Processing math: 100%
Research article

A soil water indicator for a dynamic model of crop and soil water interaction


  • Water scarcity is a critical issue in agriculture, and the development of reliable methods for determining soil water content is crucial for effective water management. This study proposes a novel, theoretical, non-physiological indicator of soil water content obtained by applying the next-generation matrix method, which reflects the water-soil-crop dynamics and identifies the minimum viable value of soil water content for crop growth. The development of this indicator is based on a two-dimensional, nonlinear dynamic that considers two different irrigation scenarios: the first scenario involves constant irrigation, and the second scenario irrigates in regular periods by assuming each irrigation as an impulse in the system. The analysis considers the study of the local stability of the system by incorporating parameters involved in the water-soil-crop dynamics. We established a criterion for identifying the minimum viable value of soil water content for crop growth over time. Finally, the model was calibrated and validated using data from an independent field study on apple orchards and a tomato crop obtained from a previous field study. Our results suggest the advantages of using this theoretical approach in modeling the plants' conditions under water scarcity as the first step before an empirical model. The proposed indicator has some limitations, suggesting the need for future studies that consider other factors that affect soil water content.

    Citation: Edwin Duque-Marín, Alejandro Rojas-Palma, Marcos Carrasco-Benavides. A soil water indicator for a dynamic model of crop and soil water interaction[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13881-13899. doi: 10.3934/mbe.2023618

    Related Papers:

    [1] Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206
    [2] Abdon Atangana, Jyoti Mishra . Analysis of nonlinear ordinary differential equations with the generalized Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2023, 20(11): 19763-19780. doi: 10.3934/mbe.2023875
    [3] Allaberen Ashyralyev, Evren Hincal, Bilgen Kaymakamzade . Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2021, 18(6): 8883-8904. doi: 10.3934/mbe.2021438
    [4] Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia . Deterministic, stochastic and fractional mathematical approaches applied to AMR. Mathematical Biosciences and Engineering, 2025, 22(2): 389-414. doi: 10.3934/mbe.2025015
    [5] Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010
    [6] Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359
    [7] Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217
    [8] Yingying Xu, Chunhe Song, Chu Wang . Few-shot bearing fault detection based on multi-dimensional convolution and attention mechanism. Mathematical Biosciences and Engineering, 2024, 21(4): 4886-4907. doi: 10.3934/mbe.2024216
    [9] H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy . Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268
    [10] Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303
  • Water scarcity is a critical issue in agriculture, and the development of reliable methods for determining soil water content is crucial for effective water management. This study proposes a novel, theoretical, non-physiological indicator of soil water content obtained by applying the next-generation matrix method, which reflects the water-soil-crop dynamics and identifies the minimum viable value of soil water content for crop growth. The development of this indicator is based on a two-dimensional, nonlinear dynamic that considers two different irrigation scenarios: the first scenario involves constant irrigation, and the second scenario irrigates in regular periods by assuming each irrigation as an impulse in the system. The analysis considers the study of the local stability of the system by incorporating parameters involved in the water-soil-crop dynamics. We established a criterion for identifying the minimum viable value of soil water content for crop growth over time. Finally, the model was calibrated and validated using data from an independent field study on apple orchards and a tomato crop obtained from a previous field study. Our results suggest the advantages of using this theoretical approach in modeling the plants' conditions under water scarcity as the first step before an empirical model. The proposed indicator has some limitations, suggesting the need for future studies that consider other factors that affect soil water content.



    Fractional calculus is a main branch of mathematics that can be considered as the generalisation of integration and differentiation to arbitrary orders. This hypothesis begins with the assumptions of L. Euler (1730) and G. W. Leibniz (1695). Fractional differential equations (FDEs) have lately gained attention and publicity due to their realistic and accurate computations [1,2,3,4,5,6,7]. There are various types of fractional derivatives, including Riemann–Liouville, Caputo, Grü nwald–Letnikov, Weyl, Marchaud, and Atangana. This topic's history can be found in [8,9,10,11]. Undoubtedly, fractional calculus applies to mathematical models of different phenomena, sometimes more effectively than ordinary calculus [12,13]. As a result, it can illustrate a wide range of dynamical and engineering models with greater precision. Applications have been developed and investigated in a variety of scientific and engineering fields over the last few decades, including bioengineering [14], mechanics [15], optics [16], physics [17], mathematical biology, electrical power systems [18,19,20] and signal processing [21,22,23].

    One of the definitions of fractional derivatives is Caputo-Fabrizo, which adds a new dimension in the study of FDEs. The new derivative's feature is that it has a nonsingular kernel, which is made from a combination of an ordinary derivative with an exponential function, but it has the same supplementary motivating properties with various scales as in the Riemann-Liouville fractional derivatives and Caputo. The Caputo-Fabrizio fractional derivative has been used to solve real-world problems in numerous areas of mathematical modelling for example, numerical solutions for groundwater pollution, the movement of waves on the surface of shallow water modelling [24], RLC circuit modelling [25], and heat transfer modelling [26,27] were discussed.

    Rach (1987), Bellomo and Sarafyan (1987) first compared the Adomian Decomposition method (ADM) [28,29,30,31,32] to the Picard method on a variety of examples. These methods have many benefits: they effectively work with various types of linear and nonlinear equations and also provide an analytic solution for all of these equations with no linearization or discretization. These methods are more realistic compared with other numerical methods as each technique is used to solve a specific type of equations, on the other hand ADM and Picard are useful for many types of equations. In the numerical examples provided, we compare ADM and Picard solutions of multidimentional fractional order equations with Caputo-Fabrizio.

    The fractional derivative of Caputo-Fabrizio for the function x(t) is defined as [33]

    CFDα0x(t)=B(α)1αt0dds(x(s)) eα1α(ts)ds, (1.1)

    and its corresponding fractional integral is

    CFIαx(t)=1αB(α)x(t)+αB(α)t0x (s)ds,    0<α<1, (1.2)

    where x(t) be continuous and differentiable on [0, T]. Also, in the above definition, the function B(α)>0 is a normalized function which satisfy the condition B(0)=B(1)=0. The relation between the Caputo–Fabrizio fractional derivate and its corresponding integral is given by

    (CFIα0)(CFDα0f(t))=f(t)f(a). (1.3)

    In this section, we will introduce a multidimentional FDE subject to the initial condition. Let α(0,1], 0<α1<α2<...,αm<1, and m is integer real number,

    CFDx=f(t,x,CFDα1x,CFDα2x,...,CFDαmx,) ,x(0)=c0, (2.1)

    where x=x(t),tJ=[0,T],TR+,xC(J).

    To facilitate the equation and make it easy for the calculation, we let x(t)=c0+X(t) so Eq (2.1) can be witten as

    CFDαX=f(t,c0+X,CFDα1X,CFDα2X,...,CFDαmX), X(0)=0. (2.2)

    the algorithm depends on converting the initial condition from a constant c0 to 0.

    Let CFDαX=y(t) then X=CFIαy, so we have

    CFDαiX= CFIααi CFDαX= CFIααiy,  i=1,2,...,m. (2.3)

    Substituting in Eq (2.2) we obtain

    y=f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy). (2.4)

    Assume f satisfies Lipschtiz condition with Lipschtiz constant L given by,

    |f(t,y0,y1,...,ym)||f(t,z0,z1,...,zm)|Lmi=0|yizi|, (2.5)

    which implies

    |f(t,c0+CFIαy,CFIαα1y,..,CFIααmy)f(t,c0+CFIαz,CFIαα1z,..,CFIααmz)|Lmi=0| CFIααiy CFIααiz|. (2.6)

    The solution algorithm of Eq (2.4) using ADM is,

    y0(t)=a(t)yn+1(t)=An(t), j0. (2.7)

    where a(t) pocesses all free terms in Eq (2.4) and An are the Adomian polynomials of the nonlinear term which takes the form [34]

    An=f(Sn)n1i=0Ai, (2.8)

    where f(Sn)=ni=0Ai. Later, this accelerated formula of Adomian polynomial will be used in convergence analysis and error estimation. The solution of Eq (2.4) can be written in the form,

    y(t)=i=0yi(t). (2.9)

    lastly, the solution of the Eq (2.4) takes the form

    x(t)=c0+X(t)=c0+ CFIαy(t). (2.10)

    At which we convert the parameter to the initial form y to x in Eq (2.10), so we have the solution of the original Eq (2.1).

    Define a mapping F:EE where E=(C[J],) is a Banach space of all continuous functions on J with the norm x= maxtϵJx(t).

    Theorem 3.1. Equation (2.4) has a unique solution whenever 0<ϕ<1 where ϕ=L(mi=0[(ααi)(T1)]+1B(ααi)).

    Proof. First, we define the mapping F:EE as

    Fy=f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy).

    Let y and zE are two different solutions of Eq (2.4). Then

    FyFz=f(t,c0+CFIαy,CFIαα1y,..,CFIααmy)f(t,c0+CFIαz,CFIαα1z,...,CFIααmz)

    which implies that

    |FyFz|=|f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy)f(t,c0+ CFIαz, CFIαα1z,..., CFIααmz)|Lmi=0| CFIααiy CFIααiz|Lmi=0|1(ααi)B(ααi)(yz)+ααiB(ααi)t0(yz)ds|FyFzLmi=01(ααi)B(ααi)maxtϵJ|yz|+ααiB(ααi)maxtϵJ|yz|t0dsLmi=01(ααi)B(ααi)yz+ααiB(ααi)yzTLyz(mi=01(ααi)B(ααi)+ααiB(ααi)T)Lyz(mi=0[(ααi)(T1)]+1B(ααi))ϕyz.

    under the condition 0<ϕ<1, the mapping F is contraction and hence there exists a unique solution yC[J] for the problem Eq (2.4) and this completes the proof.

    Theorem 3.2. The series solution of the problem Eq (2.4)converges if |y1(t)|<c and c isfinite.

    Proof. Define a sequence {Sp} such that Sp=pi=0yi(t) is the sequence of partial sums from the series solution i=0yi(t), we have

    f(t,c0+ CFIαy, CFIαα1y,..., CFIααmy)=i=0Ai,

    So

    f(t,c0+ CFIαSp, CFIαα1Sp,..., CFIααmSp)=pi=0Ai,

    From Eq (2.7) we have

    i=0yi(t)=a(t)+i=0Ai1

    let Sp,Sq be two arbitrary sums with pq. Now, we are going to prove that {Sp} is a Caushy sequence in this Banach space. We have

    Sp=pi=0yi(t)=a(t)+pi=0Ai1,Sq=qi=0yi(t)=a(t)+qi=0Ai1.
    SpSq=pi=0Ai1qi=0Ai1=pi=q+1Ai1=p1i=qAi1=f(t,c0+ CFIαSp1, CFIαα1Sp1,..., CFIααmSp1)f(t,c0+ CFIαSq1, CFIαα1Sq1,..., CFIααmSq1)
    |SpSq|=|f(t,c0+ CFIαSp1, CFIαα1Sp1,..., CFIααmSp1)f(t,c0+ CFIαSq1, CFIαα1Sq1,..., CFIααmSq1)|Lmi=0| CFIααiSp1 CFIααiSq1|Lmi=0|1(ααi)B(ααi)(Sp1Sq1)+ααiB(ααi)t0(Sp1Sq1)ds|Lmi=01(ααi)B(ααi)|Sp1Sq1|+ααiB(ααi)t0|Sp1Sq1|ds
    SpSqLmi=01(ααi)B(ααi)maxtϵJ|Sp1Sq1|+ααiB(ααi)maxtϵJ|Sp1Sq1|t0dsLSpSqmi=0(1(ααi)B(ααi)+ααiB(ααi)T)LSpSq(mi=0[(ααi)(T1)]+1B(ααi))ϕSpSq

    let p=q+1 then,

    Sq+1SqϕSqSq1ϕ2Sq1Sq2...ϕqS1S0

    From the triangle inequality we have

    SpSqSq+1Sq+Sq+2Sq+1+...SpSp1[ϕq+ϕq+1+...+ϕp1]S1S0ϕq[1+ϕ+...+ϕpq+1]S1S0ϕq[1ϕpq1ϕ]y1(t)

    Since 0<ϕ<1,pq then (1ϕpq)1. Consequently

    SpSqϕq1ϕy1(t)ϕq1ϕmaxtϵJ|y1(t)| (3.1)

    but |y1(t)|< and as q then, SpSq0 and hence, {Sp} is a Caushy sequence in this Banach space then the proof is complete.

    Theorem 3.3. The maximum absolute truncated error Eq (2.4)is estimated to be maxtϵJ|y(t)qi=0yi(t)|ϕq1ϕmaxtϵJ|y1(t)|

    Proof. From the convergence theorm inequality (Eq 3.1) we have

    SpSqϕq1ϕmaxtϵJ|y1(t)|

    but, Sp=pi=0yi(t) as p then, Spy(t) so,

    y(t)Sqϕq1ϕmaxtϵJ|y1(t)|

    so, the maximum absolute truncated error in the interval J is,

    maxtϵJ|y(t)qi=0yi(t)|ϕq1ϕmaxtϵJ|y1(t)| (3.2)

    and this completes the proof.

    In this part, we introduce several numerical examples with unkown exact solution and we will use inequality (Eq 3.2) to estimate the maximum absolute truncated error.

    Example 4.1. Application of linear FDE

    CFDx(t)+2aCFD1/2x(t)+bx(t)=0,       x(0)=1. (4.1)

    A Basset problem in fluid dynamics is a classical problem which is used to study the unsteady movement of an accelerating particle in a viscous fluid under the action of the gravity [36]

    Set

    X(t)=x(t)1

    Equation (4.1) will be

    CFDX(t)+2aCFD1/2X(t)+bX(t)=0,       X(0)=0. (4.2)

    Appling Eq (2.3) to Eq (4.2), and using initial condition, also we take a = 1, b = 1/2,

    y=122I1/2y12I y (4.3)

    Appling ADM to Eq (4.3), we find the solution algorithm become

    y0(t)=12,yi(t)=2 CFI1/2yi112 CFI yi1,     i1. (4.4)

    Appling Picard solution to Eq (4.2), we find the solution algorithm become

    y0(t)=12,yi(t)=122 CFI1/2yi112 CFI yi1,     i1. (4.5)

    From Eq (4.4), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.5), the solution using Picard technique is given by y(t)=Limiyi(t). Lately, the solution of the original problem Eq (4.2), is

    x(t)=1+ CFI y(t).

    One the same processor (q = 20), the time consumed using ADM is 0.037 seconds, while the time consumed using Picard is 7.955 seconds.

    Figure 1 gives a comparison between ADM and Picard solution of Ex. 4.1.

    Figure 1.  ADM and Picard solution of Ex. 4.1.

    Example 4.2. Consider the following nonlinear FDE [35]

    CFD1/2x=8t3/23πt7/44Γ(114)t44+18 CFD1/4x+14x2, x(0)=0. (4.6)

    Appling Eq (2.3) to Eq (4.6), and using initial condition,

    y=8t3/23πt7/44Γ(114)t44+18 CFI1/4y+14(CFI1/2y)2. (4.7)

    Appling ADM to Eq (4.7), we find the solution algorithm will be become

    y0(t)=8t3/23πt7/44Γ(114)t44,yi(t)=18 CFI1/4yi1+14(Ai1),     i1. (4.8)

    at which Ai are Adomian polynomial of the nonliner term (CFI1/2y)2.

    Appling Picard solution to Eq (4.7), we find the the solution algorithm become

    y0(t)=8t3/23πt7/44Γ(114)t44,yi(t)=y0(t)+18 CFI1/4yi1+14(CFI1/2yi1)2,     i1. (4.9)

    From Eq (4.8), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.9), the solution using Picard technique is given by y(t)=Limiyi(t). Finally, the solution of the original problem Eq (4.7), is.

    x(t)= CFI1/2y.

    One the same processor (q = 2), the time consumed using ADM is 65.13 seconds, while the time consumed using Picard is 544.787 seconds.

    Table 1 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 2):

    Table 1.  Max. absolute error.
    q max. absolute error
    2 0.114548
    5 0.099186
    10 0.004363

     | Show Table
    DownLoad: CSV

    Figure 2 gives a comparison between ADM and Picard solution of Ex. 4.2.

    Figure 2.  ADM and Picard solution of Ex. 4.2.

    Example 4.3. Consider the following nonlinear FDE [35]

    CFDαx=3t2128125πt5+110(CFD1/2x)2,x(0)=0. (4.10)

    Appling Eq (2.3) to Eq (4.10), and using initial condition,

    y=3t2128125πt5+110(CFI1/2y)2 (4.11)

    Appling ADM to Eq (4.11), we find the solution algorithm become

    y0(t)=3t2128125πt5,yi(t)=110(Ai1),     i1 (4.12)

    at which Ai are Adomian polynomial of the nonliner term (CFI1/2y)2.

    Then appling Picard solution to Eq (4.11), we find the solution algorithm become

    y0(t)=3t2128125πt5,yi(t)=y0(t)+110(CFI1/2yi1)2,     i1. (4.13)

    From Eq (4.12), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.13), the solution is y(t)=Limiyi(t). Finally, the solution of the original problem Eq (4.11), is

    x(t)=CFIy(t).

    One the same processor (q = 4), the time consumed using ADM is 2.09 seconds, while the time consumed using Picard is 44.725 seconds.

    Table 2 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 4):

    Table 2.  Max. absolute error.
    q max. absolute error
    2 0.00222433
    5 0.0000326908
    10 2.88273*108

     | Show Table
    DownLoad: CSV

    Figure 3 gives a comparison between ADM and Picard solution of Ex. 4.3 with α=1.

    Figure 3.  ADM and Picard solution where of Ex. 4.3.

    Example 4.4. Consider the following nonlinear FDE [35]

    CFDαx=t2+12 CFDα1x+14 CFDα2x+16 CFDα3x+18x4,x(0)=0. (4.14)

    Appling Eq (2.3) to Eq (4.10), and using initial condition,

    y=t2+12(CFIαα1y)+14(CFIαα2y)+16(CFIαα3y)+18(CFIαy)4, (4.15)

    Appling ADM to Eq (4.15), we find the solution algorithm become

    y0(t)=t2,yi(t)=12(CFIαα1y)+14(CFIαα2y)+16(CFIαα3y)+18Ai1,  i1 (4.16)

    where Ai are Adomian polynomial of the nonliner term (CFIαy)4.

    Then appling Picard solution to Eq (4.15), we find the solution algorithm become

    y0(t)=t2,yi(t)=t2+12(CFIαα1yi1)+14(CFIαα2yi1)+16(CFIαα3yi1)+18(CFIαyi1)4     i1. (4.17)

    From Eq (4.16), the solution using ADM is given by y(t)=Limqqi=0yi(t) while from Eq (4.17), the solution using Picard technique is y(t)=Limiyi(t). Finally, the solution of the original problem Eq (4.14), is

    x(t)=CFIαy(t).

    One the same processor (q = 3), the time consumed using ADM is 0.437 seconds, while the time consumed using Picard is (16.816) seconds. Figure 4 shows a comparison between ADM and Picard solution of Ex. 4.4 atα=0.7,α1=0.1,α2=0.3,α3=0.5.

    Figure 4.  ADM and Picard solution where of Ex. 4.4.

    The Caputo-Fabrizo fractional deivative has a nonsingular kernel, and consequently, this definition is appropriate in solving nonlinear multidimensional FDE [37,38]. Since the selected numerical problems have an unkown exact solution, the formula (3.2) can be used to estimate the maximum absolute truncated error. By comparing the time taken on the same processor (i7-2670QM), it was found that the time consumed by ADM is much smaller compared with the Picard technique. Furthermore Picard gives a more accurate solution than ADM at the same interval with the same number of terms.

    The authors declare there is no conflict of interest.



    [1] P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H. O. Pörtner, D. C.Roberts, et al., IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, World Meteorological Organization: Geneva, Switzerland, 2019.
    [2] P. Ahmad, M. R. Wani, Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, Springer, New York, 2013.
    [3] J. C. Valverde-Otárola, D. Arias, Efectos del estrés hídrico en crecimiento y desarrollo fisiológico de Gliricidia sepium (Jacq.) Kunth ex Walp, Colombia forestal, 23 (2020), 20–34. https://doi.org/10.14483/2256201x.14786 doi: 10.14483/2256201x.14786
    [4] E. Duque-Marín, A. Rojas-Palma, M. Carrasco-Benavides, Mathematical modeling of fruit trees' growth under scarce watering, J. Phys. Conf. Ser., 2046 (2021), 012017. https://doi.org/10.1088/1742-6596/2046/1/012017 doi: 10.1088/1742-6596/2046/1/012017
    [5] Q. Shan, Z. Wang, H. Ling, G. Zhang, J. Yan, F. Han, Unreasonable human disturbance shifts the positive effect of climate change on tree-ring growth of Malus sieversii in the origin area of world cultivated apples, J. Clean. Prod., 287 (2021), 125008. https://doi.org/10.1016/j.jclepro.2020.125008 doi: 10.1016/j.jclepro.2020.125008
    [6] M. Lévesque, R. Siegwolf, M. Saurer, B. Eilmann, A. Rigling, Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions, New Phytol., 203 (2014), 94–109. https://doi.org/10.1111/nph.12772 doi: 10.1111/nph.12772
    [7] R. Ogaya, A. Barbeta, C. Başnou, J. Peñuelas, Satellite data as indicators of tree biomass growth and forest dieback in a Mediterranean holm oak forest, Ann. Forest Sci., 72 (2015), 135–144. https://doi.org/10.1007/s13595-014-0408-y doi: 10.1007/s13595-014-0408-y
    [8] G. Arbat, J. Puig-Bargués, J. Barragán, J. Bonany, F. Ramírez de Cartagena, Monitoring soil water status for micro-irrigation management versus modelling approach, Biosyst. Eng., 100 (2008), 286–296. https://doi.org/10.1016/j.biosystemseng.2008.02.008 doi: 10.1016/j.biosystemseng.2008.02.008
    [9] A. Fares, A. K. Alva, Evaluation of capacitance probes for optimal irrigation of citrus through soil moisture monitoring in an entisol profile, Irrig. Sci., 19 (2000), 57–64. https://doi.org/10.1007/s002710050001 doi: 10.1007/s002710050001
    [10] A. Fernandes-Silva, M. Oliveira, T. A. Paço, I. Ferreira, Deficit irrigation in Mediterranean fruit trees and grapevines: Water stress indicators and crop responses, in Irrigation in Agroecosystems, IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.80365
    [11] H. E. Igbadun, A. A. Ramalan, E. Oiganji, Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria, Agr. Water Manage., 109 (2012), 162–169. https://doi.org/10.1016/j.agwat.2012.03.006 doi: 10.1016/j.agwat.2012.03.006
    [12] M. S. Hashem, T. Z. El-Abedin, H. M. Al-Ghobari, Assessing effects of deficit irrigation techniques on water productivity of tomato for subsurface drip irrigation system, Int. J. Agric. Biol. Eng., 11 (2018), 156–167. 10.25165/j.ijabe.20181104.3846 doi: 10.25165/j.ijabe.20181104.3846
    [13] V. Blanco, E. Torres-Sánchez, P. J. Blaya-Ros, A. Pérez-Pastor, R. Domingo, Vegetative and reproductive response of 'Prime Giant' sweet cherry trees to regulated deficit irrigation, Sci. Hortic., 249 (2019), 478–489. https://doi.org/10.1016/j.scienta.2019.02.016 doi: 10.1016/j.scienta.2019.02.016
    [14] M. Liu, Z. Wang, L. Mu, R. Xu, H. Yang, Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China, Agric. Water Manage., 248 (2021), 106764. https://doi.org/10.1016/j.agwat.2021.106764 doi: 10.1016/j.agwat.2021.106764
    [15] J. Lopez-Jimenez, A. Vande Wouwer, N. Quijano, Dynamic modeling of crop–soil systems to design monitoring and automatic irrigation processes: A review with worked examples, Water, 14 (2022), 889. https://doi.org/10.3390/w14060889 doi: 10.3390/w14060889
    [16] J. H. Thornley, I. R. Johnson, Plant and crop modelling, Clarendon Press, Oxford, 1990.
    [17] J. Prieto-Méndez, O. A. Acevedo-Sandoval, M. A. Méndez-Marzo, Indicadores e índices de calidad de los suelos (ICS) cebaderos del sur del estado de Hidalgo, México, Agronomía mesoamericana, 24 (2013), 83–91.
    [18] X. Chone, C. van Leeuwen, D. Dubourdieu, J. P. Gaudillère, Stem water potential is a sensitive indicator of grapevine water status, Ann. Bot., 87 (2001), 477–483.
    [19] N. Livellara, E. Saavedra, F. Salgado, Plant based indicators for irrigation scheduling in young cherry trees, Agric. Water Manage., 98 (2011), 684–690. https://doi.org/10.1016/j.agwat.2010.11.005 doi: 10.1016/j.agwat.2010.11.005
    [20] H. McCutchan, K. A. Shackel, Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French), J. Am. Soc. Hortic. Sci., 117 (1992), 607–611. https://doi.org/10.21273/JASHS.117.4.607 doi: 10.21273/JASHS.117.4.607
    [21] J. Marsal, G. Lopez, J. del Campo, M. Mata, A. Arbones, J. Girona, Postharvest regulated deficit irrigation in 'Summit'sweet cherry: fruit yield and quality in the following season, Irrig. Sci., 28 (2010), 181–189. https://doi.org/10.1007/s00271-009-0174-z doi: 10.1007/s00271-009-0174-z
    [22] V. Blanco, R. Domingo, A. Pérez-Pastor, P. J. Blaya-Ros, R. Torres-Sánchez, Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees, Agric. Water Manage., 208 (2018), 83–94. https://doi.org/10.1016/j.agwat.2018.05.021 doi: 10.1016/j.agwat.2018.05.021
    [23] J. E. Fernández, M. V. Cuevas, Irrigation scheduling from stem diameter variations: A review, Agric Forest. Meteorol., 150 (2010), 135–151. https://doi.org/10.1016/j.agrformet.2009.11.006 doi: 10.1016/j.agrformet.2009.11.006
    [24] M. Carrasco-Benavides, J. Antunez-Quilobrán, A. Baffico-Hernández, C. Ávila-Sánchez, S. Ávila-Sánchez, S. Espinoza, et al., Performance assessment of thermal infrared cameras of different resolutions to estimate tree water status from two cherry cultivars: An alternative to midday stem water potential and stomatal conductance, Sensors, 20 (2020), 3596. https://doi.org/10.3390/s20123596 doi: 10.3390/s20123596
    [25] O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [26] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [27] P. D. Harrington, M. A. Lewis, A next-generation approach to calculate source–sink dynamics in marine metapopulations, Bull. Math. Biol., 82 (2020), 1–44. https://doi.org/10.1007/s11538-019-00674-1 doi: 10.1007/s11538-019-00674-1
    [28] A. Hurford, D. Cownden, T. Day, Next-generation tools for evolutionary invasion analyses, J. R. Soc. Interface, 7 (2010), 561–571. https://doi.org/10.1098/rsif.2009.0448 doi: 10.1098/rsif.2009.0448
    [29] S. Tang, Y. Xiao, R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 80 (2010), 849–921. https://doi.org/10.1016/j.matcom.2009.10.004 doi: 10.1016/j.matcom.2009.10.004
    [30] S. Gao, S. Luo, S. Yan, X. Meng, Dynamical behavior of a novel impulsive switching model for HLB with seasonal fluctuations, Complexity, 2018 (2018). https://doi.org/10.1155/2018/2953623 doi: 10.1155/2018/2953623
    [31] R. A. Taylor, E. A. Mordecai, C. A. Gilligan, J. R. Rohr, L. R. Johnson, Mathematical models are a powerful method to understand and control the spread of Huanglongbing, PeerJ, 4 (2016). https://doi.org/10.7717/peerj.2642 doi: 10.7717/peerj.2642
    [32] S. Gao, L. Xia, Y. Liu, D. Xie, A plant virus disease model with periodic environment and pulse roguing, Stud. Appl. Math., 136 (2016), 357–381. https://doi.org/10.1111/sapm.12109 doi: 10.1111/sapm.12109
    [33] D. S. Degefa, O. D. Makinde, D. T. Temesgen, Modeling potato virus Y disease dynamics in a mixed-cropping system, Int. J. Modell. Simul. 42 (2022), 370–387. https://doi.org/10.1080/02286203.2021.1919818 doi: 10.1080/02286203.2021.1919818
    [34] H. T. Alemneh, O. D. Makinde, D. M. Theuri, Mathematical modelling of msv pathogen inter- action with pest invasion on maize plant, Glob. J. Pure Appl. Math., 15 (2019), 55–79.
    [35] F. Ewert, R. P. Rötter, M. Bindi, H. Webber, M. Trnka, K. C. Kersebaum, et al., Crop modelling for integrated assessment of risk to food production from climate change, Environ. Modell. Softw., 72 (2015), 287–303. https://doi.org/10.1016/j.envsoft.2014.12.003 doi: 10.1016/j.envsoft.2014.12.003
    [36] J. L. Monteith, The quest for balance in crop modeling, Agron. J., 88 (1996), 695–697. https://doi.org/10.2134/agronj1996.00021962008800050003x doi: 10.2134/agronj1996.00021962008800050003x
    [37] P. Steduto, T. C. Hsiao, D. Raes, E. Fereres, AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles, Agron. J., 101 (2009), 426–437. https://doi.org/10.2134/agronj2008.0139s doi: 10.2134/agronj2008.0139s
    [38] B. A. Keating, P. J. Thorburn, Modelling crops and cropping systems-Evolving purpose, practice and prospects, Eur. J. Agron., 100 (2018), 163–176. https://doi.org/10.1016/j.eja.2018.04.007 doi: 10.1016/j.eja.2018.04.007
    [39] G. Fischer, J. O. Orduz-Rogríguez, Ecofisiología en frutales, En: Fischer, Bogotá, 2012.
    [40] L. Edelstein-Keshet, Mathematical models in biology, Society for Industrial and Applied Mathematics, 2005.
    [41] E. Duque-Marín, A. Rojas-Palma, M. Carrasco-Benavides, Simulations of an impulsive model for the growth of fruit trees, J. Phys. Conf. Ser., 2153 (2022), 012018. https://doi.org/10.1088/1742-6596/2153/1/012018 doi: 10.1088/1742-6596/2153/1/012018
    [42] S. G. Hristova, D. D. Bainov, Bounded solutions of systems of differential equations with impulses, Ann. Pol. Math., 48 (1988), 191–206.
    [43] Y. Yang, Y. Xiao, Threshold dynamics for compartmental epidemic models with impulses, Nonlinear Anal. Real. World Appl., 13 (2012), 224–234. https://doi.org/10.1016/j.nonrwa.2011.07.028 doi: 10.1016/j.nonrwa.2011.07.028
    [44] S. K. Ooi, N. Cooley, I. Mareels, G. Dunn, K. Dassanayake, K. Saleem, Automation of on-farm irrigation: horticultural case study, IFAC Proc. Vol., 43 (2010), 256–261. https://doi.org/10.3182/20101206-3-JP-3009.00045 doi: 10.3182/20101206-3-JP-3009.00045
    [45] P. Filippucci, A. Tarpanelli, C. Massari, A. Serafini, V. Strati, M. Alberi, et al., Soil moisture as a potential variable for tracking and quantifying irrigation: A case study with proximal gamma-ray spectroscopy data, Adv. Water Resour., 136 (2020), 103502. https://doi.org/10.1016/j.advwatres.2019.103502 doi: 10.1016/j.advwatres.2019.103502
    [46] D. C. Harris, Nonlinear least-squares curve fitting with Microsoft Excel Solver, J. Chem. Educ., 75 (1998), 119. https://doi.org/10.1021/ed075p119 doi: 10.1021/ed075p119
    [47] D. G. Mayer, D. G. Butler, Statistical validatio, Ecol. Modell., 68 (1993), 21–32.
    [48] C. J. Willmott, On the validation of models, Phys. Geogr., 2 (1981), 184–194. https://doi.org/10.1080/02723646.1981.10642213 doi: 10.1080/02723646.1981.10642213
    [49] C. J. Willmott, S. M. Robeson, K. J. Matsuura, A refined index of model performance, Int. J. Climatol, 32 (2012), 2088–2094. https://doi.org/10.1002/joc.2419 doi: 10.1002/joc.2419
    [50] I. Lawrence, K. Lin, A concordance correlation coefficient to evaluate reproducibility, Biomet. Rics., (1989), 255–268.
    [51] R. R. Jiliberto, Deja a la estructura hablar: Modelización y análisis de sistemas naturales, sociales y socioecológicos, Ediciones UM, 2020.
    [52] S. M. Lane, Mathematical models: A sketch for the philosophy of mathematics, Am. Math. Mon., 88 (1981), 462–472. https://doi.org/10.1080/00029890.1981.11995299 doi: 10.1080/00029890.1981.11995299
    [53] J. Franklin, Philosophy and mathematical modelling. Teaching Mathematics and its Applications: An International Journal of the IMA, 2 (1983), 118–119.
    [54] S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243. https://doi.org/10.2307/1403510 doi: 10.2307/1403510
    [55] M. Martcheva, An introduction to mathematical epidemiology, Springer, New York, 2015.
  • This article has been cited by:

    1. Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros, Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives, 2024, 9, 2473-6988, 18324, 10.3934/math.2024894
    2. H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy, Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features, 2024, 9, 2473-6988, 34224, 10.3934/math.20241630
    3. Said R. Grace, Gokula N. Chhatria, S. Kaleeswari, Yousef Alnafisah, Osama Moaaz, Forced-Perturbed Fractional Differential Equations of Higher Order: Asymptotic Properties of Non-Oscillatory Solutions, 2024, 9, 2504-3110, 6, 10.3390/fractalfract9010006
    4. A.E. Matouk, Monica Botros, Hidden chaotic attractors and self-excited chaotic attractors in a novel circuit system via Grünwald–Letnikov, Caputo-Fabrizio and Atangana-Baleanu fractional operators, 2025, 116, 11100168, 525, 10.1016/j.aej.2024.12.064
    5. Zahra Barati, Maryam Keshavarzi, Samaneh Mosaferi, Anatomical and micromorphological study of Phalaris (Poaceae) species in Iran, 2025, 68, 1588-4082, 9, 10.14232/abs.2024.1.9-15
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1837) PDF downloads(104) Cited by(0)

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog