Citation: Catherine M. Albert, Seth Pollack. Immunotherapy for synovial sarcoma[J]. AIMS Medical Science, 2019, 6(3): 191-200. doi: 10.3934/medsci.2019.3.191
[1] | Riedel RF, Jones RL, Italiano A, et al. (2018) Systemic Anti-Cancer Therapy in Synovial Sarcoma: A Systematic Review. Cancers 10: 417. doi: 10.3390/cancers10110417 |
[2] | Stacchiotti S, Van Tine BA (2018) Synovial Sarcoma: Current Concepts and Future Perspectives. J Clin Oncol 36: 180–187. |
[3] | Kerouanton A, Jimenez I, Cellier C, et al. (2014) Synovial sarcoma in children and adolescents. J Pediatr Hematol Oncol 36: 257–262. doi: 10.1097/MPH.0000000000000154 |
[4] | Okcu MF, Despa S, Choroszy M, et al. (2001) Synovial sarcoma in children and adolescents: thirty three years of experience with multimodal therapy. Med Pediatr Oncol 37: 90–96. doi: 10.1002/mpo.1175 |
[5] | de Necochea-Campion R, Zuckerman LM, Mirshahidi HR, et al. (2017) Metastatic biomarkers in synovial sarcoma. Biomark Res 5: 4. doi: 10.1186/s40364-017-0083-x |
[6] | Spillane AJ, A'Hern R, Judson IR, et al. (2000) Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. J Clin Oncol 18: 3794–3803. doi: 10.1200/JCO.2000.18.22.3794 |
[7] | Rosen G, Forscher C, Lowenbraun S, et al. (1994) Synovial sarcoma. Uniform response of metastases to high dose ifosfamide. Cancer 73: 2506–2511. |
[8] | Vlenterie M, Litiere S, Rizzo E, et al. (2016) Outcome of chemotherapy in advanced synovial sarcoma patients: Review of 15 clinical trials from the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group; setting a new landmark for studies in this entity. Eur J Cancer 58: 62–72. doi: 10.1016/j.ejca.2016.02.002 |
[9] | Kawai A, Araki N, Sugiura H, et al. (2015) Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol 16: 406–416. doi: 10.1016/S1470-2045(15)70098-7 |
[10] | van der Graaf WT, Blay JY, Chawla SP, et al. (2012) Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379: 1879–1886. doi: 10.1016/S0140-6736(12)60651-5 |
[11] | Singer S, Baldini EH, Demetri GD, et al. (1996) Synovial sarcoma: prognostic significance of tumor size, margin of resection, and mitotic activity for survival. J Clin Oncol 14: 1201–1208. doi: 10.1200/JCO.1996.14.4.1201 |
[12] | Vining CC, Sinnamon AJ, Ecker BL, et al. (2017) Adjuvant chemotherapy in resectable synovial sarcoma. J Surg Oncol 116: 550–558. doi: 10.1002/jso.24688 |
[13] | Spurrell EL, Fisher C, Thomas JM, et al. (2005) Prognostic factors in advanced synovial sarcoma: an analysis of 104 patients treated at the Royal Marsden Hospital. Ann Oncol 16: 437–444. doi: 10.1093/annonc/mdi082 |
[14] | Ferrari A, De Salvo GL, Brennan B, et al. (2015) Synovial sarcoma in children and adolescents: the European Pediatric Soft Tissue Sarcoma Study Group prospective trial (EpSSG NRSTS 2005). Ann Oncol 26: 567–572. doi: 10.1093/annonc/mdu562 |
[15] | Thway K, Fisher C (2014) Synovial sarcoma: defining features and diagnostic evolution. Ann Diagn Pathol 18: 369–380. doi: 10.1016/j.anndiagpath.2014.09.002 |
[16] | Ladanyi M (2001) Fusions of the SYT and SSX genes in synovial sarcoma. Oncogene 20: 5755–5762. doi: 10.1038/sj.onc.1204601 |
[17] | Lai JP, Rosenberg AZ, Miettinen MM, et al. (2012) NY-ESO-1 expression in sarcomas: A diagnostic marker and immunotherapy target. Oncoimmunology 1: 1409–1410. doi: 10.4161/onci.21059 |
[18] | Schultz-Thater E, Noppen C, Gudat F, et al. (2000) NY-ESO-1 tumour associated antigen is a cytoplasmic protein detectable by specific monoclonal antibodies in cell lines and clinical specimens. Br J Cancer 83: 204–208. doi: 10.1054/bjoc.2000.1251 |
[19] | Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12: 252–264. doi: 10.1038/nrc3239 |
[20] | Hodi FS, O'Day SJ, McDermott DF, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363: 711–723. doi: 10.1056/NEJMoa1003466 |
[21] | Slovin SF, Higano CS, Hamid O, et al. (2013) Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol 24: 1813–1821. doi: 10.1093/annonc/mdt107 |
[22] | Lynch TJ, Bondarenko I, Luft A, et al. (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30: 2046–2054. doi: 10.1200/JCO.2011.38.4032 |
[23] | Topalian SL, Sznol M, McDermott DF, et al. (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32: 1020–1030. doi: 10.1200/JCO.2013.53.0105 |
[24] | Brahmer JR, Tykodi SS, Chow LQ, et al. (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366: 2455–2465. doi: 10.1056/NEJMoa1200694 |
[25] | Herbst RS, Baas P, Kim DW, et al. (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387: 1540–1550. doi: 10.1016/S0140-6736(15)01281-7 |
[26] | Hammers HJ, Plimack ER, Infante JR, et al. (2014) Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). J Clin Oncol 25: 361–362. |
[27] | Wolchok JD, Kluger H, Callahan MK, et al. (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369: 122–133. doi: 10.1056/NEJMoa1302369 |
[28] | Hellmann MD, Rizvi NA, Goldman JW, et al. (2017) Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 18: 31–41. doi: 10.1016/S1470-2045(16)30624-6 |
[29] | Tawbi HA, Burgess M, Bolejack V, et al. (2017) Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 18: 1493–1501. doi: 10.1016/S1470-2045(17)30624-1 |
[30] | D'Angelo SP, Mahoney MR, Van Tine BA, et al. (2018) Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 19: 416–426. doi: 10.1016/S1470-2045(18)30006-8 |
[31] | Rizvi NA, Hellmann MD, Snyder A, et al. (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348: 124–128. |
[32] | Snyder A, Makarov V, Merghoub T, et al. (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371: 2189–2199. doi: 10.1056/NEJMoa1406498 |
[33] | Tumeh PC, Harview CL, Yearley JH, et al. (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515: 568–571. doi: 10.1038/nature13954 |
[34] | McGranahan N, Furness AJ, Rosenthal R, et al. (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351: 1463–1469. doi: 10.1126/science.aaf1490 |
[35] | Lazar AJ, McLellan MD, Bailey MH, et al. (2017) Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171: 950–965. doi: 10.1016/j.cell.2017.10.014 |
[36] | Pollack SM, He Q, Yearley JH, et al. (2017) T-cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death-ligand 1 expression in patients with soft tissue sarcomas. Cancer 123: 3291–3304. doi: 10.1002/cncr.30726 |
[37] | Ni L, Lu J (2018) Interferon gamma in cancer immunotherapy. Cancer Med 7: 4509–4516. doi: 10.1002/cam4.1700 |
[38] | Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4: 1. |
[39] | Lai JP, Robbins PF, Raffeld M, et al. (2012) NY-ESO-1 expression in synovial sarcoma and other mesenchymal tumors: significance for NY-ESO-1-based targeted therapy and differential diagnosis. Mod Pathol 25: 854–858. doi: 10.1038/modpathol.2012.31 |
[40] | Satie AP, Rajpert-De Meyts E, Spagnoli GC, et al. (2002) The cancer-testis gene, NY-ESO-1, is expressed in normal fetal and adult testes and in spermatocytic seminomas and testicular carcinoma in situ. Lab Invest 82: 775–780. doi: 10.1097/01.LAB.0000017169.26718.5F |
[41] | Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385: 517–528. doi: 10.1016/S0140-6736(14)61403-3 |
[42] | Gardner RA, Finney O, Annesley C, et al. (2017) Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129: 3322–3331. |
[43] | Srivastava S, Riddell SR (2018) Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. J Immunol 200: 459–468. doi: 10.4049/jimmunol.1701155 |
[44] | Robbins PF, Morgan RA, Feldman SA, et al. (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29: 917–924. doi: 10.1200/JCO.2010.32.2537 |
[45] | D'Angelo SP, Melchiori L, Merchant MS, et al. (2018) Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 (c259)T Cells in Synovial Sarcoma. Cancer Discov 8: 944–957. doi: 10.1158/2159-8290.CD-17-1417 |
[46] | Iura K, Maekawa A, Kohashi K, et al. (2017) Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum Pathol 61: 130–139. doi: 10.1016/j.humpath.2016.12.006 |
[47] | Chapman PB, Morrisey D, Panageas KS, et al. (2000) Vaccination with a bivalent G(M2) and G(D2) ganglioside conjugate vaccine: a trial comparing doses of G(D2)-keyhole limpet hemocyanin. Clin Cancer Res 6: 4658–4662. |
[48] | Kawaguchi S, Tsukahara T, Ida K, et al. (2012) SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group. Cancer Sci 103: 1625–1630. doi: 10.1111/j.1349-7006.2012.02370.x |
[49] | Dillman R, Selvan S, Schiltz P, et al. (2004) Phase I/II trial of melanoma patient-specific vaccine of proliferating autologous tumor cells, dendritic cells, and GM-CSF: planned interim analysis. Cancer Biother Radiopharm 19: 658–665. |
[50] | Dillman RO, Selvan SR, Schiltz PM, et al. (2009) Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report. Cancer Biother Radiopharm 24: 311–319. doi: 10.1089/cbr.2008.0599 |
[51] | Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449: 419–426. doi: 10.1038/nature06175 |
[52] | Zinkernagel RM (2014) On the Role of Dendritic Cells Versus Other Cells in Inducing Protective CD8+ T Cell Responses. Front Immunol 5: 30. |
[53] | Palucka K, Banchereau J, Mellman I (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33: 464–478. doi: 10.1016/j.immuni.2010.10.007 |
[54] | Santos PM, Butterfield LH (2018) Dendritic Cell-Based Cancer Vaccines. J Immunol 200: 443–449. doi: 10.4049/jimmunol.1701024 |
[55] | Somaiah N, Block MS, Kim JW, et al. (2016) Single-agent LV305 to induce anti-tumor immune and clinical responses in patients with advanced or metastatic sarcoma and other cancers expressing NY-ESO-1. J Clin Oncol 34. |
[56] | Pollack SM (2018) The potential of the CMB305 vaccine regimen to target NY-ESO-1 and improve outcomes for synovial sarcoma and myxoid/round cell liposarcoma patients. Expert Rev Vaccines 17: 107–114. |
[57] | Tareen SU, Kelley-Clarke B, Nicolai CJ, et al. (2014) Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol Ther 22: 575–587. doi: 10.1038/mt.2013.278 |
[58] | Pollack SM, Lu H, Gnjatic S, et al. (2017) First-in-Human Treatment With a Dendritic Cell-targeting Lentiviral Vector-expressing NY-ESO-1, LV305, Induces Deep, Durable Response in Refractory Metastatic Synovial Sarcoma Patient. J Immunother 40: 302–306. |
[59] | Pollack S, Lu HL, Somaiah N, et al. (2017) Association of CMB305 or LV305-induced and baseline anti-NY-ESO-1 immunity with survival in recurrent cancer patients. J Clin Oncol 35. |