2020.04.021 |
[2] | Corey L, Mascola JR, Fauci AS, et al. (2020) A strategic approach to COVID-19 vaccine R&D. Science 368: 948-950. doi: 10.1126/science.abc5312 |
[3] | Corman VM, Muth D, Niemeyer D, et al. (2018) Hosts and sources of endemic human coronaviruses. Advances in Virus Research Cambridge: Academic Press, 163-188. doi: 10.1016/bs.aivir.2018.01.001 |
[4] | van Elden LJ, Anton M AM, van Alphen F, et al. (2004) Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J Infect Dis 189: 652-657. doi: 10.1086/381207 |
[5] | Holmes KV (1999) Coronaviruses (Coronaviridae). Encyclopedia of Virology Cambridge: Academic Press, 291. doi: 10.1006/rwvi.1999.0055 |
[6] | Dijkman R, Jebbink MF, El Idrissi NB, et al. (2008) Human coronavirus NL63 and 229E seroconversion in children. J Clin Microbiol 46: 2368-2373. doi: 10.1128/JCM.00533-08 |
[7] | Peiris JS, Lai ST, Poon LL, et al. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319-1325. doi: 10.1016/S0140-6736(03)13077-2 |
[8] | Arabi Y, Arifi A, Balkhy H, et al. (2014) Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 160: 389-397. doi: 10.7326/M13-2486 |
[9] | Cha RH, Joh JS, Jeong I, et al. (2015) Renal complications and their prognosis in Korean patients with Middle East respiratory syndrome-coronavirus from the central MERS-CoV designated hospital. J Korean Med Sci 30: 1807-1814. doi: 10.3346/jkms.2015.30.12.1807 |
[10] | Saad M, Omrani AS, Baig K, et al. (2014) Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis 29: 301-306. doi: 10.1016/j.ijid.2014.09.003 |
[11] | Baig AM (2020) Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther 26: 499-501. doi: 10.1111/cns.13372 |
[12] | Raj VS, Mou H, Smits SL, et al. (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251-254. doi: 10.1038/nature12005 |
[13] | Maslow JN (2017) Vaccine development for emerging virulent infectious diseases. Vaccine 35: 5437-5443. doi: 10.1016/j.vaccine.2017.02.015 |
[14] | Oh MD, Choe PG, Oh HS, et al. (2015) Middle East respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015. J Korean Med Sci 30: 1701-1705. doi: 10.3346/jkms.2015.30.11.1701 |
[15] | Gerdts V, Zakhartchouk A (2017) Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Vet Microbiol 206: 45-51. doi: 10.1016/j.vetmic.2016.11.029 |
[16] | de Wit JJS, Cook JKA (2019) Spotlight on avian pathology: infectious bronchitis virus. Avian Pathol 48: 393-395. doi: 10.1080/03079457.2019.1617400 |
[17] | Luo A (2020) Positive SARS-Cov-2 test in a woman with COVID-19 at 22 days after hospital discharge: A case report. J Tradit Chin Med Sci In press. |
[18] | Fu W, Chen Q, Wang T (2020) Letter to the Editor: Three cases of re‐detectable positive SARS‐CoV‐2 RNA in recovered COVID‐19 patients with antibodies. J Med Virol In press. |
[19] | Li G, Fan Y, Lai Y, et al. (2020) Coronavirus infections and immune responses. J Med Virol 92: 424-432. doi: 10.1002/jmv.25685 |
[20] | Li CK, Wu H, Yan H, et al. (2008) T cell responses to whole SARS coronavirus in humans. J Immunol 181: 5490-5500. doi: 10.4049/jimmunol.181.8.5490 |
[21] | Zhao J, Zhao J, Mangalam AK, et al. (2016) Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44: 1379-1391. doi: 10.1016/j.immuni.2016.05.006 |
[22] | Prompetchara E, Ketloy C, Palaga T (2020) Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 38: 1-9. |
[23] | Lurie N, Saville M, Hatchett R, et al. (2020) Developing Covid-19 vaccines at pandemic speed. New Engl J Med 382: 1969-1973. doi: 10.1056/NEJMp2005630 |
[24] | de Haan CA, Rottier PJ (2005) Molecular interactions in the assembly of coronaviruses. Adv Virus Res 64: 165-230. doi: 10.1016/S0065-3527(05)64006-7 |
[25] | Baruah V, Bose S (2020) Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 92: 495-500. doi: 10.1002/jmv.25698 |
[26] | Yang ZY, Kong WP, Huang Y, et al. (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561-564. doi: 10.1038/nature02463 |
[27] | Deming D, Sheahan T, Heise M, et al. (2006) Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 3: e525. doi: 10.1371/journal.pmed.0030525 |
[28] | Graham RL, Becker MM, Eckerle LD, et al. (2012) A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18: 1820. doi: 10.1038/nm.2972 |
[29] | Liu W, Fontanet A, Zhang PH, et al. (2006) Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis 193: 792-795. doi: 10.1086/500469 |
[30] | Tang F, Quan Y, Xin ZT, et al. (2011) Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol 186: 7264-7268. doi: 10.4049/jimmunol.0903490 |
[31] | Boonnak K, Slike BM, Burgess TH, et al. (2008) Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 82: 3939-3951. doi: 10.1128/JVI.02484-07 |
[32] | Murphy BR, Prince GA, Walsh EE, et al. (1986) Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. J Clin Microbiol 24: 197-202. doi: 10.1128/JCM.24.2.197-202.1986 |
[33] | Taylor A, Foo SS, Bruzzone R, et al. (2015) Fc receptors in antibody‐dependent enhancement of viral infections. Immunol Rev 268: 340-364. doi: 10.1111/imr.12367 |
[34] | Winarski KL, Tang J, Klenow L, et al. (2019) Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics. Proc Natl Acad Sci USA 116: 15194-15199. doi: 10.1073/pnas.1821317116 |
[35] | Jaume M, Yip MS, Cheung CY, et al. (2011) Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH-and cysteine protease-independent FcγR pathway. J Virol 85: 10582-10597. doi: 10.1128/JVI.00671-11 |
[36] | Wang SF, Tseng SP, Yen CH, et al. (2014) Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Bioph Res Co 451: 208-214. doi: 10.1016/j.bbrc.2014.07.090 |
[37] | Kam YW, Kien F, Roberts A, et al. (2006) Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcRII-dependent entry into B cells in vitro. Vaccine 25: 729-740. doi: 10.1016/j.vaccine.2006.08.011 |
[38] | Wan Y, Shang J, Sun S, et al. (2020) Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 94. |
[39] | Dijstelbloem HM, Kallenberg CG, van de Winkel JG (2001) Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol 22: 510-516. doi: 10.1016/S1471-4906(01)02014-2 |
[40] | Baudino L, Nimmerjahn F, da Silveira SA, et al. (2008) Differential contribution of three activating IgG Fc receptors (FcγRI, FcγRIII, and FcγRIV) to IgG2a-and IgG2b-induced autoimmune hemolytic anemia in mice. J Immunol 180: 1948-1953. doi: 10.4049/jimmunol.180.3.1948 |
[41] | Jacobs JJ (2020) Neutralizing antibodies mediate virus-immune pathology of COVID-19. Med Hypotheses 30: 109884. doi: 10.1016/j.mehy.2020.109884 |
[42] | Wang S, Guo F, Liu K, et al. (2008) Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res 136: 8-15. doi: 10.1016/j.virusres.2008.03.004 |
[43] | Huang IC, Bosch BJ, Li F, et al. (2006) SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 281: 3198-3203. doi: 10.1074/jbc.M508381200 |
[44] | Yip MS, Leung NH, Cheung CY, et al. (2014) Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol J 11: 82. doi: 10.1186/1743-422X-11-82 |
[45] | Yuan FF, Tanner J, Chan PK, et al. (2005) Influence of FcγRIIA and MBL polymorphisms on severe acute respiratory syndrome. Tissue Antigens 66: 291-296. doi: 10.1111/j.1399-0039.2005.00476.x |
[46] | Quinlan BD, Mou H, Zhang L, et al. (2020) The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. Immunity In press. |
[47] | de Wit E, van Doremalen N, Falzarano D, et al. (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14: 523. doi: 10.1038/nrmicro.2016.81 |
[48] | Tseng CT, Sbrana E, Iwata-Yoshikawa N, et al. (2012) Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PloS One 7: e35421. doi: 10.1371/journal.pone.0035421 |
[49] | Deming D, Sheahan T, Heise M, et al. (2006) Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 3: e525. doi: 10.1371/journal.pmed.0030525 |
[50] | Bolles M, Deming D, Long K, et al. (2011) A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 85: 12201-12215. doi: 10.1128/JVI.06048-11 |
[51] | Liu L, Wei Q, Lin Q, et al. (2019) Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4. |
[52] | Pinto D, Park YJ, Beltramello M, et al. (2020) Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 18: 1-10. |
[53] | Gao Q, Bao L, Mao H, et al. (2020) Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369: 77-81. doi: 10.1126/science.abc1932 |
[54] | van Doremalen N, Lambe T, Spencer A, et al. (2020) ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 30: 1-8. |
[55] | Corbett KS, Flynn B, Foulds KE, et al. (2020) Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. New Engl J Med In press. |
[56] | Zhang L, Zhang F, Yu W, et al. (2006) Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J Med Virol 78: 1-8. doi: 10.1002/jmv.20499 |
[57] | Ho MS, Chen WJ, Chen HY, et al. (2005) Neutralizing antibody response and SARS severity. Emerg Infect Dis 11: 1730. doi: 10.3201/eid1111.040659 |
[58] | Lee N, Chan PK, Ip M, et al. (2006) Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome. J Clin Virol 35: 179-184. doi: 10.1016/j.jcv.2005.07.005 |
[59] | To KK, Tsang OT, Leung WS, et al. (2020) Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 5: 565-574. |
[60] | Huang J, Mao T, Li S, et al. (2020) Dynamics of Viral Load and Antibodies in First 8 Weeks of Infection by SARS-CoV-2: An Observational Cohort Study. Lancet In press. |
[61] | Cheng Y, Wong R, Soo Y, et al. (2005) Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 24: 44-46. doi: 10.1007/s10096-004-1271-9 |
[62] | Keith P (2020) A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care 24: 128. doi: 10.1186/s13054-020-2836-4 |
[63] | Liu Q, Zhou YH, Yang ZQ (2016) The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 13: 3-10. doi: 10.1038/cmi.2015.74 |
[64] | Sullivan N, Yang ZY, Nabel GJ (2003) Ebola virus pathogenesis: implications for vaccines and therapies. J Virol 77: 9733-9737. doi: 10.1128/JVI.77.18.9733-9737.2003 |
[65] | Chen C, Zhang XR, Ju ZY, et al. (2020) Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Chinese J Burns 36: E005. |
[66] | Schindewolf C, Menachery VD, et al. (2019) Middle east respiratory syndrome vaccine candidates: cautious optimism. Viruses 11: 74. doi: 10.3390/v11010074 |
[67] | Henderson LA, Canna SW, Schulert GS, et al. (2020) On the alert for cytokine storm: Immunopathology in COVID‐19. Arthritis Rheumatol 22: 1059-1063. doi: 10.1002/art.41285 |
[68] | Mehta P, McAuley DF, Brown M, et al. (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395: 1033-1034. doi: 10.1016/S0140-6736(20)30628-0 |
[69] | Huang C, Wang Y, Li X (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506. doi: 10.1016/S0140-6736(20)30183-5 |
[70] | Liu J, Li S, Liu J (2020) Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EbioMedicine 55: 102763. doi: 10.1016/j.ebiom.2020.102763 |